

Dixieline Lumber and Home Centers Project (MND 2017-02)

Initial Study - Mitigated Negative Declaration

prepared by City of Oxnard Development Services Department 214 South C Street Oxnard, California 93013

prepared with the assistance of Rincon Consultants 180 North Ashwood Avenue Ventura, California 93003

August 2017

Table of Contents

Initial St	udy1
1	Project Title1
2	Lead Agency Name and Address1
3	Contact Person and Phone Number1
4	Project Location1
5	Project Sponsor's Name and Address1
6	Existing Setting4
7	General Plan and Zoning Designations4
8	Project Description4
9	Required Approvals17
10	Surrounding Land Uses and Setting17
11	Other Public Agencies Whose Approval is Required17
Environi	mental Checklist
1	Aesthetics21
2	Agriculture and Forest Resources
3	Air Quality25
4	Biological Resources
5	Cultural Resources
6	Geology and Soils
7	Greenhouse Gas Emissions41
8	Hazards and Hazardous Materials47
9	Hydrology and Water Quality53
10	Land Use and Planning59
11	Mineral Resources61
12	Noise
13	Population and Housing75
14	Public Services
15	Recreation
16	Transportation
17	Tribal Cultural Resources
18	Utilities and Service Systems95
19	Mandatory Findings of Significance99

References	101
Bibliography	101
List of Preparers	104

Tables

Table 1	Project Summary	7
Table 2	Federal and State Ambient Air Quality Standards	. 26
Table 3	Ambient Air Quality Data at the El Rio Monitoring Station	26
Table 4	Construction Emissions	. 28
Table 5	Maximum Daily Operation Air Pollutant Emissions	29
Table 6	Estimated Construction GHG Emissions	44
Table 7	Estimated Operations GHG Emissions	44
Table 8	Significance of Changes in Operational Roadway Noise Exposure	64
Table 9	City of Oxnard Municipal Code Designated Sound Zones and Exterior Sound	
	Standards by Zone	. 65
Table 10	Typical Noise Levels Generated by Construction Equipment	69
Table 11	Construction Noise Levels by Phase	. 69
Table 12	Average Daily Traffic Trips and Trip Distribution of Studied Intersections of	
	Proposed Project	. 71
Table 13	Vibration Source Levels for Construction Equipment	73
Table 14	Existing and Cumulative Development Average Daily Traffic Trips of Studied	
	Intersections	. 74
Table 15	Existing Peak Hour Levels of Service	85
Table 16	Proposed Project Maximum Daily Operations	85
Table 17	Project Weekday Peak Hour Trip Generation	86
Table 18	Existing plus Project Peak Hour Levels of Service	87
Table 19	Approved and Pending Projects (Cumulative Development) Trip Generation	88
Table 20	Cumulative Peak Hour Levels of Service	. 88
Table 21	Cumulative plus Project Peak Hour Levels of Service	89

Figures

Figure 1	Regional Project Location	2
Figure 2	Project Site Location and Vicinity	3
Figure 3	Site Photographs	5
Figure 4	Site Plan	9
Figure 5	Proposed Albany Drive Plans and Elevations	11
Figure 6	Proposed Project Site Elevations	13
Figure 7	Proposed Project Landscape Plan	15
Figure 8	Photographs of Surrounding Area	18

Appendices

- Appendix A CalEEMod Results and N₂O Hand Calculation Worksheet
- Appendix B Construction Noise Calculation Worksheets and Attenuation Worksheets
- Appendix C Associated Transportation Engineers Traffic and Circulation Study

This page intentionally left blank.

Initial Study

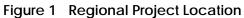
1 Project Title

Dixieline Lumber and Home Center (MND 2017-02)

2 Lead Agency Name and Address

City of Oxnard Development Services Department/Planning Division 214 South C Street Oxnard, California 93013

3 Contact Person and Phone Number


Juan Martinez, Associate Planner (805) 385-7556

4 Project Location

The project site is located at 2325 Statham Parkway and 801-841 Albany Drive, north of East Channel Islands Boulevard and west of Oxnard Boulevard (State Route [SR]-1), in the city of Oxnard, CA (APNs 220-022-009, 220-001-022, and 220-001-023). Figure 1 provides the regional location and Figure 2 provides an aerial view of the project site in its neighborhood context.

5 Project Sponsor's Name and Address

Applicant:	Dixieline Lumber and Home Centers
Applicant's Address:	3250 Sports Arena Road San Diego, California 92210
Agent:	Ray Musser, Architect 196 Camino Ruiz Camarillo, California 93012
Owner:	Raznick Family Ventures 5525 Oakdale Avenue #200 Woodland Hills, California 91364



Figure 2 Project Site Location and Vicinity

Imagery provided by Google and its licensors © 2017.

6 Existing Setting

The project site consists of a 203,861-square-foot (sf) (4.68-acre) rectangular, vacant, infill parcel (located at 801-841 Albany Drive, (APN 220-0-220-095) in an established industrial park as well as use of an adjacent 2.67 -acre parcel with an existing 38,880-sf industrial warehouse/office space, located at 2325 Statham Boulevard Unit 'C,' in a 103,680-sf multi-tenant building (APN 220-0-010-225). An existing drive aisle is along two APNs: 220-0-010-235 and 220-0-010-225 connects to Statham Parkway, which in turn connects to Statham Boulevard.

The 4.68-acre vacant parcel has never been developed and was used for agriculture prior to the initial annexation and development of this area as an industrial park in the 1970s. The multi-tenant building was developed in mid-1970 and is divided into three tenant spaces, of which the southernmost tenant space (totaling 38,880 sf or 0.89 acres) is part of the project. The project includes an additional approximate 0.05 acres of existing parking. With the use of the existing parking lot, the project totals approximately 5.62 acres, and is not eligible for the CEQA Class 32 infill exemption for infill development under five acres. Figure 3 shows site photos of the vacant project site and adjacent warehouse building.

7 General Plan and Zoning Designations

The project site has a land use designation of Light Industrial (ILT) in the City of Oxnard 2030 General Plan and has a zoning designation of Light Manufacturing (M-1).

8 Project Description

The applicant is requesting the approval of a Special Use Permit (PZ 16-500-7), per City of Oxnard Municipal Code (OMC) Section 16-223, to develop and operate a regional lumber distribution facility, construct an approximate 650-foot new railroad loading siding/switch off the adjoining Ventura County Railroad (VCRR) single line, and operate an accessory business to business lumber sale retail use. The existing 103,680-sf warehouse/office building containing a three-bay loading dock, 108 standard vehicle parking spaces, 4 handicap accessible vehicle parking spaces, and three motorcycle parking spaces would remain unchanged. Therefore, the required 115 parking spaces for the entire warehouse/office building, and of the 115, the 63 parking spaces required for the 38,880 sf (unit "C") are provided. Development on the vacant parcel includes a landscaped entrance at Albany Drive, as well as required onsite landscaping, lighting, metal fencing and concrete block wall, and stormwater retention and treatment facilities. Table 1 below provides a summary of the project components.

Figure 3 Site Photographs

Photograph 1: View of vacant parcel looking north from Albany Drive

Photograph 2: View looking south along east side of 2325 Statham Parkway building

Photograph 3: View looking south of parking lot at north end of vacant parcel

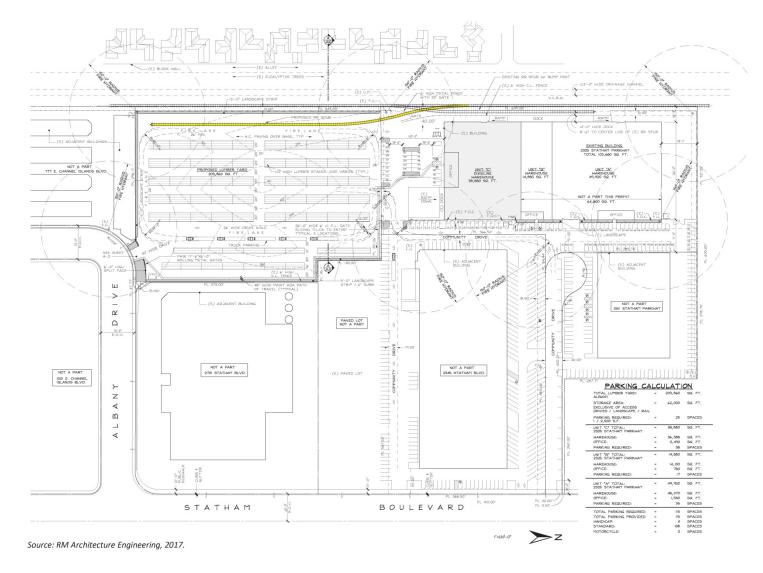
Table 1 Project Summary

Site Plan To	otals			
		Square Feet (sf)	Acreage ²	Percent Site Coverage (%) ¹
Approxima	ate Building Footprint Area	38,880	0.89	15.9
Approxima	ate Landscape Area	10,170	0.23	4.1
Approxima	ate Hardscape Area	195,788	4.50	80.0
Approxima	ate Site Area	244,838	5.62	100.0
Building Ar	rea			
Building Ty	уре	Square Feet (sf)	Acreage ²	
Unit C	Warehouse	36,388	0.84	
	Office	2,492	0.06	
Lumberyar	rd	203,860	4.68	
Parking (fo	or entire 103,680 sf wareho	use/office building)		
Туре		Number of spaces		
Standard (9 feet x 19 feet)	108		
Handicap (9 feet x 19 feet)	4		
Motorcycle		3		
Motorcycle				

²Acreages rounded to the nearest hundredth

Sources: Preliminary Drainage Study for Dixieline Oxnard Lumber Yard Project, Encompass Consultant Group 2017

Construction


Construction is anticipated to start by late 2017 and be completed in mid-2018, with an operational year of 2019.

Access and Parking

The existing vacant parcel has direct access to Albany Drive. The warehouse and business retail uses have access via Statham Parkway, a private drive shared by three buildings, to Statham Boulevard. Parking will include the existing 108 standard parking spaces, in addition to four handicap spaces, and three motorcycle spaces. Figure 4 illustrates the project site plan. Figure 5 illustrates the proposed plans and elevations for the Albany Drive entrance. Figure 6 shows the proposed project elevations. Figure 7 shows the proposed landscape plans.

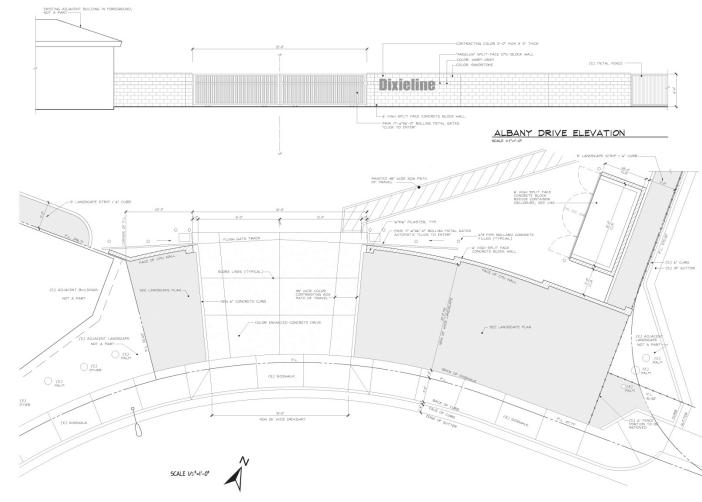
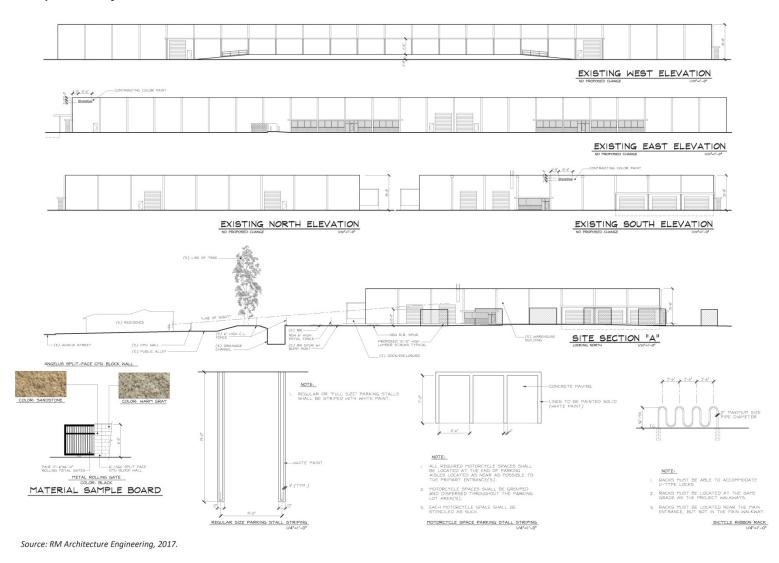

This page intentionally left blank.

Figure 4 Site Plan

City of Oxnard Dixieline Lumberyard Project

This page intentionally left blank.


Figure 5 Proposed Albany Drive Plans and Elevations

Source: RM Architecture Engineering, 2017.

City of Oxnard Dixieline Lumberyard Project

This page intentionally left blank.

Figure 6 Proposed Project Site Elevations

City of Oxnard Dixieline Lumberyard Project

This page intentionally left blank.

Figure 7 Proposed Project Landscape Plan

City of Oxnard Dixieline Lumberyard Project

This page intentionally left blank.

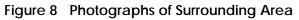
9 Required Approvals

The following entitlement is required for the proposed development:

Special Use Permit

The proposed rail siding/switch does not require a permit from the Ventura County Transportation Commission or any state or federal agency.

10 Surrounding Land Uses and Setting


The following are surrounding uses:

- North: Multi-tenant industrial buildings in an industrial park
- South: Self-storage, Best Western motel, and Channel Islands Blvd (arterial road)
- East: Multi-tenant industrial buildings in an industrial park
- West: Ventura County Railroad right-of-way, County drainage channel, single-family homes

See Figure 8 for photos of surrounding uses.

11 Other Public Agencies Whose Approval is Required

No other public agency approval is required.

Photograph 4: View looking west along Statham Parkway towards 2325 Statham Blvd. building

Photograph 5: View looking north from Channel Islands Blvd. of windrow along west side of the county drainage channel, drainage channel, and Ventura County Railroad (project site is at arrow)

Photograph 6: View looking east at the vacant parcel from west side of the drainage channel

Photograph 7: View looking north along alley and windrow on the west side of the County drainage channel and VCRR link located on the east side of residential area west of project site

Environmental Factors Potentially Affected

This project would potentially affect the environmental factors checked below, involving at least one impact that is "Potentially Significant" or "Potentially Significant Unless Mitigation Incorporated" as indicated by the checklist on the following pages.

Aesthetics		Agriculture and Forest Resources	Air Quality
Biological Resources		Cultural Resources	Geology and Soils
Greenhouse Gas Emissions	-	Hazards and Hazardous Materials	Hydrology/Water Quality
Land Use/Planning		Mineral Resources	Noise
Population/Housing		Public Services	Recreation
Transportation/Traffic	•	Tribal Cultural Resources	Utilities/Service Systems
Mandatory Findings			

Determination

of Significance

Based on this initial evaluation:

- □ I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.
- I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions to the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.
- □ I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.
- □ I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect (1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and (2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.
- □ I find that although the proposed project could have a significant effect on the environment, because all potential significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

 Signature
 Date

 Printed Name
 Title

Environmental Checklist

1	Aesthetics				
		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
W	ould the project have any of the following imp	pacts?			
a.	Substantial adverse effect on a scenic vista				•
b.	Substantial damage to scenic resources, including but not limited to trees, rock outcroppings, and historic buildings along a state scenic highway				
C.	Substantially degrade the existing visual character or quality of the site and its surroundings				
d.	Create a new source of substantial light or glare that would adversely affect daytime or nighttime views in the area				•

- a. Would the project have an adverse effect on a scenic vista?
- b. Would the project cause substantial damage to scenic resources, including but not limited to, trees, rock outcroppings, and historic buildings along a state scenic highway?
- c. Would the project substantially degrade the existing visual character or quality of the site and its surroundings?
- d. Would the project create a new source of substantial light or glare that would adversely affect daytime or nighttime views in the area?

The project would develop a 4.68-acre vacant parcel with a railroad siding and approximately 13 lumber stacking structures that would be up to approximately 12 feet in height, in a fenced, walled, and lighted lumber wholesale storage yard. The project would include a new landscaped entrance at Albany Drive and use of an existing warehouse, parking lot, and drive aisle that exits to Statham Parkway. Storage yard lighting would comply with City uniformly applied development standards that minimize offsite light spillage. The project site is surrounded on three sides (north, south, and east) by an existing industrial park and on the west by the VCRR line and a County of Ventura drainage channel.

There is no scenic vista in the vicinity and no scenic onsite resources. In addition, the project is not viewable from a state-designated scenic highway (California Department of Transportation [Caltrans] 2011). The project is compatible with surrounding industrial uses and would not introduce

glare or lighting impacts with the application of the City's uniformly applied standards for outdoor lighting. The project would have no impact. No mitigation is required.

NO IMPACT

Cumulative Impacts

The proposed project would have no direct or indirect adverse impacts on aesthetics. With incorporation of required uniformly applied development standards for lighting, impacts of the project with respect to glare and lighting would not be cumulatively considerable.

2 Agriculture and Forest Resources

		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
W	ould the project have any of the following imp	pacts?			
a.	Convert Prime Farmland, Unique Farmland, Farmland of Statewide Importance (Farmland), as shown on maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use				
b.	Conflict with existing zoning for agricultural use or a Williamson Act contract				-
C.	Conflict with existing zoning for or cause rezoning of forest land (as defined in Public Resources Code Section 12220(g)); timberland (as defined by Public Resources Code Section 4526); or timberland zoned Timberland Production (as defined by Government Code Section 51104(g))				
d.	Result in the loss of forest land or conversion of forest land to non-forest use				-
e.	Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to non-agricultural use				•

In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Dept. of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land. This includes the Forest and Range Assessment Project and the Forest Legacy Assessment Project, along with the forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board (CARB).

- a. Would the project convert Prime Farmland, Unique Farmland, Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?
- b. Would the project conflict with existing zoning for agricultural use, or a Williamson Act contract?

The project is located in an industrialized area of the City of Oxnard. According to the California Department of Conservancy, the project site is urban and built-up land, meaning land that is:

"... occupied by structures with a building density of at least 1unit to 1.5 acres, or approximately 6 structures to a 10-acre parcel. Common examples include residential, industrial, commercial, institutional facilities, cemeteries, airports, golf courses, sanitary landfills, sewage treatment, and water control structures."

Therefore, the proposed project would not convert Prime Farmland, Unique Farmland, Farmland of Statewide Importance, or conflict with existing zoning for agricultural use or a Williamson Act contract. The project would have no impact.

NO IMPACT

- c. Would the project conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code Section 12220(g)), timberland (as defined by Public Resources Code Section 4526), or timberland zoned Timberland Production (as defined by Government Code Section 51104(g))?
- d. Would the project result in the loss of forest land or conversion of forest land to non-forest use?

As discussed above, the proposed project is located in a highly urbanized, industrial area of the City of Oxnard. The proposed project would not conflict with existing zoning or cause the rezoning of forest land or timberland, or would the proposed project result in the loss of forest land or conversion of forest land to non-forest use. The project would have no impact.

NO IMPACT

e. Would the project involve other changes in the existing environment, which, due to their location or nature, could result in conversion of Farmland to non-agricultural use?

The proposed project involves the use of a 4.68-acre vacant parcel that has never been developed, which was used for agriculture prior to the initial annexation and development of the area as an industrial park in the 1970s. The multi-tenant building that is proposed to be used as its current development was developed in mid-1970s and is divided into three tenant spaces, of which the southernmost tenant space (totaling 38,880 sf) is part of the project. The proposed use of a lumberyard, office, and warehouse would be site-specific and would not involve other changes in the existing environment that could result in conversion of Farmland to non-agricultural use.

NO IMPACT

Cumulative Impacts

Since the proposed project would not conflict with any existing zoning for agricultural use, Williamson Act contracts or other changes to the environment resulting in conversion of farmland to non-agricultural use or forestland or timberland to non-forest use, no adverse cumulative impacts would result.

3 Air Quality

		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
Wo	ould the project have any of the following imp	acts?			
a.	Conflict with or obstruct implementation of the applicable air quality plan			•	
b.	Violate any air quality standard or contribute substantially to an existing or projected air quality violation				
C.	Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)				
d.	Expose sensitive receptors to substantial pollutant concentrations			-	
e.	Create objectionable odors affecting a substantial number of people			•	

Federal and state standards have been established for ozone, carbon monoxide (CO), nitrogen dioxide (NO_2), sulfur dioxide (SO_2), lead, and particulates less than 10 microns in diameter (PM_{10}) and less than 2.5 microns in diameter ($PM_{2.5}$). California has also set standards for sulfates, hydrogen sulfide, vinyl chloride, and visibility reducing particles. Local air pollution control districts are required to monitor air pollutant levels to ensure that air quality standards are met and, if they are not met, to develop strategies to meet the standards.

The project site is located in the City of Oxnard, which is in the South Central Coast Air Basin. The South Central Coast Air Basin comprises Ventura County, Santa Barbara County, and San Luis Obispo County. Oxnard is in the Ventura County Air Pollution Control District (VCAPCD) boundaries. Air basins in which air pollutant standards are exceeded are referred to as "non-attainment areas." The Ventura County Air Basin is a non-attainment area for both the federal and state standards for ozone and the state standard for PM_{10} (VCAPCD 2017b).

The 2016 Ventura County Air Quality Management Plan (AQMP), adopted by the VCAPCD on February 14, 2017, presents Ventura County's strategy for attaining the federal 8-hour ozone standard as required by the federal Clean Air Act Amendments of 1990 (VCAPCD 2017a).

Table 2 illustrates current federal and state air quality standards and the attainment status of the pollutants.

Pollutant	Averaging Time	Federal Primary Standards	Federal Attainment (Y/N)	California Standard	State Attainment (Y/N)
Ozone	8-Hour	0.070 ppm	Ν	0.070 ppm	Ν
	1-Hour	-	-	0.09 ppm	Ν
Carbon	8-Hour	9.0 ppm	Y	9.0 ppm	Y
Monoxide	1-Hour	35.0 ppm	Y	20.0 ppm	Y
Nitrogen Dioxide	Annual	0.053 ppm	Y	0.030 ppm	Y
	1-Hour	0.100 ppm	Y	0.18 ppm	Y
Sulfur Dioxide	Annual	-	-	-	_
	24-Hour	-	-	0.04 ppm	Y
	1-Hour	0.075 ppm	Y	0.25 ppm	Y
PM ₁₀	Annual	-	-	20 μg/m ³	N
	24-Hour	150 μg/m ³	Y	50 μg/m ³	Ν
PM _{2.5}	Annual	12 μg/m ³	Y	12 μg/m ³	Y
	24-Hour	35 μg/m ³	Y	-	-
Lead	30-Day Average	_	_	1.5 μg/m ³	Y
	3-Month Average	0.15 μg/m ³	Y	-	_

Table 2 Federal and State Ambient Air Quality Standards

Source: CARB 2017b and VCAPCD 2017b

The El Rio air quality monitoring station, located at Rio Mesa High School (545 Central Ave., El Rio, California, 93030) is the closest station the project site. This station measures ozone, NO_2 , and PM_{10} . None of the monitoring stations in Ventura County record CO measurements. Table 3 summarizes the annual air quality data over the past three years of available data for the local airshed (data from 2016 is not yet available).

Table 3 Ambient Air Quality Data at the El Rio Monitoring Station

-	•		
Pollutant	2013	2014	2015
Ozone, 8-Hour, ppm			
Number of days of State exceedances (> 0.09 ppm)	0	2	0
Number of days of Federal exceedances (> 0.07 ppm)	0	2	0
Nitrogen Dioxide, ppm – Worst Hour			
Number of days of State exceedances (> 0.25 ppm)	0	0	0
Particulate Matter, < 10 microns, μg/m ³			
Number of samples of state exceedances (> 50 μ g/m ³)	0	7	6
Number of samples of federal exceedances (> 150 μ g/m ³)	0	*	0
Particulate Matter, < 2.5 microns, μg/m ³			
Number of samples of federal exceedances (> $35 \ \mu g/m^3$)	0	0	0
Notes: ppm = parts per million, μg/m ³ = micrograms per cubic meter * insufficient data Source: CARB 2017c			

The pollutants of greatest concern in Ventura County are ozone and PM_{10} . Concentrations of PM_{10} have exceeded state standards on one or more days during each of the past three calendar years.

The major sources of PM_{10} are road dust, construction, mobile sources, and farming operations. Locally, Santa Ana winds are responsible for entraining dust and occasionally causing elevated PM_{10} levels. Ozone is a secondary pollutant that is not produced directly by a source, but rather is formed by a reaction between NO_x and reactive organic gases (also described as volatile organic compounds) in the presence of sunlight. Reductions in ozone concentrations are dependent upon reducing emissions of these precursors. The major sources of ozone precursors in Ventura County are motor vehicles and other mobile equipment, solvent use, pesticide application, the petroleum industry, and electric utilities.

a. Would the project conflict with or obstruct implementation of the applicable air quality plan?

According to the VCAPCD Guidelines, the proposed project would have a significant impact to air quality if it causes the existing population to exceed population forecasts in the most recently adopted AQMP. However, if there are more recent population forecasts that have been adopted by the Ventura Council of Governments, where the total county population is lower than that included in the most recently adopted AQMP, that population may be used (VCAPCD 2003).

The 2016 AQMP used a 2016 population estimate provided by the California Department of Finance (DOF) for Ventura County (VCAPCD 2017a). The Ventura Council of Governments has adopted the Southern California Association of Governments (SCAG) 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS), which provides population projections through 2040. Therefore, the RTP/SCS population forecasts were used to determine consistency. The RTP/SCS estimates the population of Oxnard to be 206,997 people for the year 2016, with a forecasted population of 220,200 for 2020 (DOF 2016, SCAG 2016). The proposed project would increase the current (year 2016) population to 207,042, if all employees were to relocate to Oxnard. However, this is not likely given the Oxnard area unemployment rate is within 0.3 percent of the regional (Ventura County) and state unemployment rates, (Bureau of Labor Statistics 2017a, 2017b, California Employment Development Department 2017) and the area labor pool is compatible with the project's labor and skill needs.. The estimated increase in population falls within the 2016-2040 RTP/SCS projection for 2020 (SCAG 2016). As the proposed project would not cause the population of Oxnard to exceed population forecasts, the proposed project would be consistent with the VCAPCD AQMP and would meet the VCAPCD guidelines significance criterion regarding population impacts. Impacts would be less than significant and no mitigation would be required.

LESS THAN SIGNIFICANT IMPACT

- *b.* Would the project violate any air quality standard or contribute substantially to an existing or projected air quality violation?
- c. Would the project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)?

Construction Emissions

The proposed project would generate air quality pollutants from construction activities associated with all phases of construction, such as worker trips, hauling trips, and construction vehicle emissions. Table 4 provides the maximum daily pollutant emissions associated with construction of the proposed project. It was assumed that the construction phasing of the proposed project included a total of 40 days of paving. It was also assumed all renovations to the existing warehouse

would be completed with hand power tools, which would not contribute significantly to pollutant emissions. Lastly, it was assumed that the construction of the construction of the rail siding including vendor and hauling trips with an assumed 12.03 cubic yards of gravel, with a hauling truck capacity of 16 cubic yards, one vendor truck delivery for wood, and two vendor truck trips for rail delivery (assuming one truck could carry a rail that is approximately 20 feet long, and requiring 33 rails total, for approximately 16 rails for each truck trip).

		Emissions (pounds per day) ^{1,2}					
	ROC	NO _x	со	PM ₁₀	PM _{2.5}		
Maximum Daily Emissions	3.2	34.3	17.8	4.9	3.2		
VCAPCD Construction Emissions Threshold	NA	NA	NA	NA	NA		
Exceed Threshold?	NA	NA	NA	NA	NA		

Table 4 Construction Emissions (pounds/day)

Notes: ROC = reactive organic compound, NO_x = nitrogen oxides, CO = carbon monoxide, PM_{10} = particulates less than 10 microns in diameter, $PM_{2.5}$ = particulates less than 2.5 microns in diameter, VCAPCD = Ventura County Air Pollution Control District, NA = not applicable

¹Assumed 40 days would be required for all paving of the project site.

²Numbers rounded to the nearest tenth.

See Appendix A for CalEEMod calculations. The higher of winter or summer emissions are shown for each criteria pollutant.

Construction of the proposed project would emit a maximum of 3.2 pounds of ROC per day and 34.3 pounds of NO_x per day. The project would also emit a maximum of 4.9 and 3.2 pounds per day of PM_{10} and $PM_{2.5}$, respectively. The VCAPCD's 25-pounds-per-day thresholds for ROG and NO_x do not apply to construction emissions since such emissions are temporary. Nevertheless, for construction impacts, the VCAPCD recommends minimizing fugitive dust through dust control measures. Fugitive dust control measures are required by VCAPCD Rule 55. Rule 55 includes fugitive dust reduction measures such as securing tarps over truck loads and watering to treat bulk material to minimize fugitive dust. Compliance with Rule 55 would ensure that construction emissions would not be generated in such quantities as to cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or that may endanger the comfort, repose, health, or safety of any such person or the public. Air quality impacts due to construction emissions would be less than significant.

LESS THAN SIGNIFICANT

Operational Emissions

Operational, or long-term, air pollutant emissions would be generated by mobile and area sources associated with the proposed project. Implementation of the proposed project would generate new trips to and from the project site (totaling approximately 120 average daily trips) and demand energy to power office and warehouse operations. The proposed project also includes the use of an existing railroad parallel to the project site, which would provide delivery of lumber to the site. The project would use approximately 10 railcars per week using an existing train delivering goods on the railroad. In addition, the proposed project would store borate-treated wood in the warehouse as part of its operations. Borates are inorganic and contain no volatile organic compounds (Forintek Canada Corporation 2002). Volatile organic compounds are one of the air pollutants of concern. Therefore, the emissions associated with the treated lumber would not emit volatile organic compounds.

	Emissions (pounds per day) ¹					
	ROC	NO _x	со	PM ₁₀	PM _{2.5}	
Area	1.2	<0.1	<0.1	<0.1	<0.1	
Energy	<0.1	<0.1	<0.1	<0.1	<0.1	
Mobile	0.2	1.0	2.9	0.8	0.2	
Offroad ²	2.2	19.3	16.1	1.5	1.4	
Total	3.6	20.3	19.1	2.3	1.6	
VCAPCD Threshold	25	25	NA	NA	NA	
Exceed Threshold?	No	No	NA	NA	NA	

Table 5 provides estimated criteria pollutant emissions associated with project operation.

Table 5	Maximum	Daily Op	eration Air P	ollutant Emiss	sions (pounds/day)
---------	---------	----------	---------------	----------------	--------------------

Notes: ROC = reactive organic compound, NO_x = nitrogen oxides, CO = carbon monoxide, PM_{10} = particulates less than 10 microns in diameter, $PM_{2.5}$ = particulates less than 2.5 microns in diameter, VCAPCD = Ventura County Air Pollution Control District, NA = not applicable

¹Numbers are rounded to the nearest tenth. Totals may not equate exactly.

²"Offroad" accounts for onsite vehicles, calculated at 6 forklifts.

See Appendix A for CalEEMod calculations. The higher of winter or summer emissions are shown for each criteria pollutant.

The proposed project would not exceed the VACPCD threshold for ROC and NO_x (25 pounds per day) operational emissions, generating a maximum of 3.6 pounds per day of ROC and 20.3 pounds per day of NO_x . Therefore, project operational air quality impacts are less than significant.

LESS THAN SIGNIFICANT

d. Would the project expose sensitive receptors to substantial pollutant concentrations?

Certain population groups, such as children, the elderly, and people with health problems, are particularly sensitive to air pollution. Sensitive receptors are defined as land uses that are more likely to be used by these population groups and include health care facilities, retirement homes, school and playground facilities, and residential areas. The sensitive receptors within 0.5 mile of the project site include single-family residential (east and west of the project site), multi-family residential (south of the project site), schools (south and west of the project site), and parks (north and west of the project site).

Areas with high vehicle density, such as congested intersections, have the potential to create high concentrations of CO known as CO hotspots. A project's localized air quality impact is considered significant if CO emissions create a hotspot where either the California one-hour standard of 20 parts per million (ppm) or the federal and state 8-hour standard of 9.0 ppm is exceeded. This typically occurs at severely congested intersections (LOS E or worse). According to the VCAPCD, a CO screening analysis should be conducted for intersections that would be significantly affected by a project and that experience, or are anticipated to experience, LOS E or F. Based on a traffic impact analysis prepared by Associated Transportation Engineers for the proposed project, the intersections near the project site currently experience a LOS of B or better and the proposed project would not reduce intersections to a LOS E or F (2017). Therefore, the proposed project would not result in a CO hotspot and no mitigation is required. Impacts would be less than significant.

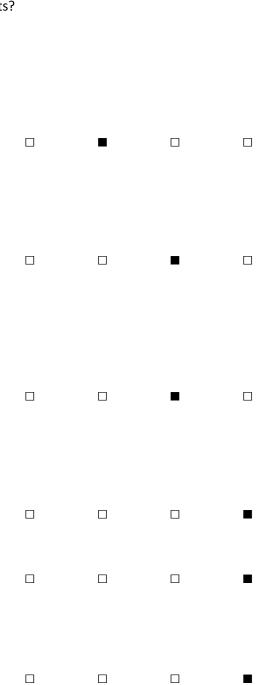
As discussed in impacts B and C of this section, grading and construction of the project site would create temporary construction emissions and operation of the project would create levels of air pollutant emissions that would be less than significant. Therefore, the proposed project would not

expose sensitive receptors to substantial pollutant concentrations. Impacts would be less than significant.

LESS THAN SIGNIFICANT IMPACT

e. Would the project create objectionable odors affecting a substantial number of people?

According to the *SCAQMD CEQA Air Quality Handbook* (1993), land uses typically producing objectionable odors include agricultural uses, wastewater treatment plants, food processing plants, chemical plants, composting, refineries, landfills, dairies, and fiberglass molding. The proposed project includes a lumberyard, which is not listed by the SCAQMD as a land use that produces objectionable odors (SCAQMD 1993). Other odors, including the smells of oil or diesel fuels, would be limited to project construction. All off-road construction equipment would be covered by the ARB anti-idling rule (SS2449[d][2]), which limits idling to five minutes. Project construction would be temporary and would not produce odors long-term. Project impacts would be less than significant.


LESS THAN SIGNIFICANT IMPACT

4 Biological Resources

Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact

Would the project have any of the following impacts?

- a. Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service
- b. Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service
- c. Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means
- d. Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites
- e. Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance
- f. Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

The project site is located in an urbanized area of the city of Oxnard. Existing industrial uses are located to the north, east, and south of the project site. A Ventura County Watershed Protection District drainage channel is located on the western side of the project side and is separated from the project site by a railroad line. Residential development is located further west, beyond the drainage channel. The project site has been previously developed with an industrial building and previously disturbed agricultural land that has been graded. Existing vegetation is limited to ruderal vegetation.

a. Would the project have a substantial adverse effect, either directly or through habitat modifications, on any species identified as candidate, sensitive, or special-status in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife (CDFW) or the U.S. Fish and Wildlife Service (USFWS)?

The northern portion of the project site contains existing industrial development. The southern portion of the project site was previously used for agricultural uses and has been graded. Due to the previously disturbed nature of the site, the project site lacks native vegetation that would provide habitat for unique, rare, or endangered plant and animal species. Therefore, the proposed project would not have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations, or by the CDFW or USFWS, because no listed species are known or expected to occur at the project site.

The Federal Migratory Bird Treaty Act (MBTA) and the California Fish and Game (CFC) Code (§§ 3503, 3503.5, 3511, 3513, and 3800) protect most native birds. In addition, the federal and state endangered species acts protect some bird species listed as threatened or endangered. CDFG Code § 3513 relies on the MBTA by prohibiting any take or possession of birds that are designated by the MBTA as migratory nongame birds, except as allowed by federal rules and regulations promulgated pursuant to the MBTA. In addition, the CDFG Code (§§ 3503, 3503.5, 3511, and 3800) further protects nesting birds, including passerine birds, raptors, and state "fully protected" birds. These regulations generally apply during the breeding season, because unlike adult birds, eggs and chicks are unable to escape impacts. Section 3503.5 of the Fish and Game Code of California protects birds of prey, and their nests and eggs against take, possession, or destruction.

Construction of the project could result in possible indirect temporary impacts to raptors and protected nesting birds located in the vicinity of the project site such as nesting on adjacent buildings, street trees, or the eucalyptus windrow located adjacent to the railroad line. Compliance with mitigation measure BIO-1 would ensure impacts to nesting birds and raptors are less than significant.

POTENTIALLY SIGNIFICANT UNLESS MITIGATION INCORPORATED

Mitigation Measures

The following mitigation measures would reduce impacts to a less than significant level.

BIO-1 Nesting Bird and Raptor Survey. To avoid indirect construction impacts to nesting birds and raptors, consistent with the CFG Code and MTBA, vegetation removal and initial ground disturbance must occur outside the bird and raptor breeding season, which is typically February 1 through August 31 (as early as January 1 for some raptors). If construction and ground disturbance must begin during this breeding season, then not more than one week before ground disturbance and/or vegetation removal commences a nesting bird and raptor pre-construction survey must be conducted by a City-approved biologist (biologist) inside the disturbance footprint plus a 300-foot buffer, as feasible. If the project is phased, a subsequent pre-construction nesting bird and raptor survey is required before each phase of construction on the project site and suitable habitat within 300 feet. If no raptor or other bird nests are observed, no further mitigation is required.

Pre-construction nesting bird and raptor surveys must be conducted during the time of day when bird species are active and be of sufficient duration to reliably conclude presence/absence of nesting birds and raptors inside the 300-foot buffer. A report of the nesting bird and raptor survey results, if applicable, must be submitted to the Planning Division for review and approval before issuance of grading or building permits (whichever occurs first).

If active raptor or Migratory Bird Treaty Act protected bird nests are found within 300 feet of the project site, their locations must be flagged and mapped. A nesting raptor buffer must be 500 feet, consistent with CDFW guidance. If the 500-foot buffer is infeasible, the biologist may reduce the buffer distance and/or monitor construction as appropriate, dependent upon the species and the proposed work activities. If any active *non-raptor* bird nests are found, a suitable buffer area (varying from 25–300 feet), depending on the particular species found, shall be established by the biologist. No ground disturbance can occur inside the buffer until the biologist confirms that the breeding/nesting is completed and all the young have fledged. Alternately, the biologist may monitor the active nest full-time during construction activities inside the buffer to ensure project activities are not indirectly impacting protected nesting birds and raptors.

b. Would the project have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?

The northern portion of the site has been fully developed and utilized for industrial purposes for many years, and the southern portion of the site has been previously graded and used as agricultural land. Riparian vegetation or other sensitive natural community types do not occur on the project site or in the project vicinity. There are no sensitive natural communities identified in plans, regulations, or by regulatory agencies on the project site. The proposed project would have no impact to riparian habitat or other sensitive natural communities.

LESS THAN SIGNIFICANT IMPACT

c. Would the project have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?

Federally protected wetlands or waters as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) do not occur onsite (USFWS 2017). However, there is an identified "riverine" approximately 40 feet west of the project site boundary. This riverine is a Ventura County Watershed Protection District drainage channel. However, the drainage channel is separated from the project site by a railroad line. Therefore, the proposed project would not have a substantial adverse effect on this nearby drainage channel. As a result, impacts would be less than significant.

LESS THAN SIGNIFICANT IMPACT

d. Would the project interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

The project site would not be expected to support wildlife movement due to the disturbed nature of the project site and adjacent urban areas and railroad line. The project site is not in an established resident or migratory wildlife corridor.

NO IMPACT

e. Would the project conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

The City of Oxnard does not currently have an adopted tree preservation policy or biological resource protection policy or ordinance outside of Environmental Sensitive Habitat Areas in the coastal zone. The project site is not located in the coastal zone. Therefore, the proposed project would have no impact regarding conflicts with any local policies or ordinances protecting biological resources.

NO IMPACT

f. Would the project conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

The project site is not located in an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan, including the City of Oxnard Coastal Land Use Plan (City of Oxnard 2002).

NO IMPACT

5 Cultural Resources

		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact		
Wo	Would the project have any of the following impacts?						
a.	Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5						
b.	Cause a substantial adverse change in the significance of an archaeological resource as defined in §15064.5	5		•			
C.	Directly or indirectly destroy a unique paleontological resource or site or unique geological feature			-			
d.	Disturb any human remains, including those interred outside of formal cemeteries						

a. Would the project cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?

The City of Oxnard has two designated historic districts: The Henry T. Oxnard National Historic District and the Leonard Ranch Historic District. The Henry T. Oxnard National Historic District is a residential neighborhood located west of the central business and commercial center of Oxnard, on "F" and "G" Streets (City of Oxnard 2017a). The neighborhood is comprised of mainly Bungalow and Craftsman style homes along with Mediterranean/Spanish Revival styles. The Leonard Ranch Historic District consists of 3.45 acres of what remains of the original ranch property and includes the ranch house, the main residence, and a cook's cabin (City of Oxnard 2011).

The project site is not located near either of the aforementioned locations and would therefore not cause a substantial adverse change in the significance of a historical resource. The project would have no impact.

NO IMPACT

- b. Would the project cause a substantial adverse change in the significance of an archaeological resource as defined in §15064.5?
- c. Would the project directly or indirectly destroy a unique paleontological resource or site or unique geological feature?
- d. Disturb any human remains, including those interred outside of formal cemeteries?

The project site has been previously disturbed and graded. The likelihood that intact archaeological resources, paleontological resources, or human remains are present in the surficial soil layer is low. In the unlikely event that archaeological or paleontological resources are identified, as defined by

Section 2103.2 of the Public Resources Code, the project site would require treatment in accordance with the provisions of Section 21083.2 of the Public Resources Code as appropriate.

It is possible that unanticipated cultural resource remains are encountered during construction or land modification activities, and continuation of work may damage or destroy archaeological or paleontological resources or human remains. If human remains are unearthed, the State Health and Safety Code Section 7050.5 requires that no further disturbance shall occur until the city coroner has made the necessary findings as to origin and disposition pursuant to Public Resources Code Section 5097.98. In addition, the City of Oxnard requires an archaeological resource survey be conducted, including a record search, prior to approval of the project. Therefore, the proposed project would have less than significant impacts.

If unanticipated cultural resource remains are found, the City of Oxnard requires compliance with a standard condition of approval and uniformly applied development standards. With the application of these conditions and standards, the proposed project would have a less than significant impact.

LESS THAN SIGNIFICANT IMPACT

6 Geology and Soils

	Ceclogy and sol	Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
Wo	ould the project have any of the following imp	pacts?			
a.	Expose people or structures to potentially substantial adverse effects, including the risk of loss, injury, or death involving:				
	 Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault 				•
	2. Strong seismic ground shaking			-	
	3. Seismic-related ground failure, including liquefaction			•	
	4. Landslides			-	
b.	Result in substantial soil erosion or the loss of topsoil			-	
c.	Be located on a geologic unit or soil that is made unstable as a result of the project, and potentially result in on or offsite landslide, lateral spreading, subsidence, liquefaction, or collapse				
d.	Be located on expansive soil, as defined in Table 1-B of the Uniform Building Code, creating substantial risks to life or property				
e.	Have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater				•

a.1. Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? According to the City of Oxnard *General Plan Background Report* (2006), the City of Oxnard is not located in an Alquist-Priolo zone (City of Oxnard 2006). Therefore, the project would not expose people or structures to potential substantial adverse effects involving the rupture of a known Alquist-Priolo earthquake fault. There would be no impact.

NO IMPACT

- a.2. Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving strong seismic ground shaking?
- a.3. Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving seismic-related ground failure, including liquefaction?
- a.4. Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving landslides?
- c. Would the project be located on a geologic unit or soil that is unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse?

Seismic Ground Shaking

The project site is located in a highly active earthquake region of Southern California and thus is subject to various seismic and geologic hazards, including ground shaking, surface rupture, and landslides. Seismically induced ground shaking covers a wide area and is greatly influenced by the distance of a site to the seismic source, soil conditions, and depth to groundwater. Surface rupture is limited to very near the fault. Other hazards associated with seismically induced ground shaking include earthquake-triggered landslides, liquefaction, and settlement. As with any location in Southern California, in the event of a strong earthquake (magnitude 6.0 to 7.5) originating near the site or a major earthquake (8.0 magnitude) along the San Andreas Fault, damage to onsite structures could be severe and loss of life could occur.

Based on California Department of Conservation (DOC) fault activity map of California, there are no known earthquake faults in the city of Oxnard. There are several active or potentially active faults that may affect Oxnard including the San Andreas Fault, northeast of the project area, and onshore and offshore segments of the Oak Ridge Fault, which is the nearest potentially active fault to the site. The most likely active faults to seismically affect the city and the project site are the Oak Ridge, Ventura, Simi-Santa Rosa, Bailey, and San Andreas faults (DOC 2010a, DOC 2010b):

- Oak Ridge Fault, located approximately 6 miles to the northwest of the site, is considered active
- Ventura Fault, located approximately 8 miles northwest of the site, is considered active
- Simi-Santa Rosa Fault, located approximately 5 miles to the northeast, is considered active
- Bailey Fault, located approximately 5.5 miles east of the site, is considered active
- San Andreas Fault, located approximately 46 miles to the northeast of the city, is considered active. Much of the trace of this fault is mapped as an Alquist-Priolo Earthquake Fault Zone.

With required adherence to existing regulations, impacts related to seismic hazards would be less than significant.

LESS THAN SIGNIFICANT IMPACT

Landslides

The project is located in a relatively flat area with no significant hillsides near the project site. Therefore, impacts associated with landslides are assumed to be less than significant.

LESS THAN SIGNIFICANT IMPACT

Liquefaction

Liquefaction is a temporary, but substantial, loss of shear strength in granular solids, such as sand, silt, and gravel, usually occurring during or after a major earthquake. This occurs when the seismic waves from an earthquake of sufficient magnitude and duration shear a soil deposit that has a tendency to decrease in volume. If drainage cannot occur, this reduction in soil volume will increase the pressure exerted on the water contained in the soil. This process can transform stable granular material into a fluid-like state. The potential for liquefaction to occur is greatest in areas with loose, granular, low-density soil, where the water table is within the upper 40 to 50 feet of the ground surface. Liquefaction can result in slope and/or foundation failure, and also post-liquefaction settlement.

Seismic hazard mapping conducted by the California Geological Survey for the Oxnard 7.5-minute quadrangle shows that the city is located in a State-designated Liquefaction Hazard Study Zone (California Geological Survey 2002). However, with required adherence to existing regulations, impacts related to liquefaction would be less than significant.

LESS THAN SIGNIFICANT IMPACT

b. Would the project result in substantial soil erosion or the loss of topsoil?

The project site is generally flat, which limits the potential for substantial soil erosion. The proposed project would be required to comply with best management practices (BMPs) for construction activities, which include erosion prevention measures. Additionally, the project would be required to adhere to the construction development requirements outlined in Section 22-222 *Construction Development* of the Oxnard Municipal Code, submitted along with grading plans (City of Oxnard 2016). Construction development requirements include conditions and requirements established by various permits that relate to the grading and building of a project, including applicable National Pollutant Discharge Elimination System (NPDES) permits and stormwater pollution prevention plan (SWPPP) (City of Oxnard 2016). With compliance with Municipal Code requirements, impacts associated with soil erosion and the loss of topsoil would be less than significant.

LESS THAN SIGNIFICANT IMPACT

d. Would the project be located on expansive soil, as defined in Table 1-B of the Uniform Building Code, creating substantial risks to life or property?

Expansive soils are generally clayey and swell when wetted and shrink when dried. Wetting can occur naturally in a number of ways, (e.g., absorption from the air, rainfall, groundwater fluctuations, lawn watering, and broken water or sewer lines). In hillside areas, as expansive soils expand and contract, gradual downslope creep may occur, eventually causing landslides. Clay soils also retain water and may act as lubricated slippage planes between other soil/rock strata, also producing landslides, often during earthquakes or when caused by unusually moist conditions.

Expansive soils are also often prone to erosion. Foundations of structures placed on expansive soils may rise during the wet season and fall during the succeeding dry season. Expansive soils can act as a lubricant when between differing soil/rock strata, which can facilitate movement triggered during heavy rains or earthquakes. Soils in the project area are anticipated to have very low to low expansiveness.

According to the County of Ventura Expansive Soils Map, the project site is located in a low expansive soil potential area of Oxnard (Ventura County Resource Management Agency 2010).

LESS THAN SIGNIFICANT IMPACT

e. Would the project have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?

The project does not propose the use of septic tanks or an alternative wastewater disposal system. The existing warehouse and office building is currently connected to the City of Oxnard sewer system and will continue to use this as a means for the disposal of wastewater. The proposed project would have no impact.

NO IMPACT

Cumulative Impacts

With implementation of the required SWPPP, the proposed project would not have a cumulatively considerable impact relating to erosion and loss of topsoil. Any reasonably foreseeable future projects requiring construction over an acre or more would also be required to implement an SWPPP. The project poses no potentially significant project-specific geologic hazard impacts. Therefore, no potential cumulative impacts are identified.

7 Greenhouse Gas Emissions

		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact	
Wo	Would the project have any of the following impacts?					
a.	Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment					
b.	Conflict with any applicable plan, policy, or regulation adopted to reduce the emissions of greenhouse gases			•		

The accumulation of greenhouse gases (GHGs) in the atmosphere regulates the earth's temperature. Without the natural heat-trapping effect of GHGs, Earth's surface would be about 34 degrees Celsius cooler (California Environmental Protection Agency [CalEPA] 2006). However, emissions from human activities, particularly the consumption of fossil fuels for electricity production and transportation, have elevated the concentration of these gases in the atmosphere beyond the level of naturally occurring concentrations. Carbon dioxide (CO_2), methane (CH_4), and nitrous oxide (N_2O) are the GHGs that are emitted in the greatest quantities from human activities. Emissions of CO_2 are largely by-products of fossil fuel combustion. CH_4 results from fossil fuel combustion as well as off-gassing associated with agricultural practices and landfills. N_2O is produced by microbial processes in soil and water, including those reactions that occur in fertilizers that contain nitrogen, fossil fuel combustion, and other chemical processes.

Scientific modeling predicts that continued GHG emissions at or above current rates would induce more extreme climate changes during the twenty-first century than were observed during the twentieth century. According to the CalEPA's *2010 Climate Action Team Biennial Report*, potential impacts of climate change in California may include loss in snow pack, sea level rise, more extreme heat days per year, more high ozone days, more large forest fires, and more drought years (CalEPA 2010). While these potential impacts identify the possible effects of climate change at a global and potentially statewide level, in general scientific modeling tools are currently unable to predict what impacts would occur locally with a similar degree of accuracy.

In response to an increase in man-made GHG concentrations over the past 150 years, California has implemented Assembly Bill (AB) 32, the "California Global Warming Solutions Act of 2006." AB 32 codifies the statewide goal of reducing GHG emissions to 1990 levels by 2020 (essentially a 15 percent reduction below 2005 emission levels), and requires the CARB to prepare a Scoping Plan that outlines the main State strategies for reducing GHGs to meet the 2020 deadline. In addition, AB 32 requires CARB to adopt regulations to require reporting and verification of statewide GHG emissions.

After completing a comprehensive review and update process, CARB approved a 1990 statewide GHG level and 2020 limit of 427 MMT CO₂e. The Scoping Plan was approved by CARB on December 11, 2008, and includes measures to address GHG emission reduction strategies related to energy efficiency, water use, and recycling and solid waste, among other measures. The Scoping Plan

includes a range of GHG reduction actions that may include direct regulations, alternative compliance mechanisms, monetary and non-monetary incentives, voluntary actions, and market-based mechanisms.

In May 2014, CARB approved the first update to the AB 32 Scoping Plan. The 2013 Scoping Plan update defines CARB's climate change priorities for the next five years and sets the groundwork to reach post-2020 goals set forth in EO S-3-05. The update highlights California's progress toward meeting the "near-term" 2020 GHG emission reduction goals defined in the original Scoping Plan. It also evaluates how to align the State's longer-term GHG reduction strategies with other State policy priorities, such as for water, waste, natural resources, clean energy and transportation, and land use (CARB 2017a).

Senate Bill (SB) 97, signed in August 2007, acknowledges that climate change is an environmental issue that requires analysis in California Environmental Quality Act (CEQA) documents. In March 2010, the California Resources Agency (Resources Agency) adopted amendments to the State CEQA Guidelines for the feasible mitigation of GHG emissions or the effects of GHG emissions. The adopted guidelines give lead agencies the discretion to set quantitative or qualitative thresholds for the assessment and mitigation of GHGs and climate change impacts.

On September 8, 2016, the governor signed SB 32 into law, extending AB 32 by requiring the State to further reduce GHGs to 40 percent below 1990 levels by 2030 (the other provisions of AB 32 remain unchanged). CARB is currently working to update the Scoping Plan to provide a framework for achieving the 2030 target. The updated Scoping Plan is expected to be completed and adopted by CARB in 2017 (CARB 2015).

Pursuant to the requirements of SB 97, the Resources Agency adopted amendments to the CEQA Guidelines for the feasible mitigation of GHG emissions and analysis of the effects of GHG emissions. The adopted CEQA Guidelines provide regulatory guidance on the analysis and mitigation of GHG emissions in CEQA documents, while giving lead agencies the discretion to set quantitative or qualitative thresholds for the assessment and mitigation of GHGs and climate change impacts. To date, the Bay Area Air Quality Management District (BAAQMD), the South Coast Air Quality Management District (SCAQMD), and the San Joaquin Air Pollution Control District (SJVAPCD) have adopted significance thresholds for GHGs. The SCAQMD threshold, which was adopted in December 2008, considers emissions of over 10,000 metric tons of carbon dioxide equivalent (CO_2e) per year to be significant. However, the SCAQMD is the CEQA lead agency. Although not formally adopted, the SCAQMD has a recommended quantitative threshold for all land use types of 3,000 metric tons of CO₂e per year (SCAQMD 2015). The 3,000 metric ton screening threshold was developed to capture 90 percent of projects in the SCAQMD district and was based on the goals of Assembly Bill 32 (AB 32).

Methodology

The majority of individual projects do not generate sufficient GHG emissions to directly influence climate change. However, physical changes caused by a project can contribute incrementally to cumulative effects that are significant, even if individual changes resulting from a project are limited. The issue of climate change typically involves an analysis of whether a project's contribution towards an impact would be cumulatively considerable. "Cumulatively considerable" means that the incremental effects of an individual project are significant when viewed in connection with the

effects of past projects, other current projects, and probable future projects (CEQA Guidelines, Section 15064[h][1]).

In guidance provided by the SCAQMD's GHG CEQA Significance Threshold Working Group in September 2010, SCAQMD considered a tiered approach to determine the significance of residential and commercial projects. The draft tiered approach is outlined in meeting minutes dated September 28, 2010.

- Tier 1. If the project is exempt from further environmental analysis under existing statutory or categorical exemptions, there is a presumption of less than significant impacts with respect to climate change. If not, then the Tier 2 threshold should be considered.
- Tier 2. Consists of determining whether or not the project is consistent with a GHG reduction plan that may be part of a local general plan, for example. The concept embodied in this tier is equivalent to the existing concept of consistency in CEQA Guidelines section 15064(h)(3), 15125(d) or 15152(a). Under this Tier, if the proposed project is consistent with the qualifying local GHG reduction plan, it is not significant for GHG emissions. If there is not an adopted plan, then a Tier 3 approach would be appropriate.
- Tier 3. Establishes a screening significance threshold level to determine significance. The Working Group has provided a recommendation of 3,000 metric tons (MT) of CO₂e per year for mixed use projects.
- Tier 4. Establishes a service population threshold to determine significance. The Working Group has provided a recommendation of 4.8 MT of CO₂e per year for land use projects.

Because the City of Oxnard does not have a qualified GHG reduction plan, the project is evaluated based on the SCAQMD's recommended Tier 3 significance threshold of 3,000 MT of CO_2e per year. The Tier 3 screening level threshold is intended to assess small and average-sized projects and is the most appropriate threshold for the project.

Calculations are based on the methodologies discussed in the California Air Pollution Control Officers Association (CAPCOA) *CEQA and Climate Change* white paper (2008) and included the use of the California Climate Action Registry General Reporting Protocol (2009).

Emissions associated with the project were estimated using CalEEMod, version 2016.3.1. Complete CalEEMod results and assumptions can be viewed in Appendix A.

- a. Would the project generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment?
- b. Would the project conflict with any applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

Although construction activity is addressed in this analysis, CAPCOA does not discuss whether any of the suggested threshold approaches adequately address impacts from temporary construction activity. As stated in the CEQA and Climate Change white paper, "more study is needed to make this assessment or to develop separate thresholds for construction activity" (CAPCOA 2008). As discussed above, following VCAPCD's guidance this analysis follows SCAQMD's recommended GHG thresholds. Therefore, construction-related emissions are amortized over a 30-year period, which is recommended by SCAQMD (2010).

Construction activities would contribute GHG emissions primarily from the combustion of fossil-fuel based fuels by construction equipment. As shown in Table 6, construction of the project would

generate an estimated 74.6 MT of CO_2e . When amortized over a 30-year period (the assumed life of the project), construction emissions would be approximately 2.46 MTCO₂e per year.

Year	Project Emissions MT/yr of CO ₂ e ¹
Total	74.6
Total Amortized over 30 Years	2.5
Notes: See Appendix A for CalEEMod worksheets. ¹ Numbers are rounded to the nearest tenth. Source: Associated Transportation Engineers 2017	

Table 6 Estimated Construction GHG Emissions

Table 7 includes the operations of the project, such as vehicle trips for employees and supply deliveries, as well as deliveries to clients, as described in the traffic study (Associated Transportation Engineers 2017). Table 7 summarizes operation of the project. The project would generate an estimated 329.3 MT of CO₂e per year. These emissions do not exceed the 1,800 MT of CO₂e per year SCAQMD threshold for compliance with SB 32 (SCAQMD's AB 32 threshold reduced by 40 percent). Since GHG emissions would not exceed the adjusted SCAQMD's threshold, the project would not generate a substantial increase in GHG emissions and would not conflict with AB 32 or SB 32.

Emission Source	Annual Emissions MT of CO ₂ e ^{1,2}
Operational Mobile Onsite	172.5
Operational Mobile Outbound	
CH_4 and CO_2	112.0
N ₂ O	5.88
Operational Area	<0.1
Operational Energy	8.2
Operational Waste	18.4
Operational Water	12.2
Total	329.3
SCAQMD Source Threshold	1,800
Threshold Exceeded?	No

Table 7 Estimated Operations GHG Emissions

Notes: GHG = Greenhouse Gas; See Appendix A for CalEEMod worksheets.

¹Numbers rounded to nearest tenth.

 $^2\mbox{Estimated}$ operational GHG emissions for N_2O were hand calculated. See Appendix A for worksheet.

Source: Associated Transportation Engineers 2017

The project would generate less than significant impacts to greenhouse gas emissions and the project would be subject to a condition of approval to ensure that all project construction and operations are conducted in compliance with applicable VCAPCD rules and regulations.

As previously stated and shown in Table 7, GHG emissions associated with the project would be below the applicable SCAQMD threshold levels of significance (SCAQMD's SB 32 threshold reduced by 40 percent).

The California Attorney General's Office has developed Global Warming Measures (2010) and the Governor's Office of Planning & Research's CEQA and Climate Change (California Attorney General's Office 2010, CAPCOA 2008) document include GHG reduction measures intended to reduce GHG emissions in order to achieve statewide emissions reduction goals. All of these measures aim to curb the GHG emissions through suggestions pertaining to land use, transportation, renewable energy, and energy efficiency. Several of these actions are already required by California regulations, such as AB 1493 (Pavley) requires the state to develop and adopt regulations that achieve the maximum feasible and cost-effective reduction of climate change emissions emitted by passenger vehicles and light duty trucks. In 2004, ARB adopted a measure to limit diesel-fueled commercial motor vehicle idling. The project would comply with applicable regulatory requirements. Therefore, the project would not conflict with the State's GHG-related legislation and would not hinder the ability to meet GHG reduction goals. Impacts would be less than significant.

LESS THAN SIGNIFICANT IMPACT

This page intentionally left blank.

8 Hazards and Hazardous Materials

		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
W	ould the project have any of the following imp	pacts?			
a.	Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials				
b.	Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment				
C.	Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within 0.25 mile of an existing or proposed school				
d.	Be located on a site that is included on a list of hazardous material sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?		•		
e.	For a project located in an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area				•
f.	For a project near a private airstrip, would it result in a safety hazard for people residing or working in the project area				

		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
g.	Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan				
h.	Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands				•

- a. Would the project create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?
- b. Would the project create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?

The project site would routinely transport lumber to and from the site. The pre-treated lumber that is transported to and from the site is a borate-based plate for exterior wall construction. This lumber will be in minimal quantities in the warehouse, and is considered benign for human health (Forintek Canada Corporation 2002). In addition, the project would use normal and nominal amounts of hazardous materials during construction of the project as well as using household cleaners in the office with use of normal amounts of hazardous materials for maintenance of machinery used onsite, such as forklifts and trucks. No routine disposal of hazardous materials is proposed. Therefore, the project would not create a significant hazard to the public or the environment through a foreseeable upset or accident, or the routine transport, use, or disposal of hazardous materials.

LESS THAN SIGNIFICANT IMPACT

c. Would the project emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within 0.25 mile of an existing or proposed school?

The project site is located in a one-quarter mile radius of three schools: Mary Law Private School, Buena Ventura Headstart, and Harrington Elementary School. The project would not emit or handle hazardous or acutely hazardous materials, substances, or waste in large quantities over that typical of a normal office and warehouse setting. Therefore, the project would not emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste in one-quarter mile of an existing or proposed school, and there would be no impact.

NO IMPACT

d. Would the project be located on a site included on a list of hazardous material sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

The project applicant submitted two Phase 1 Environmental Site Assessments (ESAs) that were completed by Nova Consulting for 801 Albany Drive and 2325 Statham Boulevard on November 17, 2016. The following is a summary of these reports, which assess the history of the site, existing onsite operations, and potential existing hazardous materials (Nova Consulting Group, Inc. 2016a, 2016b):

801 Albany Drive

The project site is currently an unpaved, undeveloped lot with no permanent structure. A historical record of this site determined it was undeveloped from some time prior to 1938. By 1953, the site was developed for agricultural purposes with no structures. By 1967, the central and southern portions of the site were developed with a baseball field. The site has been an undeveloped vacant lot since at least 1985.

The project site was not identified on any of the federal, state, tribal, or Environmental Data Resources Proprietary databases reviewed. There is no evidence of recognized environmental conditions, controlled recognized environmental conditions, or historical recognized environmental conditions in connection with the project site. Several properties in a half-mile of the project site were identified, but none of the identified properties were considered a recognized environmental condition for the project site.

NO IMPACT

2325 Statham Boulevard

The project site is an approximate 38,880-square-foot vacant unit (Unit C) located in a three-unit light industrial building with outside asphalt-paved storage area with parking spaces. The light industrial building is single-story and was constructed in 1972. Access to the asphalt-surfaced parking lots of the project site is provided from Statham Boulevard. Six loading docks are located along the southeast side of the site. A railroad ramp dock with canopy is located along the western site boundary. The project site was undeveloped from sometime prior to 1938. In 1972, the site was developed with the existing structure and occupied by box manufacturing facilities from at least 1982 until 2015. The site is currently unoccupied.

Polychlorinated biphenyls

One buried underground residential distribution transformer on the southeastern portion of the project site was identified. Older transformers and other electrical equipment could contain polychlorinated biphenyls (PCBs) at a level that subjects them to regulation by the United States Environmental Protection Agency (U.S. EPA). PCBs in electrical equipment are controlled by U.S. EPA regulations 40 CFR, Part 761. Under the regulations, there are three categories into which electrical equipment can be classified:

- Less than 50 parts per million (ppm) of PCBs "Non-PCB" unit
- 50 ppm-500 ppm "PCB-Contaminated" unit
- Greater than 500 ppm "PCB" unit

The unit was not labeled as to its PCB status. However, they are labeled to be owned and operated by the Southern California Edison, who would be responsible for any release. No indication of staining, leaks, or fire damage was observed on or around the unit. Based on the initial development of the site in 1972, the unit may contain PCBs.

Asbestos-Containing Materials

Based on the construction date of the existing facility of 1972, there is a potential that asbestoscontaining materials were used in construction materials. In addition, the Occupational Safety and Health Administration (OSHA) regulation 29 CFR 1926.1101, requires certain construction materials to be presumed to contain asbestos, for purposes of this regulation. All thermal system insulation, surfacing material, and asphalt/vinyl flooring that are present in a building constructed prior to 1981, and have not been appropriately tested are presumed asbestos containing material.

No friable asbestos was identified, but non-friable materials may also contain asbestos. These materials include floor tile, wallboard systems, and some roofing components. These materials were observed to be in good condition at the project site, and represent no hazard unless cut, sawn, or broken. Accordingly, no samples were obtained. Mitigation Measure HAZ-1, below, is required to ensure safety and avoidance of asbestos-containing materials during any renovations of the existing project site structure.

Mold

Molds are a class of fungi that have been found to cause a variety of health problems in humans, including allergic, toxicological, and infectious responses. Molds are decomposers of organic materials, and thrive in humid environments, and produce tiny spores to reproduce, just as plants produce seeds. When mold spores land on a damp spot indoors, they may begin growing and digesting whatever they are growing on in order to survive. When excessive moisture or water accumulates indoors, mold growth will often occur, particularly if the moisture problem remains undiscovered or unaddressed. As such, interior areas of buildings characterized by poor ventilation and high humidity are the most common locations of mold growth. Building materials including drywall, wallpaper, baseboards, wood framing, insulation, and carpeting often play host to such growth.

Mold was not observed in the interior areas of the project site structure, or any obvious indications of significant water damage. However, observations were limited to visual inspection. As such, potential sites, such as in pipe chases, HVAC systems ,and behind enclosed walls and ceilings were not checked and do have the potential to have mold.

Database Results

The project site was identified on the Facility and Manifest Data (HAZNET), NPDES, and Waste Discharge System databases. According to the information provided from the HAZNET database, the former project site occupant, Packaging Corp. of America and Tenneco Packaging, generated multiple hazardous materials:

- Waste oil and mixed oil
- Other inorganic solid waste from 1996 through 2014
- Off-specification, aged, or surplus organics in 1996 and 2012
- Unspecified solvent mixture in 2011
- Other organic solids from 1997 through 2009

All of which were disposed through a recycler or offsite.

The information provided from the NPDES and Waste Discharge System indicated that the project site was permitted to discharge stormwater, which terminated in 2015. There are no releases associated with these listings. In addition, the NPDES permit stated that the waste consisted of inert solid wastes that do not contain soluble pollutants. Examples included uncontaminated soils, rubble and concrete.

Research of the project site revealed no evidence of recognized environmental conditions, controlled recognized environmental conditions, or historical recognized environmental conditions. However, based on the age of the project site building (1972), it is possible that asbestos-containing materials exist. Suspect non-friable wallboard assemblies and vinyl floor tiles in the office area were identified. Based on the findings, Mitigation Measure HAZ-2 is recommended in addition to HAZ-1 regarding asbestos-containing materials.

Conclusions

Based on the findings of the report, the portion of the project site under the address of 801 Albany Drive has a less than significant impact regarding hazardous materials listed on the project site. However, the portion of the project site at 2325 Statham Boulevard has an existing structure with a construction date of 1972. As such, asbestos-containing materials could be present and Mitigation Measures HAZ-1 and HAZ-2 are required.

POTENTIALLY SIGNIFICANT UNLESS MITIGATION INCORPORATED

Mitigation Measures

The following mitigation measures would reduce impacts to a less than significant level.

- **HAZ-1** Prior to conducting demolition, renovations, or building repairs that may damage the suspect materials, a comprehensive survey should be conducted to verify the presence or absence of asbestos.
- **HAZ-2** Suspect asbestos-containing materials should be managed in-place in good condition under an Asbestos Operations & Maintenance Program.
- e. For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?
- *f.* For a project near a private airstrip, would it result in a safety hazard for people residing or working in the project area?

The project site is located approximately 2.1 miles southeast of the Oxnard Airport and approximately 4.3 miles northwest of Naval Base Ventura County. The project would not introduce any new structure that would impact nearby airports, and proposed lumber stacks are at a maximum of 12 feet in height. No impacts would occur.

NO IMPACT

g. Would the project impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

The project would not involve the development of structures that could potentially impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan. The design of new access points would be reviewed and approved by the City of Oxnard Fire Department to ensure that emergency access meets City standards. Therefore, impacts would be less than significant.

LESS THAN SIGNIFICANT IMPACT

h. Would the project expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

According to the City of Oxnard General Plan Background Report (City of Oxnard 2006):

"Dense urban areas do not contain large amounts of continuous surface fuels to feed a wildfire. Therefore, these areas are generally more resistant to the spread of wildfires than other areas. The City of Oxnard is Ventura County's largest urban community and has limited exposed to the wildfire hazard. The Multi-Jurisdictional Hazard Mitigation Plan for Ventura County, California notes that no commercial buildings and only five residential building have potential exposure to high and very high wildfire hazards."

The project is located in a highly urbanized area of the city of Oxnard, and is therefore, located in an area that is more resistant to wildfire. The project would not expose people or structures to a significant risk of loss, injury, or death involving wildland fires. No impacts would occur.

NO IMPACT

9 Hydrology and Water Quality

	Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
Would the project have any of the following	impacts?			
a. Violate any water quality standards or waste discharge requirements			•	
b. Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering or the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to level that would not support existing lan uses or planned uses for which permits have been granted)	a		•	
c. Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner that would result in substantial erosion or siltation on- or off-site?				
d. Substantially alter the existing drainage pattern of the site or area, including the course of a stream or river, or substantially increase the rate or amoun of surface runoff in a manner that would result in flooding on or offsite	ıt			
e. Create or contribute runoff water that would exceed the capacity of existing or planned stormwater drainage systems o provide substantial additional sources of polluted runoff	r			
f. Otherwise substantially degrade water quality			•	

		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
g.	Place housing in a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary, Flood Insurance Rate Map, or other flood hazard delineation map				•
h.	Place structures in a 100-year flood hazard area that would impede or redirect flood flows				•
i.	Expose people or structures to a significant risk of loss, injury, or death involving flooding, including that occurring as a result of the failure of a levee or dam				
j.	Result in inundation by seiche, tsunami, or mudflow				•

a. Would the project violate any water quality standards or waste discharge requirements?

c. Would the project otherwise substantially degrade water quality?

The project would be required to obtain coverage under a Construction General Permit to comply with Clean Water Act NPDES requirements. Compliance with the permit would require the development and implementation of a SWPPP and associated BMPs. The BMPs would include measures that would be implemented to prevent discharge of eroded soils from the construction site and sedimentation of surface waters offsite. The BMPs would also include measures to quickly contain and clean up any minor spills or leaks of fluids from construction equipment. Given the relatively flat topography of the site, distance from surface waters, the minimal grading and excavation required for construction, and implementation of the required SWPPP, construction of the project would not violate any water quality standards or waste discharge requirements.

During operations of the project, wastewater discharge would be expected to be minimal amounts of stormwater runoff generated during precipitation events. Given the nearly flat topography of the site, and the minor amounts of impervious surfaces that the project would create, precipitation would be expected to infiltrate or evaporate onsite more so than sheet flow over land and discharge offsite at substantial rates or volumes. Any runoff leaving the project site proposed lumberyard (current vacant lot) during operations would be captured by a proposed underground infiltration basin, with a grated drop inlet catch basin at the southeastern boundary of the project site, south of the Albany Drive entrance, then conveyed and discharged through the existing storm sewer system to Albany Drive. The existing warehouse and parking lot would continue to use the existing stormwater system that is connected to the city's storm sewer system and consistent with applicable development standards and permits. The project would be subject to the requirements of a Ventura County Municipal Separate Storm Sewer Systems (MS4) permit. Site-specific BMPs would be designed by the contractor in compliance with all applicable regulations and conditions of the MS4 permit. The pre-treated lumber stored at the project site would be located in the warehouse, away from the elements, and would therefore not impact stormwater runoff quality. Operation of the project would not be expected to violate any water quality standards or waste discharge requirements. The project would have less than significant impacts on water quality standards and discharge requirements.

LESS THAN SIGNIFICANT IMPACT

- b. Would the project create or contribute runoff water that would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?
- e. Would the project substantially alter the existing drainage pattern of the site or area, including by altering the course of a stream or river, in a manner that would result in substantial erosion or siltation on or offsite?
- f. Would the project substantially alter the existing drainage pattern of the site or area, including the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding on or offsite?

Project construction would be required to obtain coverage under a Construction General Permit to comply with Clean Water Act NPDES requirements. Compliance with the permit would require the development and implementation of a SWPPP and associated BMPs. The BMPs would include measures that would be implemented to prevent discharge of eroded soils from the construction site and sedimentation of surface waters offsite. The BMPs would also include measures to quickly contain and clean up any minor spills or leaks of fluids from construction equipment. Given the relatively flat topography of the site, distance from surface waters, the minimal grading and excavation required for construction, and implementation of the required SWPPP, construction of the project would not result in substantial erosion or siltation on or offsite.

The project site has very little topographic relief and is nearly flat. Any runoff from impervious surfaces would be anticipated to flow over impervious surfaces until reaching soils, gravels, or other pervious surfaces on the project site, and then would either infiltrate or evaporate to continue to flow and discharge offsite. Any runoff leaving the project site proposed lumberyard (current vacant lot) during operations would be captured by a proposed underground infiltration basin, with a grated drop inlet catch basin at the southeastern boundary of the project site, south of the Albany Drive entrance, then conveyed and discharged through the existing storm sewer system to Albany Drive. The existing warehouse and parking lot would continue to use the existing stormwater system that is connected to the city's storm sewer system and consistent with applicable development standards and permits. The project would be subject to the requirements of a Ventura County Municipal Separate Storm Sewer Systems (MS4) permit. Site-specific BMPs would be designed by the contractor in compliance with all applicable regulations and conditions of the MS4 permit. Project-related impacts would be less than significant.

Runoff from the proposed impervious area (lumberyard) would be directed towards two constructed flowlines located along the western and eastern ends of the proposed outdoor lumber storage yard, which would then flow to proposed storm drain drop inlets at the northern end of the lumber storage yard to the underground infiltration system, which is then discharged to the existing storm sewer system on Albany Drive. The existing warehouse and parking lot would continue to use the existing stormwater system that is connected to the city's storm sewer system and consistent with applicable development standards and permits. The project would be subject to the

requirements of a Ventura County Municipal Separate Storm Sewer Systems (MS4) permit. Sitespecific BMPs would be designed by the contractor in compliance with all applicable regulations and conditions of the MS4 permit. The pre-treated lumber stored at the project site would be located in the warehouse, away from the elements, and would therefore not impact stormwater runoff quality. Given that much of the project site would be pervious and nearly flat, and that compliance with the conditions of the MS4 permit would be mandatory, operation of the project would not substantially degrade water quality or exceed the capacity of the stormwater drainage system. Impacts would be less than significant.

LESS THAN SIGNIFICANT IMPACT

d. Would the project substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering or the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level that would not support existing land uses or planned uses for which permits have been granted)?

During project construction, water would be required for dust suppression, to support project soil compaction, and sanitary use. Water necessary for project construction would be delivered to the project site via truck. Based on the proposed graded surface area (approximately 4.68-acres), minimal use of water would be necessary for construction. Given the relatively small amount of water required for construction of the project, and that construction would temporary and occur only once, project construction would not substantially deplete groundwater supplies.

The office building would include a connection to the municipal water supply system to provide potable water to the building. However, the building, until recently (2015), has continuously been occupied and connected to the water supply system. Thus, the use of the existing office building and warehouse would not be a new source or demand substantially depleting groundwater supplies. Project operations would not substantially deplete groundwater supplies.

The project would create impervious ground cover where the proposed lumber stacks will be stored. Any new impervious surfaces would reduce the area where precipitation could infiltrate, which could adversely affect groundwater recharge rates. However, the project also includes an underground infiltration basin to help offset the decrease in groundwater recharge and allow infiltration of precipitation and will comply with MS4 permit requirements. In the context of the whole groundwater basin, the incremental amount of impervious surface that would be introduced by the project would be small and would not substantially interfere with groundwater recharge. Impacts would be less than significant.

LESS THAN SIGNIFICANT IMPACT

- g. Would the project place housing in a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary, Flood Insurance Rate Map, or other flood hazard delineation map?
- *h.* Would the project place in a 100-year flood hazard area structures that would impede or redirect flood flows?

The project site and much of the surrounding vicinity are in an area mapped by the Federal Emergency Management Agency (FEMA) as Zone X, which include areas of 0.2 percent annual chance flood; areas of one percent change flood with average depths of less than one foot, or with drainage areas less than one-square-mile; and areas protected by levees from the one percent

annual chance flood (FEMA 2010). The project site is not located in a 100-year flood hazard area. In addition, the project does not include any housing. Therefore, the project would have no impact.

NO IMPACT

i. Would the project expose people or structures to a significant risk of loss, injury, or death involving flooding including that occurs as a result of the failure of a levee or dam?

According to the Safety and Hazards chapter of the City of Oxnard General Plan Background Report (2006):

"Several dams are located at least 35 miles to the east and northeast of the city of Oxnard within Ventura and Los Angeles Counties. These include the Santa Felicia Dam at Lake Piru, the Castaic Lake Dam and the Pyramid Lake Dam. The major threat to Oxnard is upstream along the Santa Clara River corridor. Although the potential for a dam failure is considered low, should one or more of these dams fail, the entire city is located within the Dam Inundation Zone, also called Dam Failure Hazard Area. Damage to the city could be in the form of a wall of fast-moving water, mud, and debris."

While potential failure of any of these dams could cause inundation of the City, including the project site, the Ventura County Hazard Mitigation Plan (2010) states that the probability of dam failure inundation is unknown, but would be the result of certain types of extreme storm events. The Ventura County Hazard Mitigation Plan also shows that inundation by levee failure would affect the northern portion of the city near the Santa Clara River, and would not affect the project site (County of Ventura 2010). Project-related impacts in relation to levee or dam failure would be less than significant.

LESS THAN SIGNIFICANT IMPACT

j. Would the project result in inundation by seiche, tsunami, or mudflow?

Seiches are seismically induced waves that occur in large bodies of water, such as lakes and reservoirs. According to the City of Oxnard General Plan Background Report, the City's Channel Islands Harbor and Mandalay Bay could be potentially impacted by seiches. The project site is not in proximity to a large body of water, and therefore, seiches are a not a risk to the project site. No impacts would occur.

A tsunami is a tidal wave produced by off-shore seismic activity. The project site is not located in a tsunami inundation area as shown on the *Ventura County Multi-Jurisdictional Hazard Mitigation Plan Update,* and would not be subject to inundation by tsunami (County of Ventura 2010). No impacts would occur.

The project site is not located in an earthquake-induced landslide zone (California Geological Survey 2002). Landslides and mud flows are most likely to occur on or near a slope or hillside area, rather than in generally level areas, such as the project site. Mud flows would not be a risk to the project. The project would have no impact.

NO IMPACT

Cumulative Impacts

Compliance with the Construction General Permit and conditions of the MS4 permit, including implementation of the required SWPPP would prevent the project from having cumulatively considerable impacts on water quality or violations of water quality standards. Any reasonably

foreseeable future projects requiring construction over an acre or more would also be required to implement a SWPPP, and obtain an MS4 or treat runoff by some other means rather than discharge to the separate storm sewer system. There would be no new significant cumulative impact on hydrology and water quality. Cumulative impacts to water quality would be less than significant.

10 Land Use and Planning

		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact		
Wo	Would the project have any of the following impacts?						
a.	Physically divide an established community				•		
b.	Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect			•			
C.	Conflict with an applicable habitat conservation plan or natural community conservation plan						

a. Would the project physically divide an established community?

The project site is located in an industrial, urban area in the city of Oxnard. There are no immediate residential communities adjacent to the project site. In addition, the project site is currently a vacant parcel of land. Therefore, the project would not physically divide an established community. No impact would occur.

NO IMPACT

b. Would the project conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?

The applicant is requesting the approval of a Special Use Permit (PZ 16-500-7) per City of Oxnard Municipal Code Section 16-223 to develop and operate a regional lumber distribution facility, construct an approximately 650-foot new railroad loading siding off the adjoining VCRR single line, and operate an accessory business retail use. The project applicant would be required to follow any development standards for the Light Manufacturing zone and all policies outlined in the City of Oxnard General Plan related to light industrial land uses, goods movement (Infrastructure and Community Services Section 4), and others (City of Oxnard 2011).

LESS THAN SIGNIFICANT IMPACT

c. Would the project conflict with an applicable habitat conservation plan or natural community conservation plan?

The City of Oxnard does not currently have a habitat conservation or natural community conservation plan. The City of Oxnard 2030 General Plan does state a need to designate and protect sensitive habitat areas, specifically in the coastal zone (City of Oxnard 2011). The project site is approximately 2.6 miles northeast of the nearest coastline. Therefore, the project would not conflict with an applicable habitat conservation plan or natural community conservation plan. No impact would occur.

NO IMPACT

Cumulative Impacts

The project would have no direct or indirect impacts on land use planning. As the project would have no impact, there would also be no cumulative impacts to land use planning resulting from the project.

11 Mineral Resources

		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact	
Wo	Would the project have any of the following impacts:					
a.	Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?					
b.	Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?					

- a. Would the project result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?
- b. Would the project result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?

According to the City of Oxnard 2030 General Plan Goals and Policies, the important mineral, sand, and gravel deposits are "primarily located along the Santa Clara River channel, along the U.S. 101 corridor and along the eastern edge of the city, extending as far west as Oxnard Boulevard in several areas" (City of Oxnard 2011). The project site is located in the central area of the city of Oxnard and is west of Oxnard Boulevard, which is not described as one of the areas with mineral resources. Therefore, there would be no project-related impacts relating to the loss of availability of a known mineral resource that would be of value to the region and/or the residents of the state.

NO IMPACT

Cumulative Impacts

The project would have no direct or indirect impacts on mineral resources. As the project would have no impact, there would also be no cumulative impacts to mineral resources resulting from the project.

This page intentionally left blank.

12 Noise					
		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
Wo	Would the project result in any of the following impacts?				
a.	Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies				
b.	Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels			•	
c.	A substantial permanent increase in ambient noise levels above those existing prior to implementation of the project				
d.	A substantial temporary or periodic increase in ambient noise levels in the project vicinity above those existing prior to implementation of the project				
e.	For a project located in an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels				
f.	For a project near a private airstrip, would it expose people residing or working in the project area to excessive noise				•

Noise is unwanted sound that disturbs human activity. Environmental noise levels typically fluctuate over time, and different types of noise descriptors are used to account for this variability. Noise level measurements include intensity, frequency, and duration, as well as time of occurrence. Noise level (or volume) is generally measured in decibels (dB) using the A-weighted sound pressure level (dBA). Because of the way the human ear works, a sound must be about 10 dBA greater than the reference sound to be judged as twice as loud. In general, a 3 dBA change in community noise levels is noticeable, while 1-2 dBA changes generally are not perceived. Quiet suburban areas typically have noise levels in the range of 40-50 dBA, while arterial streets are in the 50-60+ dBA range. Normal conversational levels are in the 60-65 dBA range, and ambient noise levels greater than 65 dBA can interrupt conversations.

Noise levels typically attenuate (or drop off) at a rate of 6 dBA per doubling of distance from a point source, such as construction equipment. Noise from lightly traveled roads typically attenuates at a rate of about 4.5 dBA per doubling of distance. Noise from heavily traveled roads typically attenuates at about 3 dBA per doubling of distance, while noise from a point source typically attenuates at about 6 dBA per doubling of distance. Noise levels may also be reduced by the introduction of intervening structures. For example, a single row of buildings between the receptor and the noise source reduces the noise level by about 5 dBA, while a solid wall or berm that breaks the line-of-sight reduces noise levels by 5 to 10 dBA. The construction style for dwelling units in California generally provides a reduction of exterior-to-interior noise levels of about 25 dBA with closed windows (Federal Transit Administration [FTA] 2006).

One of the most frequently used noise metrics that considers both duration and sound power level is the equivalent noise level (Leq). The Leq is defined as the single steady A-weighted level that is equivalent to the same amount of energy as that contained in the actual fluctuating levels over a period of time (essentially, the average noise level). Typically, Leq is summed over a one-hour period. Lmax is the highest RMS (root mean squared) sound pressure level within the measuring period, and Lmin is the lowest RMS sound pressure level within the measuring period.

The time period in which noise occurs is also important since noise that occurs at night tends to be more disturbing than that which occurs during the day. Community noise is usually measured using Day-Night Average Level (Ldn), which is the 24-hour average noise level with a 10-dBA penalty for noise occurring during nighttime (10 p.m. to 7 a.m.) hours, or Community Noise Equivalent Level (CNEL), which is the 24-hour average noise level with a 5 dBA penalty for noise occurring from 7 p.m. to 10 p.m. and a 10 dBA penalty for noise occurring from 10 p.m. to 7 a.m. Noise levels described by Ldn and CNEL typically do not differ by more than 1 dBA. In practice, CNEL and Ldn are often used interchangeably.

Regulatory Setting

Federal Transit Administration

The FTA has recommended noise criteria related to traffic-generated noise. Recommendations contained in the FTA (2006) Transit Noise and Vibration Impact Assessment can be used as guidance to determine whether or not a change in traffic would result in a substantial permanent increase in noise. Under the FTA standards, the allowable noise exposure increase is reduced with increasing ambient existing noise exposure, such that higher ambient noise levels have a lower allowable noise exposure increase. Table 8 shows the significance thresholds for increases in traffic-related noise levels. These standards are applicable to project impacts on existing sensitive receptors.

Existing Noise Exposure (dBA Ldn or Leq)	Allowable Noise Exposure Increase (dBA Ldn or Leq)	
45-49	7	
50-54	5	
55-59	3	
60-64	2	
65-74	1	
75+	0	
Source: Federal Transit Administratio	n 2006	

Some land uses are more sensitive to ambient noise levels than other uses due to the amount of noise exposure and the types of activities involved. For example, residences, motels, hotels, schools, libraries, churches, nursing homes, auditoriums, museums, cultural facilities, parks, and outdoor recreation areas are more sensitive to noise than commercial and industrial land uses. The City of Oxnard Municipal Code, Chapter 7: *Nuisances*, Article XI, *Sound Regulations*, lists the designated sound zones and allowable exterior sound standards at zoning designated boundaries in the city, summarized in Table 9 below, as follows (Section 7-185):

			Allowable Exterior Sound Level (dBA)		
Sound Zone	Zoning Designation	Type of Land Use	Daytime 7:00 a.m. to 10:00 p.m.	Nighttime 10:00 p.m. to 7:00 a.m.	
I	R-1, R-2, R-3, R-4, R-B-1, R-W-1, R-W-2, R-2-C, R-3-C, MH-P, MHP- C, R-P-D, CPC, R-BF, CBD, C-O, C- 1, C-2, CVC, CNC, BRP, HCI, and any of the above zones with a PD suffix.	Residential	55	50	
II	C-1, C-2, CBD, CVC, CNC, BRP, RP, RC, HCI, and any of the preceding zones with a PD suffix	Commercial	65	60	
	M-L, M-1, M-2, M-P-D, CR, CDI, EC, COD, and any of the preceding zones with a PD suffix	Industrial	70	70	
IV	All property within the contours ar IX-2 of the Noise Element of the 20			d Airport as identified in Fig	

Table 9	City of Oxnard Municipal Code Designated Sound Zones and Exterior Sound
Standards by Zone	

Table 9 shows that Sound Zone I consists of residential land uses with an allowable daytime (55 dBA) and nighttime (50 dBA) exterior sound level (as heard at the property line). Sound Zone II consists of commercial land uses with an allowable daytime (65 dBA) and nighttime (60 dBA) exterior sound level. Sound Zone III consists of industrial land uses with an allowable daytime (70 dBA) and nighttime (70 dBA) exterior sound level. Sound Level IV describes contours around roadways, railroad tracks, or the Oxnard Airport.

In addition, Section 7-185 of the Oxnard Municipal Code states that the exterior sound levels specified in Table 9 shall:

- (B) Be reduced by five dBA for impulse sound and simple tone noise, or for sounds consisting of speech or music, provided, however, that if the ambient sound level exceeds the allowable exterior sound level, the ambient sound level shall be the standard.
- (C) No person at any location within the city shall create, maintain, cause or allow any sound on property which causes the sound level, when measured on any other property, to exceed:

City of Oxnard 2016

Source:

- (1) The allowable exterior sound level for a cumulative period of more than 30 minutes in any hour;
- (2) The allowable exterior sound level plus five dBA for a cumulative period of more than 15 minutes in any hour;
- (3) The allowable exterior sound level plus ten dBA for a cumulative period of more than five minutes in any hour;
- (4) The allowable exterior sound level plus 15 dBA for a cumulative period of more than one minute in any hour; or
- (5) The allowable exterior sound level plus 20 dBA for any period of time.
- (D) In the event the ambient sound level exceeds any of the first four sound level categories in subsection (C) above, the allowable exterior sound level applicable to the category shall be increased to reflect ambient sound level. In the event the ambient sound level exceeds the fifth category, the maximum allowable exterior sound level under the category shall be increased to reflect the maximum ambient sound level.
- (E) If the measurement location is on a boundary between two different sound zones, the lower allowable exterior sound level applicable to the sound zone shall apply.
- (F) If the intruding sound level is continuous and cannot be reasonably discontinued or stopped for a time period whereby the ambient sound level may be determined, then the measured sound level obtained while the sound source is in operation shall be compared directly to the allowable exterior sound level. The allowable exterior sound level shall be the one applicable to the type of land use at the location of the measurement and the time of day.
- (G) The reasonableness of temporarily discontinuing the sound generated by an intruding sound source shall be determined by the director for the purpose of establishing the existing ambient sound level at the measurement location."

In addition to exterior sound standards, the City of Oxnard has an allowable interior sound standard for all residential property in all sound zones of 50 dBA from 7:00 a.m. to 10:00 p.m. and a 45 dBA standard from 10:00 p.m. to 7:00 a.m. Any noise in exceedance of the following is prohibited (Section 7-186):

- (B) The sound level specified above shall be reduced by five dBA for impulse sound or simple tone noise or for sounds consisting of speech or music provided, however, that if the ambient exterior sound level exceeds the allowable interior sound level, then the ambient exterior sound level shall be the standard.
- (C) No person at any location within the city shall create, maintain, cause or allow any sound on property which causes the sound level when measured within any dwelling unit in any sound zone to exceed:

- (1) The allowable interior sound level for a cumulative period of more than five minutes in any hour; or
- (2) The allowable interior sound level plus five dBA for a cumulative period of more than one minute in any hour; or
- (3) The allowable interior sound level plus ten dBA for any period of time.
- (D) In the event the ambient exterior sound level exceeds any of the first two sound level categories above, the allowable interior sound level applicable to those categories shall be increased to reflect the maximum ambient sound level.
- (E) If the measurement location is on a boundary between two different sound zones, the lower allowable interior sound level applicable to the sound zone shall apply.
- (F) If the intruding sound is continuous and cannot reasonably be discontinued or stopped for a time period whereby the ambient exterior sound level may be determined, the same procedures specified in section 7-185(F) and (G) shall be followed prior to enforcement of the provisions of this section (City of Oxnard 2016).

In relation to construction, Section 7-188, Exemptions for Specified Activities, explains that,

"...sound sources associated with or created by construction, repair, remodeling or grading of any real property or during authorized seismic surveys, provided the activities occur between the hours of 7:00 a.m. and 6:00 p.m. on weekdays, including Saturday."

Therefore, based on Table 9, and municipal codes Sections 7-185, 7-186, and 7-188 of the Oxnard Municipal Code, the project has the following restrictions and allowances:

- An allowed exterior sound level of 70 dBA at the project site boundary
- An exterior sound level limit of 55 dBA during the daytime and 50 dBA exterior sound level limit during nighttime (and early morning hours) at the nearby sensitive receptors (residential uses to the west of the project site and the Channel Islands Inn to the south)
- Construction-related noise is exemption from provisions of the sound standards between the hours of 7:00 a.m. and 6:00 p.m. on weekdays, and Saturday.

Existing Noise Setting

Roadway noise from traffic on Statham Boulevard is the predominant source of ambient noise at the project site and neighboring properties. Statham Boulevard is a roadway in an industrial setting, and traffic trips would be expected to be primarily from persons working or visiting any of the businesses located on the street. According to the Oxnard General Plan Background Report, Channel Islands Boulevard, which is located south of the project site, has a Leq (dBA) of approximately 69.6. The project site is located approximately 400 feet north of Channel Islands Boulevard. At this distance, the approximate attenuated ambient noise level is 51.5 dBA. In addition, the Ventura County Railroad line, which runs parallel to the project site on the western boundary, has an approximate CNEL of 65 (City of Oxnard 2006).

Sensitive Receptors

Sensitive receptors near the project site include Channel Islands Inn, located approximately 90 feet south of the project site and single-family residential, located approximately 120 feet west of the

project site, on the west side of the County drainage channel. Noise from the project including operation of vehicles onsite, delivery trucks to and from the site, and non-mobile operational noises, such as conversations, could potentially impact the nearby sensitive receptors.

Impact Analysis

- a. Would the project result in exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?
- c. Would the project result in a substantial permanent increase in ambient noise levels above levels existing without the project?
- d. Would the project result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

Construction-Generated Noise

Construction noise was estimated using the Federal Highway Administration (FHWA) Roadway Construction Noise Model (RCNM). RCNM predicts construction noise levels for a variety of construction operations based on empirical data and the application of acoustical propagation formulas. Using RCNM, construction noise levels were estimated at nearby sensitive receptors. RCNM provides reference noise levels for standard construction equipment, with an attenuation of 6 dBA per doubling of distance for stationary equipment and 3 dBA per doubling of distance for mobile equipment. The model does not take into consideration topographic variation, thus making the analysis conservative. Construction noise would be considered significant if construction occurs after 6:00 p.m. or before 7:00 a.m. on weekdays and Saturday, as set forth by Oxnard's Noise Ordinance (Section 7-188).

Project construction would include grading, internal building construction, and paving of the 38,880 sf warehouse building, associated parking lot, and proposed 203,861 sf lumber yard. Table 10 shows the typical peak noise levels associated with common types of heavy construction equipment, based on the FHWA Highway Construction Noise Handbook (2006). Peak noise levels associated with the use of individual pieces of heavy equipment can range from about 70 to 89 dBA at 50 feet from the source, depending on the types of equipment in operation at any given time and phase of construction (FHWA 2006).

Equipment	Туре	Typical Lmax (dBA) 50 Feet from the Source	
Backhoe	Mobile	80	
Dozer	Mobile	82	
Dump Truck	Mobile	76	
Excavator	Mobile	81	
Flat Bed Truck	Mobile	74	
Grader	Mobile	83	
Paver	Mobile	89	
Pickup Truck	Mobile	75	
Pneumatic Tools	Stationary	85	
Roller	Mobile	80	
Scraper	Mobile	89	
Truck	Mobile	88	
Warning Horn	Stationary	83	
Source: FHWA 2006			

Table 10 Typical Noise Levels Generated by Construction Equipment

Noise-sensitive uses closest to the project site include single-family residences located 120 feet west of the project site and the Channel Islands Inn approximately 90 feet south of the project site. These sensitive land uses may experience a temporary noise increase during construction activities on the project site. Table 11 shows the maximum expected noise levels at the nearest sensitive receptors based on the combined use of construction equipment anticipated to be used concurrently during each phase of construction.

Table 11	Construction Noise Levels by Phase	
----------	------------------------------------	--

Construction Phase	Equipment	Reference Noise Level at 50 feet (dBA Lmax)	Estimated Noise Level at 90 feet (dBA Lmax)	Estimated Noise at 120 feet (dBA Lmax)
Grading	Backhoe, Dozer, Excavator, Grader, Scraper	85	78	76
Paving	Paver, Roller	80	81	81

Source: Federal Highway Administration. Roadway Construction Noise Model. 2006. See Appendix B for RCNM data sheets.

The noise levels presented in Table 11 represent a conservative estimate of construction noise because they assume the simultaneous use of construction equipment in the same place. In practice, equipment would be dispersed temporally and spatially on the project site. Due to spatial and equipment limitations, only a limited amount of equipment can operation near a given location at a particular time.

The project would generate temporary increases in noise levels during construction as high as 81 dBA Lmax at the nearest sensitive receptor. Construction noise would be significant if it exceeded the City's exterior noise standard of 55 dBA between the hours of 7:00 a.m. and 10:00 p.m. However, per Oxnard Municipal Code Section 7-188, construction-related noise is exempt from sound standards between the hours of 7:00 a.m. and 6:00 p.m. on weekdays and Saturdays (City of Oxnard 2016). With adherence to allowed construction hours detailed in the Oxnard Municipal Code, the project's impacts related to construction-generated noise would be less than significant.

LESS THAN SIGNIFICANT IMPACT

Project-Generated Operational Noise

The project would generate non-mobile operational noise that would be typical of industrial uses, including periodic instantaneous sounds such as conversations and/or yelling, general vehicular movement including trucks and forklifts, doors slamming, and other lumberyard operations. Kunzman Associates, Inc. completed a noise impact analysis for an existing lumberyard in Costa Mesa. The onsite 15-minute ambient noise measurement was 70.3 Leq (Kunzman Associates, Inc. 2014). It is assumed that the project would emit similar noise levels at the lumberyard. Operation of the lumber yard does begin at 5 a.m., however, the dispatching of preloaded trucks (from the previous day) to off-site locations would not begin until 7 a.m., which is after the nighttime lower noise restriction of 50 dBA for residential uses. The residences to the west of the project site, and the Channel Islands Inn to the south are at a distance of approximately 120 feet and 90 feet, respectively. At this distance, the noise associated with the project would be approximately 52.2 dBA at the single-family residences, and 54.7 dBA at the inn, during operational hours after 7am (see Appendix B). At this level, the project is below the 55 dBA noise/sound level threshold for residential zones between the hours of 7:00 a.m. and 10:00 p.m., as described in the City of Oxnard municipal code Section 7-185 Exterior Sound Standards (City of Oxnard 2016). The project would have a less than significant impact.

LESS THAN SIGNIFICANT IMPACT

Project Traffic-Generated Noise

A traffic study was prepared for the project by Associated Transportation Engineers on April 28, 2017 (Associated Transportation Engineers 2017: Appendix C). In the study, project-generated vehicle traffic is estimated at 120 average daily traffic trips. The trips were distributed among five roadways and intersections:

- 1. Westbound of intersection of Albany Drive and Channel Islands Boulevard 10 percent
- 2. Eastbound of intersection of Statham Boulevard and Oxnard Boulevard 25 percent
- 3. Westbound of intersection of Statham Boulevard and Oxnard Boulevard 25 percent
- 4. Southbound of intersection of Rose Avenue and Channel Islands Boulevard 10 percent
- 5. Eastbound of intersection of Rose Avenue and Channel Islands Boulevard 30 percent

The existing average daily traffic trips of the roadways described above using the a.m. and p.m. peak hours provided (by multiplying the higher peak hour traffic count by four [Transportation Research Board 2000]) and the increase of traffic from the project are summarized in Table 12.

Intersection	ADT ¹	Proposed Project Traffic Trips	Percent Increase (Proposed Project Traffic Trips/ADT)
Westbound of Albany Drive and Channel Islands Boulevard	6,464	12	0.2
Eastbound of Statham Boulevard and Oxnard Boulevard	2,396	30	1.3
Westbound of Statham Boulevard and Oxnard Boulevard	3,780	30	0.8
Southbound of Rose Avenue and Channel Islands Boulevard	4,112	12	0.3
Eastbound of Rose Avenue and Channel Islands Boulevard	3,256	36	1.1

Table 12Average Daily Traffic Trips and Trip Distribution of Studied Intersections ofProposed Project

Notes: ADT = Average Daily Traffic

¹ADT was estimated by multiplying the higher peak hour traffic volume by four (Transportation Research Board 2000). Source: Associated Transportation Engineers 2017

The proposed project would increase existing traffic levels on intersections in the vicinity from 0.2 percent to 1.3 percent. This minimal increase in traffic would not result in substantial increases in ambient noise levels at sensitive receptors along Statham Boulevard (Channel Islands Inn) and Acacia Street (single-family residences to the west of the project site). Impacts would be less than significant.

In addition to vehicle-generated noise, use of railroad service is proposed with this project. The project would have rail service between the hours of 9:00 a.m. and 3:00 p.m. However, all deliveries to the project site would occur on existing scheduled train routes and take no longer than 10 minutes. Impacts would be less than significant.

LESS THAN SIGNIFICANT IMPACT

b. Would the project result in exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?

Vibration

Vibration is a unique form of noise because its energy is carried through buildings, structures, and the ground, whereas sound is simply carried through the air. Thus, vibration is generally felt rather than heard. Some vibration effects can be caused by noise (e.g., the rattling of windows from passing trucks). This phenomenon is caused by the coupling of the acoustic energy at frequencies that are close to the resonant frequency of the material being vibrated. Typically, ground-borne vibration generated by manmade activities attenuates rapidly as distance from the source of the vibration increases. The ground motion caused by vibration is measured as particle velocity in inches per second and is measured in vibration decibels (VdB).

The vibration velocity level threshold of perception for humans is approximately 65 VdB. A vibration velocity of 75 VdB is the approximate dividing line between barely perceptible and distinctly perceptible levels for many people. Most perceptible indoor vibration is caused by sources inside buildings such as the operation of mechanical equipment, movement of people, or the slamming of

doors. Typical outdoor sources of perceptible ground-borne vibration are construction equipment, steel-wheeled trains, and traffic on rough roads.

Vibration impacts would be significant if they exceed the following Federal Railroad Administration (FRA) thresholds:

- 65 VdB where low ambient vibration is essential for interior operations, such as hospitals and recording studios
- 72 VdB for residences and buildings where people normally sleep, including hotels
- 75 VdB for institutional land uses with primary daytime use, such as churches and schools
- 95 VdB for physical damage to extremely fragile historic buildings
- 100 VdB for physical damage to buildings

In addition to the groundborne vibration thresholds listed above, the Federal Transit Administration (FTA) outlined human response to different levels of groundborne vibration, and determined that vibration that is 85 VdB is acceptable only if there are an infrequent number of events per day. Construction-related vibration impacts would be less than significant for residential receptors if they occur during the city's normally permitted hours of construction below the threshold of physical damage to buildings and any vibration over 85 VdB would be infrequent with respect to the number of events per day.

Vibrating objects in contact with the ground radiate energy through that medium. If a vibrating object is massive enough and/or close enough to the observer, its vibrations are perceptible. The rumbling sound caused by the vibration of room surfaces is called groundborne noise. The ground motion caused by vibration is measured in vibration decibels (VdB).

The vibration velocity level threshold of perception for humans is approximately 65 VdB. Vibration impacts would be significant if they exceed the following Federal Railroad Administration (FRA) thresholds (FRA 2012):

- 65 VdB where low ambient vibration is essential for interior operations, such as hospitals and recording studios
- 72 VdB for residences and buildings where people normally sleep, including hotels
- 75 VdB for institutional land uses with primary daytime use, such as churches and schools
- 95 VdB for physical damage to extremely fragile historic buildings
- 100 VdB for physical damage to buildings

In addition to the groundborne vibration thresholds outlined above, the Federal Transit Administration assessed human response to different levels of groundborne vibration and determined that vibrations of 85 VdB or higher are acceptable only if there are an infrequent number of events per day (FTA 2006).

Certain types of construction equipment generate substantial levels of vibration. Table 13 provides vibration levels associated with vibratory construction equipment that would be used during construction. Pile drivers or oversized earth-moving equipment, which have particularly high levels of vibration impact, would not be used.

	Approximate VdB ¹				
Equipment	25 feet	90 feet	120 feet		
Vibratory Roller	94	78	74		
Loaded Trucks	86	69	65		
Small Bulldozer	58	41	37		

Table 13 Vibration Source Levels for Construction Equipment

¹FTA provides equipment vibration levels in approximate vibration levels (Lv VdB) at a distance of 25 feet. These were converted to VdB at other distances using methods provided in *Transit Noise and Vibration Assessment* (FTA 2006). Source: FTA 2006

Vibration at the nearest sensitive receptors (Channel Islands Inn 90 feet south and single-family residences 120 feet west) from the project site would exceed 72 VdB. However, project construction would be temporary, and would be restricted to daytime hours, between 7:00 a.m. and 6:00 p.m on weekdays and Saturday, in accordance with the City's Noise Ordinance. Vibration would not occur during recognized sleep hours for nearby residences and would not exceed 72 VdB. Therefore, vibration impacts from project construction would be less than significant.

LESS THAN SIGNIFICANT IMPACT

- e. For a project located in an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?
- *f.* For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise?

The project site is located approximately 2.1 miles southeast of the Oxnard Airport and approximately 4.3 miles northwest of Naval Base Ventura County. Therefore, the project site is not located within two miles of a public airport. Thus, the project would not expose people working in the project area to excessive noise levels. There are no private airstrips in the vicinity. No impacts would occur.

NO IMPACT

Cumulative Impacts

The existing ambient noise level at the project site and vicinity of Statham Boulevard is the result of other past and present projects, including commercial and industrial development. As stated above, existing ambient noise levels at the project site are estimated at approximately 51.5 dBA. The project would increase ambient noise levels temporarily during construction, and operations, including when deliveries arrive and depart from the project site via automobile and freight train. However, the increase would not exceed the City's sound standard of 70 dBA for the project site. The traffic study summarizes six approved and pending future projects and the average daily trips associated with each. Total increased trips total 1,704 (Associated Transportation Engineers 2017). These trips were calculated in a cumulative setting in the traffic study and summarized in Table 14 below.

Existing ADT ¹	Estimated Cumulative Development plus Proposed Project ADT	Change in ADT (Estimated Cumulative Development plus Proposed Project ADT minus Existing ADT)	Percent Increase (Change in ADT/Existing ADT)
6,464	6,500	36	0.6
2,396	2,372	(24)	(1.0)
3,780	4,244	464	12.3
4,112	4,144	32	0.8
3,256	3,256	0	0.0
	ADT ¹ 6,464 2,396 3,780 4,112	Existing ADT1Development plus Proposed Project ADT6,4646,5002,3962,3723,7804,2444,1124,144	Existing ADT1Estimated Cumulative Development plus Proposed Project ADT minus Existing ADT)(Estimated Cumulative Development plus Proposed Project ADT minus Existing ADT)6,4646,500362,3962,372(24)3,7804,2444644,1124,14432

Table 14 Existing and Cumulative Development Average Daily Traffic Trips of StudiedIntersections

Notes: ADT = Average Daily Traffic

Parentheses indicate negative number.

¹ADT was estimated by multiplying the higher peak hour traffic volume by four (Transportation Research Board 2000).

Source: Associated Transportation Engineers 2017

As shown in Table 14, the increased ADT from cumulative development varies from a negative change of 1 percent up to 12.3 percent increase. However, this increase would not be expected to increase the ambient noise levels on Statham Boulevard. The project's contribution to cumulative noise impacts would not be cumulatively considerable.

13 Population and Housing

	Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
Would the project result in any of the follo	owing impacts?			
 a. Induce substantial population growth area, either directly (e.g., by proposing new homes and businesses) or indirec (e.g., through extension of roads or ot infrastructure) 	g tly			
 Displace substantial amounts of existin housing, necessitating the constructio replacement housing elsewhere 	•			
c. Displace substantial numbers of peopl necessitating the construction of replacement housing elsewhere	e,			•

a. Would the project induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

The project would employ up to 45 full-time workers when capacity is reached. According to the California Department of Finance (DOF), the population of Oxnard in 2016 was 206,997 (DOF 2016) with a forecasted population of 220,200 for the year 2020 (SCAG 2016). This is a 14.64 percent increase from the estimated population of 2016. If all of the project's employees relocate to the city of Oxnard, this increase of 45 individuals would account for less than 0.3 percent of the projected population growth from 2016 to 2020. This small percentage is within City of Oxnard population forecasts. However, such an increase is not likely given that the Oxnard area unemployment rate is within 0.3 percent of regional (Ventura County) and state unemployment rates, (Bureau of Labor Statistics 2017a, 2017b, California Employment Development Department 2017) and the area labor pool is compatible with the project's labor and skill needs. Therefore, the project would not induce substantial population growth in Oxnard, directly or indirectly, and impacts would be less than significant.

LESS THAN SIGNIFICANT IMPACT

- b. Would the project displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?
- c. Would the project displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?

The project does not include any proposed residential structures nor does the project include any demolition of residential structures. The project involves development of a current vacant parcel

and use of an existing office/warehouse building. The project would have no impact relating to the displacement of housing or people.

NO IMPACT

Cumulative Impacts

The project would have no significant direct or indirect impacts on population and housing. Thus, no cumulative impacts would result from the project.

14 Public Services

Potentially Significant Potentially Unless Less than Significant Mitigation Significant Impact Incorporated Impact No Impact
--

Would the project result in any of the following impacts?

a	adv the gov nev fac cau ord res	build the project result in substantial verse physical impacts associated with e provision of new or physically altered vernmental facilities, or the need for w or physically altered governmental cilities, the construction of which could use significant environmental impacts, in der to maintain acceptable service ratios, sponse times or other performance jectives for any of the public services:			
	1	Fire protection		•	
	2	Police protection		-	
	3	Schools		-	
	4	Parks		-	
	5	Other public facilities			

a.1. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, or the need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for fire protection?

The project site is serviced by the City of Oxnard Fire Department. The Oxnard Fire Department provides a full range of emergency and non-emergency services to the community. In 2017, the staffing ratio of the Oxnard Fire Department is approximately 0.62 per 1,000 residents (Suzanne, City of Oxnard Fire Department, personal communication 2017). The closest fire station to the project site is Fire Station 8, approximately 0.45 mile southeast of the project site (located at 3000 South Rose Avenue).

The Oxnard Fire Department is currently rated as a Class 2 fire department by the Insurance Services Office (ISO). The ISO rating evaluates the fire department, the city's water system, and the fire departments communication capabilities. ISO rating is important to communities since most property insurance companies determine the fire risk portion of property insurance premiums based on the city's ISO rating. Oxnard was last rated by the ISO in 1994.

The project would increase the population of the City of Oxnard by 45 people, if all employees were to relocate to the city. This increase of population would not be expected to impact the five-minute response time, for 90 percent of the time, by the Oxnard Fire Department (City of Oxnard 2011).

In addition, the project would use an already existing building and would not increase the squarefootage of enclosed building space. However, the project would increase the amount of squarefootage that is used with flammable materials. The project would also be required to provide sprinklers and related fire detection and suppression equipment per Oxnard Fire Department requirements, as well as follow all requirements per Oxnard Municipal Code Sections 14-24 *California Fire Code Adopted*, Section 14-25 *Amendments*, and Section 14-26 *Automatic Fire Sprinkler System* (City of Oxnard 2016). Therefore, with compliance to the City of Oxnard fire code, the project's impacts to fire protection would be less than significant.

LESS THAN SIGNIFICANT IMPACT

a.2. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, or the need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for police protection?

The project site is serviced by the City of Oxnard Police Department. In 2011, the staffing ratio of the City of Oxnard Police Department was 1.3 per 1,000 residents (City of Oxnard 2011). The project would increase the population of Oxnard by 45 people, if all employees were to relocate to the city. This increase of population would not be expected to impact the five-minute response time by the Oxnard Police Department (City of Oxnard 2011).

In addition, the City of Oxnard Police Department is required to review proposed development projects and provide recommendations that enhance public safety by requiring crime prevention devices and encouraging incorporation of security design principles (City of Oxnard 2011). Therefore, with compliance to the City of Oxnard Police Department requirements, the project's impacts to police protection would be less than significant.

LESS THAN SIGNIFICANT IMPACT

a.3. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, or the need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for schools?

The City of Oxnard is served by the Oxnard School District, which has 21 preschool through eighth grade school facilities, and the Oxnard Union High School District, which has six facilities covering grades nine through 12. The project would increase the population of the City of Oxnard by 45 people if all future employees were to relocate to the city. The project proponent would be required to pay school impact development mitigation fees (City of Oxnard 2011). Therefore, with the small increase of population and required payment of mitigation fees, the project's impacts to schools would be less than significant.

LESS THAN SIGNIFICANT IMPACT

a.4. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, or the need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for parks?

As identified in the City of Oxnard's Draft Background Report for the 2030 General Plan (2006), the City of Oxnard operates 64 existing park facilities that include mini-parks, neighborhood parks, community playfields, community parks, and special purpose facilities (City of Oxnard 2006). Mini-parks have a service radius of one-third of a mile, while neighborhood parks have a service radius of one-half to one mile, and community parks have a service radius of one and a half miles. Community playfields are large recreation areas, usually athletic complexes, while special purpose facilities are areas reserved for specific or single-purpose recreational activities, such as golf courses, nature centers, marinas, historical sites, beaches, etc. There are a total of approximately 861.4 acres of parks in the City of Oxnard (City of Oxnard 2011, 2006).

The city's current (year 2016) population is estimated at 206,997 residents (DOF 2016). Based on this population and the 861.4 acres of parkland inside the city limits, there are approximately 4.16 acres of parkland for every 1,000 residents. The City of Oxnard uses the Quimby Act standard ratio of three acres of parkland for every 1,000 residents. Therefore, Oxnard has adequate parklands for the residents. The addition of 45 residents, if all future employees of the project were to relocate to the city, would increase the estimated population to 207,042, with the same parkland demand ratio of 4.16 per 1,000 residents. Therefore, the project would not substantially increase the parkland requirements for the City of Oxnard, and impacts would be less than significant.

LESS THAN SIGNIFICANT IMPACT

a.5. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, or the need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for other public facilities?

The City of Oxnard has a total of three libraries open to the public: the Main Library, located approximately 1.8 miles northwest of the project site; the South Oxnard Branch, located approximately 1.1 miles southwest of the project site; and the Colonia Branch, located approximately 2.1 miles north of the project site (City of Oxnard 2017b). The project would increase the population of the City of Oxnard by 45 people if all employees were to relocate to the city. This small increase of population would have a less than significant impact to library service and would not implement the need for a new facility.

LESS THAN SIGNIFICANT IMPACT

Cumulative Impacts

The project would have no significant direct or indirect impacts on public services. As the project would have no significant impact, there would also be no cumulative impacts to public services resulting from the project.

This page intentionally left blank.

15 Recreation

		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
Wo	ould the project result in any of the following	impacts?			
a.	Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated				
b.	Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment			_	П

- a. Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?
- b. Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

As discussed in Section 14, *Public Service*, the project does not include new housing and would not generate substantial population growth and therefore would not result in increased demand for parks or recreational services. The project does not include recreational facilities. There are no existing recreational uses of the project site. Accordingly, the project would have no impact on recreation resources.

LESS THAN SIGNIFICANT IMPACT

Cumulative Impacts

The project would have no significant direct or indirect impacts on recreation. As the project would have no significant impact, there would also be no cumulative impacts to recreation resulting from the project.

This page intentionally left blank.

16 Transportation

	Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
 	 _			

Would the project result in any of the following impacts?

- a. Conflict with an applicable plan, ordinance or policy establishing a measure of effectiveness for the performance of the circulation system, taking into account all modes of transportation, including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways, and freeways, pedestrian and bicycle paths, and mass transit?
- b. Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?
- c. Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?
- d. Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible use (e.g., farm equipment)?
- e. Result in inadequate emergency access?
- f. Conflict with adopted policies, plans, or programs regarding public transit, bikeways, or pedestrian facilities, or otherwise substantially decrease the performance or safety of such facilities?

5,	-		
not Id			
s, evels	•		
3			•
ble			
s? or			•
' 1			
s?		-	

- a. Would the project conflict with an applicable plan, ordinance or policy establishing a measure of effectiveness for the performance of the circulation system, taking into account all modes of transportation, including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways, and freeways, pedestrian and bicycle paths, and mass transit?
- b. Would the project conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?

Construction

Construction equipment and materials would be delivered to the project site and stored onsite for the duration of construction. Construction delivery trips would be infrequent and short-term (less than 12 months). The project construction workforce would likely commute to the project site in personal vehicles. The additional daily vehicle trips generated from the construction workforce would have localized impacts on Statham Boulevard, Oxnard Boulevard, and Channel Islands Boulevard. However, the number of daily trips would be minimal in comparison of the average daily vehicle trips on these arterial roadways of the city. All additional trips generated from the construction workforce would be temporary and short term.

LESS THAN SIGNIFICANT IMPACT

Operation

A traffic report was completed for the project by Associated Transportation Engineers on April 28, 2017. The report describes the existing conditions, project trip generation rates, and the impact of the project on existing conditions. It also includes an analysis of the proposed and developing projects in the vicinity and the project's related impacts to traffic and circulation in a future setting.

The project site is served by a circulation system comprising arterial and collector streets. Traffic flow on urban arterials is most constrained at intersections. Therefore, a detailed analysis of traffic flows must examine the operating conditions of critical intersections during peak travel periods. Levels of Service (LOS) A through F are used to rate intersection operations with LOS A indicating free flow operations and LOS F indicating congested operations. In the city of Oxnard LOS C is the acceptable operating standard for intersections.

Existing Conditions

The existing a.m. and p.m. peak hour traffic volumes at the study area intersections were collected by Associated Transportation Engineers in March of 2017. Existing LOS for the study area intersections were calculated using the Intersection Capacity Utilization (ICU) methodology as required by the City of Oxnard. Worksheets illustrating the LOS calculations are contained in the Technical Appendix of the traffic study (Appendix C). Table 15 below lists the existing LOS for study area intersections during the a.m. and p.m. peak hour periods.

		A.M. Pe	ak Hour	P.M. Pe	ak Hour		
Intersection	Control Type	ICU	LOS	ICU	LOS		
Rose Avenue/Oxnard Boulevard	Signal	0.33	А	0.62	В		
Rose Avenue/Channel Islands Boulevard	Signal	0.50	А	0.59	А		
Channel Islands Boulevard/Statham Boulevard	Signal	0.45	А	0.58	А		
Channel Islands Boulevard/Albany Drive	Signal	0.63	В	0.40	А		
Oxnard Boulevard/Statham Boulevard	Signal	0.39	А	0.64	В		
Notes: ICU = Intersection Capacity Utilization, LOS = Level of Service							

Table 15 Existing Peak Hour Levels of Service

Source: Associated Transportation Engineers 2017

As shown in Table 15, intersections in the study area currently operate at LOS B or better during the a.m. and p.m. peak hour periods, which meet the City's LOS C standard.

Project Trip Generation

Trip generation estimates are typically developed based on rates presented in the *Institute of Transportation Engineers (ITE), Trip Generation, 9th Edition.* However, there are no trip generation rates published for lumberyards. Trip generation estimates for the project were therefore calculated using operational data provided by the applicant. The project will operate Monday through Friday with 45 full-time employees. There will also be an occasional half day on Saturdays.

During a peak operational day, there could be up to 14 truck deliveries (28 truck trips) and one miscellaneous delivery to/from the facility. Since the majority of the truck deliveries are required to be on job sites close to 7:00 a.m., the outbound truck delivery trips would occur prior to the a.m. peak hour. There would be approximately two returning delivery truck trips during the a.m. peak hour commute period (7:00 a.m. to 9:00 a.m.). No truck trips would occur during the p.m. peak hour commute period between (4:00 p.m. to 6:00 p.m.) since deliveries will have been completed by 3:00 p.m. It is estimated that seven employee trips will occur during the a.m. and p.m. peak hour commute periods, since most employees begin the work day before 7:00 a.m. and end before 4:00 p.m. Table 16, below, represents the maximum daily operations that potentially could occur:

Type of Vehicle/Use	Number of Vehicles	Total Number of Daily Trips				
Truck Deliveries	14	28				
Miscellaneous Delivery	1	2				
Employee Trips						
5:00 a.m. to 2:00 p.m.	10	20				
6:00 a.m. to 3:00 p.m.	28	56				
7:00 a.m. 4:00 p.m.	7	14				
Total Employee	45	90				
Total	60	120				
Source: Associated Transportation Engineers 2017						

Table 16 Proposed Project Maximum Daily Operations

Table 17 summarizes the average daily, a.m. and p.m. peak hour trip generation estimates for the proposed project based on the peak day operational data.

			Weekday Peak Hour Trips		
Project Component	Number	ADT	A.M. Peak Hour	P.M. Peak Hour	
Truck Deliveries	14	28	2 (2 In/0 Out)	0 (0 In/0 Out)	
Miscellaneous Deliveries	1	2	0 (0 In/0 Out)	0 (0 In/0 Out)	
Employees	45	90	7 (7 In/0 Out)	7 (0 In/7 Out)	
Total		120	9 (9 In/0 Out)	7 (0 In/7 Out)	

Table 17 Project Weekday Peak Hour Trip Generation

Source: Associated Transportation Engineers 2017

The data presented in Table 12 shows that the project would generate a total of 120 average daily trips (ADT), nine a.m. peak hour trips, and seven p.m. peak hour trips.

Project Trip Distribution and Assignment

The project-generated a.m. and p.m. peak hour traffic volumes were distributed and assigned to the study area intersections based on travel data derived from the existing traffic volumes as well as a general knowledge of the population, employment, and commercial centers in the Oxnard/Ventura area (Appendix C for existing traffic volume numbers).

Project-Specific Impacts

LOS was calculated for the study area intersections assuming the Existing plus Project volumes. Table 18 shows the results of the calculations and identifies the project's impacts based on City of Oxnard thresholds.

	Exis	ting	Existing p	us Project	ICU	
Intersection	ICU	LOS	ICU	LOS	Change	Impact?
A.M. Peak Hour						
Rose Avenue/Oxnard Boulevard	0.33	А	0.33	А	0.00	No
Rose Avenue/Channel Islands Boulevard	0.50	A	0.50	А	0.00	No
Channel Islands Boulevard/Statham Boulevard	0.45	А	0.46	А	0.01	No
Channel Islands Boulevard/Albany Drive	0.62	В	0.62	В	0.00	No
Oxnard Boulevard/Statham Boulevard	0.39	А	0.40	А	0.01	No
P.M. Peak Hour						
Rose Avenue/Oxnard Boulevard	0.62	В	0.62	В	0.00	No
Rose Avenue/Channel Islands Boulevard	0.59	А	0.59	А	0.00	No
Channel Islands Boulevard/Statham Boulevard	0.58	А	0.59	А	0.01	No
Channel Islands Boulevard/Albany Drive	0.40	А	0.40	А	0.00	No
Oxnard Boulevard/Statham Boulevard	0.64	В	0.65	В	0.01	No

Table 10	Evisting plus Project De	al llaur lavala of Corviaa
	Existing plus Project Pe	eak Hour Levels of Service

Level of Service = Intersection Capacity Utilization, LOS

Source: Associated Transportation Engineers 2017

As shown in Table 18, the project would not generate traffic level impacts of a significant level to the study area intersections, based on the City of Oxnard's traffic impact thresholds during the a.m. or p.m. peak hour periods.

LESS THAN SIGNIFICANT IMPACT

Cumulative (Existing plus Approved/Pending Projects) Conditions

The City of Oxnard requires that intersection operations be analyzed with the addition of traffic generated by projects that have been approved or are pending in the project study area. Trip generation estimates were used for the developments that are approved or pending near the project study area using the rates presented in the ITE, Trip Generation, 9th Edition. Table 19, below, summarizes the average daily, a.m. and p.m. peak hour trip generation estimates for the approved and pending projects.

		Units/Size			Peak Hour	
Number	Project	Land Use	(SF)	ADT	A.M.	P.M.
1	Channel Islands Apartments	MFR	72	474	33	42
2	Cheyenne Development	SFR	3	28	2	3
3	Triplex	MFR	3	20	1	2
4	Naumann Ranch	MFR	101	666	46	58
		Assisted Living	70	197	13	21
5	Coptic Church	Church	35,000	319	20	20
Total Trip	S			1,704	115	146

Table 19 Approved and Pending Projects (Cumulative Development) Trip Generation

Notes: ADT = Average Daily Trip, SFR = Single-Family Residential, MFR = Multi-Family Residential, SF = Square-Feet Source: Associated Transportation Engineers 2017

The data presented in Table 19 indicate that the approved and pending projects would generate a total of 1,704 average daily trips, 115 a.m. peak hour trips and 146 p.m. peak hour trips. The traffic generated by the approved and pending projects was distributed and assigned to the study area intersections based on the location of each project, recent traffic studies, existing traffic patterns observed in the study area as well as a general knowledge of the population, employment and commercial centers in Oxnard and surrounding Ventura County area. The Cumulative LOS for the study area intersections are shown in Table 20.

Table 20 Cumulative Peak Hour Levels of Service

		A.M. Pe	ak Hour	P.M. Pe	ak Hour
Intersection	Control Type	ICU	LOS	ICU	LOS
Rose Avenue/Oxnard Boulevard	Signal	0.33	А	0.62	В
Rose Avenue/Channel Islands Boulevard	Signal	0.50	А	0.59	А
Channel Islands Boulevard/Statham Boulevard	Signal	0.46	А	0.59	А
Channel Islands Boulevard/Albany Drive	Signal	0.62	В	0.40	А
Oxnard Boulevard/Statham Boulevard	Signal	0.42	А	0.65	В
Notes: ICU = Intersection Capacity Utilization, LOS = Le	vel of Service				

Source: Associated Transportation Engineers 2017

The data presented in Table 15 indicates that the study area intersections would operate at LOS B or better during the a.m. and p.m. peak hour periods with cumulative traffic volumes, which meets the City's LOS C standard.

Cumulative plus Project Impacts

LOS was calculated for the study area intersections, assuming the Cumulative plus Project volumes. Table 21, below, shows the results of the calculations and identify the impacts of the Project, based on City of Oxnard thresholds.

	Cumu	lative	Cumulative	plus Project	ICU	
Intersection	ICU	LOS	ICU	LOS	Change	Impact?
A.M. Peak Hour						
Rose Avenue/Oxnard Boulevard	0.33	А	0.33	А	0.00	No
Rose Avenue/Channel Islands Boulevard	0.50	A	0.50	A	0.00	No
Channel Islands Boulevard/Statham Boulevard	0.46	A	0.46	А	0.00	No
Channel Islands Boulevard/Albany Drive	0.62	В	0.62	В	0.00	No
Oxnard Boulevard/Statham Boulevard	0.42	А	0.43	А	0.01	No
P.M. Peak Hour						
Rose Avenue/Oxnard Boulevard	0.62	В	0.63	В	0.01	No
Rose Avenue/Channel Islands Boulevard	0.59	А	0.59	A	0.00	No
Channel Islands Boulevard/Statham Boulevard	0.59	А	0.59	А	0.00	No
Channel Islands Boulevard/Albany Drive	0.40	А	0.40	А	0.00	No
Oxnard Boulevard/Statham Boulevard	0.65	В	0.66	В	0.01	No

Table 21 Cumulative plus Project Peak Hour Levels of Service

Source: Associated Transportation Engineers 2017

The data presented in Table 21 indicates that the Project would not generate significant cumulative impacts to the study area intersections based on the City of Oxnard's traffic impact thresholds during the a.m. or the p.m. peak hour periods. The addition of Project trips would not result in an impact since the intersections operate al LOS B or better and the increase in the ICU values is less than 0.02.

LESS THAN SIGNIFICANT IMPACT

Ventura County Congestion Management Program

According to the County's Congestion Management Program (CMP), the minimum acceptable standard for traffic operations is LOS E (Ventura County Transportation Commission [VCTC] 2009). However, so that local jurisdictions are not unfairly penalized for existing congestion, CMP locations currently operating in the LOS F range are considered acceptable.

The study area intersections along Oxnard Boulevard and Channel Islands Boulevard are included in the County's CMP. The intersections are all expected to operate at LOS B or better with the addition of Cumulative plus Project peak hour volumes, and thus would not exceed the CMP LOS E standard.

The project site is located near mass transit services on Channel Islands Boulevard, but the project would not impact any mass transit services or facilities. In addition, the project would not impact any pedestrian or bicycle paths. Project-related impacts would be less than significant.

LESS THAN SIGNIFICANT IMPACT

Project Rail Service

In addition to truck deliveries, the project site will be served by heavy rail by the VCRR. The track runs adjacent to the project's western boundary. As described previously, the project includes the construction of a new rail switch to this existing line. The existing VCRR rail service crosses Channel Islands Boulevard and Oxnard Boulevard in the study area twice each day. No new train crossings of Channel Islands Boulevard or Oxnard Boulevard would occur. The project would be serviced on Monday through Friday, between the hours of 9:00 a.m. and 3:00 p.m. The average train length is 15 rail cars. The proposed switch will allow trains to enter the site from the north which creates the least amount of street interference to Channel Islands Boulevard or Oxnard Boulevard; traffic flows would not be interrupted. In the event that a train blocks a roadway during a switch, the VCRR standard practice is to abandon rail switches and move the train in the event of emergency response vehicles. Therefore, project-related impacts to traffic would be less than significant.

LESS THAN SIGNIFICANT IMPACT

c. Would the project result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

The project would not result in a change in air traffic patterns including either an increase in traffic levels or a change in location that results in a substantial safety risk. The project represents an infill project on a parcel that has been used for various industrial uses for decades and a vacant agricultural lot that has been zoned for industrial use. According to the Ventura County Airport Land Use Commission (2000), the project site is in the Oxnard Airport sphere of influence. However, the project is not proposing to increase the height of the existing warehouse, and would stack lumber to a maximum of 12-feet. No changes to air traffic patterns or locations would result from the project. Therefore, no project airport related impacts would result.

NO IMPACT

d. Would the project substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible use (e.g., farm equipment)?

The project does not include the construction of any new roads, other than the access drive aisle on Albany Drive that would be entirely onsite and used by employees, and future customers. Emergency responders could also use this new access in the event of an emergency. Turning radius on the facility road would accommodate maneuverability on the site of large trucks and vehicles, including fire trucks. This entrance would be designed and constructed to City standards and include a driveway apron.

During construction of the project, construction equipment and project materials would be delivered via trucks. Large flatbed trucks, dump trucks, and water trucks would travel on Statham Boulevard, Albany Drive, Statham Parkway, Oxnard Boulevard, and Channel Islands Boulevard, and other roads in the area while delivering supplies and equipment. Streets used to access the project site are public streets designed for use by large trucks. Project-related impacts would be less than significant.

LESS THAN SIGNIFICANT IMPACT

e. Would the project result in inadequate emergency access?

The project would not generate traffic volumes that would impede emergency access. Turning radius on the internal project facility road would accommodate maneuverability on the site of large emergency vehicles, including fire trucks and ambulances. The project would have no impact.

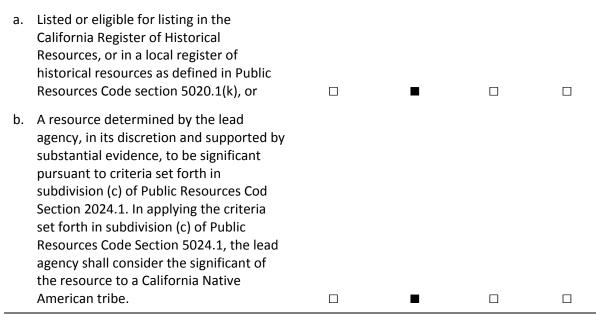
NO IMPACT

f. Conflict with adopted policies, plans, or programs regarding public transit, bikeways, or pedestrian facilities, or otherwise substantially decrease the performance or safety of such facilities?

The project would not impact public transit or bikeways. According to the Oxnard General Plan Background Report (2006), there are no bicycle routes adjacent to the project site (City of Oxnard 2006). The project would construct new sidewalk along the north side of Albany Drive, improving pedestrian facilities. The project would have no impact.

NO IMPACT

Cumulative Impacts


Cumulative development in the project area would cause increases in traffic on area roadways. As summarized in Table 19, the planned and pending projects in the vicinity of the project site are provided, and as shown in Table 21, under the Cumulative plus Project conditions, the traffic analysis estimated an acceptable LOS of B or better at all intersections studied, resulting in a less than significant cumulative impact. All future traffic impacts described in the above discussions consider cumulative project traffic growth.

This page intentionally left blank.

17 Tribal Cultural Resources

	Potentially Significant		
Potentially	Unless	Less than	
Significant	Mitigation	Significant	
Impact	Incorporated	Impact	No Impact

Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in a Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:

a., b. Would the project cause a substantial adverse change in the significance of a tribal cultural resource as defined in Public Resources Code 21074 that is (a) listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k), or (b) a resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 2024.1?

Tribal cultural resources are defined in Public Resources Code 21074 as sites, features, places, cultural landscapes, sacred places, and objects with cultural value to a California Native American tribe that are either:

- Included or determined to be eligible for inclusion in the California Register of Historical Resources
- Included in a local register of historical resources as defined in subdivision (k) of Section 5020.1

The City of Oxnard Draft EIR for the 2030 General Plan outlines appropriate mitigation measures in relation to Native American resources to ensure that potential impacts to these resources during excavation work are less than significant (City of Oxnard 2009). In addition, application of uniformly

applied development standards and conditions of approval related to tribal cultural resources would reduce this impact to less than significant levels.

LESS THAN SIGNIFICANT IMPACT

18 Utilities and Service Systems

		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
Wo	ould the project result in any of the following	impacts?			
a.	Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board	-			
b.	Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects	•			•
C.	Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects				•
d.	Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed				•
e.	Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments				•
f.	Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs	•			•
g.	Comply with federal, state, and local statutes and regulations related to solid waste				•

a. Would the project exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?

b. Would the project require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

- d. Would the project require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?
- e. Would the project have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?

The Los Angeles Regional Water Quality Control Board in connection with the implementation of the NPDES program imposes requirements on the treatment of wastewater and its discharge into local water bodies. Wastewater produced by the project would meet these requirements through treatment at the Oxnard Wastewater Treatment Plant, which is owned by the City of Oxnard and currently operated by the City of Oxnard Public Works Department (City of Oxnard 2016). Effluent from the facility is discharged to an ocean outfall and to an advanced water purification facility adjacent to the plant to be utilized as recycled water throughout the city.

Wastewater generated during project construction would consist primarily of sanitary waste, which would be managed through the use of portable toilets. Portable toilets would be removed from the project site once construction is completed. Wastewater collected in portable toilets would be transported to the Oxnard Wastewater Treatment Plant for treatment.

Wastewater generated from project operations would be associated with the bathroom and sink facilities in the office structure. The project would renovate the building, including updating plumbing and fixtures. As described in Section 9, *Hydrology and Water Quality*, the office structure has been in continuous use until only recently (2015). Thus, the project would not be a new demand or service for water supply, the sanitary sewer system, or the Oxnard Wastewater Treatment Plant. Instead, it would be a continuation of the demand that has been associated with the office structure until only recently. Impacts would be less than significant.

LESS THAN SIGNIFICANT IMPACT

c. Would the project result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

The proposed project would create impervious ground cover where the proposed lumber stacks will be stored. However, the proposed project also includes an underground infiltration basin to help offset the increase of impervious surface and wastewater, and allow infiltration of this increase. Any runoff from impervious surfaces would be anticipated to move slowly across the project site, and largely infiltrate or evaporate, or be discharged to the existing stormwater drainage system. In addition, the project would be subject to the requirements of a (MS4) permit. Site-specific BMPs would be designed by the contractor in compliance with all applicable regulations and conditions of the MS4 permit. Given that much of the project site would be impervious and nearly flat, and that compliance with the conditions of the MS4 permit would be mandatory, operation of the project would not substantially degrade water quality or exceed the capacity of the stormwater drainage system. Impacts would be less than significant.

LESS THAN SIGNIFICANT IMPACT

- *f.* Would the project be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?
- g. Would the project comply with federal, state, and local statutes and regulations related to solid waste?

Standard conditions of approval require compliance with the City's recycling programs, which require solid waste recycling and disposal plans and reporting during construction and operation of the facility. Therefore, impacts related to solid waste will be less than significant.

LESS THAN SIGNIFICANT IMPACT

Cumulative Impacts

Water and sanitary sewer services for the project would be limited to the office building. As described above, the office building has been continuously occupied until recently (2015). Renovating and subsequent use of the building as an office would therefore not increase the demand on water supplies or sewage treatment facilities. The project would create minimal new areas or impervious surface, and stormwater runoff from the project site would be expected to be captured and infiltrated through the underground basin and discharged at similar rates at the site in addition to the existing warehouse and parking lot stormwater system. Thus, the project would not have cumulatively considerable impacts on the City's water supply, sanitary sewer system, storm drain system, or the Oxnard Wastewater Treatment Plant. Compliance with the City's recycling programs, including solid waste recycling and disposal plans and reporting during construction and operation of the facility would not have a cumulatively considerable impact.

This page intentionally left blank.

19 Mandatory Findings of Significance

		Potentially Significant Impact	Potentially Significant Unless Mitigation Incorporated	Less than Significant Impact	No Impact
a.	Does the project have the potential to substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self- sustaining levels, eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?		-		
b.	Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?				•
c.	Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?		-		

a. Does the project have the potential to substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self- sustaining levels, eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

As discussed in Section 4, *Biological Resources*, the project site contains existing industrial development and was previously used for agricultural uses. The site has been graded. Due to the previously disturbed nature of the site, the project site lacks native vegetation that would provide habitat for unique, rare, or endangered plant and animal species. Therefore, the project would not have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the CDFW or USFWS, because no listed species are known or expected to occur at the project site.

However, construction of the project could result in possible indirect temporary impacts to raptors and protected nesting birds located in the vicinity of the project site such as nesting on adjacent buildings, street trees, or the eucalyptus windrow located adjacent to the railroad line. Compliance with mitigation measure BIO-1 would ensure impacts to nesting birds and raptors are less than significant.

In addition, as discussed in Section 5, *Cultural Resources*, and Section 17, *Tribal Cultural Resources*, the project site is not located on or near a historical resource, and is not anticipated to have any cultural or tribal cultural resources. However, if unanticipated cultural resources or tribal cultural resources are found during construction of the project, mitigation measures CUL 1 and TCR-1 would ensure impacts to cultural and tribal cultural resources are less than significant.

POTENTIALLY SIGNIFICANT UNLESS MITIGATION INCORPORATED

b. Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

The project was determined to have no impact in comparison to existing conditions for Aesthetics, Agriculture and Forest Resources, and Mineral Resources issue areas. Therefore, as there would be no direct or indirect impacts, the project would not contribute to cumulative impacts to these issue areas.

For all other issues areas, the project would have either direct or indirect impacts that have been determined to be less than significant or not cumulatively considerable, with or without mitigation incorporated. As stated above, cumulatively considerable means that the incremental effects of an individual project are significant when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects. A discussion of the project's cumulative impacts is provided in the earlier sections of this Initial Study/Mitigated Negative Declaration for each issue area.

NO IMPACT

c. Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

In general, adverse impacts to human beings are associated with air quality, hazards, and hazardous materials, greenhouse gas emissions, and noise impacts. As detailed in the preceding responses, the construction and operation of the project would not result, either directly or indirectly, in significant adverse effects related to air quality, greenhouse gas emissions, hazards and hazardous materials or noise. As discussed, air quality and greenhouse gas emissions associated with the construction and operation of the maintenance facility would be below threshold levels and construction emissions would be temporary. Operational noise levels would also fall below significance thresholds and noise levels exceeding Oxnard guidelines due to construction activities being exempt from sound regulations. Mitigation measures HAZ-1 and HAZ-2, would reduce hazards and hazardous material impacts to a less than significant level.

Overall, with the inclusion of the recommended mitigation measures, the project would not result in adverse environmental impacts or cause substantial adverse effects on human beings, and impacts would be less than significant with mitigation incorporated.

POTENTIALLY SIGNIFICANT UNLESS MITIGATION INCORPORATED

References

Bibliography

- Associated Transportation Engineers. 2017. *Dixieline Lumber and Home Centers, Oxnard, California: Traffic and Circulation Study*. Santa Barbara, CA. July 6, 2017.
- California Air Pollution Control Officers Association (CAPCOA). 2008. CEQA & Climate Change: Evaluating and Addressing Greenhouse Gas Emissions from Projects Subject to the California Environmental Quality Act. Sacramento, CA. January 2008. <u>http://www.capcoa.org/wpcontent/uploads/2012/03/CAPCOA-White-Paper.pdf</u>.
- . 2016. CalEEMod® California Emissions Estimator Model® User's Guide. Version 2016.3.1. Sacramento, CA. September 2016. <u>http://www.aqmd.gov/docs/default-</u> <u>source/caleemod/upgrades/2016.3/01_user-39-s-guide2016-3-1.pdf?sfvrsn=2</u>.
- California Air Resources Board (CARB). 2017a. "AB 32 Scoping Plan." California Environmental Protection Agency. <u>https://www.arb.ca.gov/cc/scopingplan/scopingplan.htm</u>. (Accessed April 2017).
- _____. 2017b. "Select 8 Summary." California Environmental Protection Agency. <u>https://www.arb.ca.gov/adam/select8/sc8start.php</u>. (Accessed April 2017).
- _____. 2017c. "Top 4 Summary." California Environmental Protection Agency. <u>https://www.arb.ca.gov/adam/topfour/topfour1.php</u>. (Accessed April 2017).
- . 2015. Frequently Asked Questions about Executive Order B-30-15: 2030 Carbon Target and Adaptation. Sacramento, CA. April 29, 2015. https://www.arb.ca.gov/newsrel/2030 carbon target adaptation faq.pdf.
- California Attorney General's Office. 2010. Addressing Climate Change at the Project Level. Sacramento, CA. January 06, 2010. http://ag.ca.gov/globalwarming/pdf/GW_mitigation_measures.pdf.
- California Climate Action Registry. 2009. *California Climate Action Registry General Reporting Protocol: Reporting Entity-Wide Greenhouse Gas Emissions*. Version 3.1. Los Angeles, CA. January 2009. <u>https://sfenvironment.org/sites/default/files/fliers/files/ccar_grp_3-</u> <u>1_january2009_sfe-web.pdf</u>.
- California Department of Conservation (DOC). 2010a. *An Explanatory Text to Accompany the Fault Activity Map of California*. Sacramento, CA. <u>http://www.conservation.ca.gov/cgs/cgs_history/Documents/FAM_phamplet.pdf</u>.
 - _____. 2010b. "Fault Activity Map of California (2010)." State of California. http://maps.conservation.ca.gov/cgs/fam/. (Accessed April 2017).
- California Employment Development Department. 2017. Oxnard-Thousand Oaks-Ventura Metropolitan Statistical Area (MSA). West Covina, CA. April 21, 2017. <u>http://www.labormarketinfo.edd.ca.gov/file/lfmonth/vent\$pds.pdf</u>.

- California Department of Finance (DOF). 2016. *Report E-1: Population Estimates for Cities, Counties, and the State January 1, 2015 and 2016*. Sacramento, CA. May 1, 2016. <u>http://www.dof.ca.gov/Forecasting/Demographics/Estimates/E-1/documents/E-1_2016_InternetVersion.xls</u>.
- California Department of Transportation (Caltrans). 2011. *California Scenic Highway Mapping System*. <u>http://www.dot.ca.gov/hq/LandArch/16_livability/scenic_highways/index.htm</u>. (Accessed April 2017).
- California Environmental Protection Agency (CalEPA). 2006. *Climate Action Team Report to Governor Schwarzenegger and the Legislature*. Sacramento, CA. March 2006. <u>http://www.climatechange.ca.gov/climate_action_team/reports/2006report/2006-04-</u> 03 FINAL_CAT_REPORT.PDF.
 - ____. 2010. Climate Action Team Biennial Report. [Final Report.] Sacramento, CA. April 2010. http://www.energy.ca.gov/2010publications/CAT-1000-2010-004/CAT-1000-2010-004.PDF.
- California Geological Survey. 2002. *State of California Seismic Hazard Zones: Oxnard Quadrangle*.[map]. Tabular digital data and vector digital data. Sacramento, CA. California Department of Conservation. <u>http://gmw.consrv.ca.gov/shmp/download/pdf/ozn_oxn.pdf</u>. (Accessed April 2017).
- Federal Emergency Management Agency (FEMA). 2010. Flood Insurance Rate Map of Ventura County, California and Incorporated Areas. [map]. Tabular digital data and vector digital data. Map No. 0611C0916E. Washington, D.C. January 20, 2010. https://msc.fema.gov/portal.
- Federal Highway Administration (FHWA). 2006. "Construction Noise Handbook." United States Department of Transportation. Last modified: August 2006. <u>https://www.fhwa.dot.gov/environment/noise/construction_noise/handbook/</u>. (Accessed May 2017).
- Federal Railroad Administration. 2012. *High-Speed Ground Transportation Noise and Vibration Impact Assessment*. Washington, D.C. September 2012. https://www.fra.dot.gov/Elib/Document/2680.
- Federal Transit Administration (FTA). 2006. *Transit Noise and Vibration Impact Assessment*. Washington, D.C. May 2006. <u>https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/FTA_Noise_and_Vibration_Manual_.pdf</u>.
- Forintek Canada Corporation. 2002. *Borate-Treated Wood for Construction: A Wood Protection Fact Sheet.* Pointe-Claire, Quebec. September 2002. <u>http://cwc.ca/wp-content/uploads/durabilitybytreatment-BorateTreatedWood.pdf</u>.
- Kunzman Associates, Inc. 2014. Ganahl Lumber Costa Mesa Relocation Project: Noise Impact Analysis. Orange, CA. June 25, 2014. <u>http://www.costamesaca.gov/ftp/developmentservices/planning/environmentalbulletin/GanahlISMND/GanahlDraft.pdf</u>.
- Nova Consulting Group, Inc. 2016a. *Phase I Environmental Site Assessment: 2325 Statham Boulevard, Oxnard, California 93033*. Arlington, TX. November 17, 2016.

- ____. 2016b. Phase I Environmental Site Assessment: 801 Albany Drive, Oxnard, California 93033. Arlington, TX. November 17, 2016.
- Oxnard, City of. 2002. *Coastal Land Use Plan.* Oxnard, CA. May 2002. <u>https://www.oxnard.org/wp-content/uploads/2016/03/CoastalLandUsePlan.pdf</u>.
 - ____. 2006. City of Oxnard General Plan: Draft Background Report. Oxnard, CA. April 2006. <u>https://www.oxnard.org/wp-</u> content/uploads/2016/08/OxnardDraftBackgroundReport2006_04.21.06.pdf.
 - . 2009. City of Oxnard 2030 General Plan: Draft Program Environmental Impact Report, Volume I of II. Oxnard, CA. February 2009. <u>https://www.oxnard.org/wp-</u> content/uploads/2016/08/2030 GP Vol I Draft PEIR Feb 09.pdf.
- _____. 2011. 2030 General Plan Goals & Policies. Oxnard, CA. October 2011. <u>https://www.oxnard.org/wp-</u> <u>content/uploads/2016/08/2030GeneralPlanGoalsPoliciesOctober2011W.pdf</u>.
- _____. 2016. "Oxnard, California: Codified Ordinances." American Legal Publishing Corporation. <u>http://library.amlegal.com/nxt/gateway.dll/?f=templates&fn=default.htm</u>. (Accessed April 2017).
- _____. 2017a. "Henry T. Oxnard Historic District." City of Oxnard. <u>https://visitoxnard.com/listing/henry-t-oxnard-historic-district/</u>. (Accessed April 2017).
- _____. 2017b. "Oxnard Public Library." City of Oxnard. <u>https://www.oxnard.org/library/</u>. (Accessed April 2017).
- South Coast Air Quality Management District (SCAQMD). 1993. *CEQA Air Quality Handbook.* Diamond Bar, CA. April 1993.
- _____. 2010. Minutes for the GHG CEQA Significance Threshold Stakeholder Working Group #15. Diamond Bar, CA. September 28, 2010. <u>http://www.aqmd.gov/docs/default-</u> <u>source/ceqa/handbook/greenhouse-gases-(ghg)-ceqa-significance-thresholds/year-2008-</u> <u>2009/ghg-meeting-15/ghg-meeting-15-minutes.pdf</u>.
- _____. 2015. SCAQMD Air Quality Significance Thresholds. Diamond Bar, CA. March 2015. <u>http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-</u> <u>significance-thresholds.pdf?sfvrsn=2</u>.
- Southern California Association of Governments (SCAG). 2016. 2016-2040 RTP/SCS Final Growth Forecast by Jurisdiction. Los Angeles, CA. April 2016. <u>http://www.scag.ca.gov/Documents/2016_2040RTPSCS_FinalGrowthForecastbyJurisdiction.</u> <u>pdf</u>.
- Suzanne, City of Oxnard Fire Department, personal communication. Staffing numbers of City Fire Department. May 15, 2017.
- Transportation Research Board. 2000. *Highway Capacity Manual.* Washington, D.C. <u>https://sjnavarro.files.wordpress.com/2008/08/highway_capacital_manual.pdf</u>.
- United States Bureau of Labor Statistics. 2017a. "Economy at a Glance: Oxnard-Thousand Oaks-Ventura, CA." United States Department of Labor. Last modified: May 12, 2017. https://www.bls.gov/eag/eag.ca_oxnard_msa.htm. (Accessed May 2017).

- ___. 2017b. "Local Area Unemployment Statistics." United States Department of Labor. Last modified: April 21, 2017. <u>https://www.bls.gov/web/laus/laumstrk.htm</u>. (Accessed May 2017).
- United States Fish and Wildlife Service (USFWS). 2017. "Wetlands Mapper." Last modified: March 2017. <u>https://www.fws.gov/wetlands/data/Mapper.html</u>. (Accessed April 2017).
- University of Washington. 2004. *Construction Industry Noise Exposures: Operating Engineers.* Seattle, WA. 2004. <u>http://depts.washington.edu/occnoise/content/operengIDweb.pdf</u>.
- Ventura, County of. 2010. *Ventura County Hazard Mitigation Plan*. [Final]. Ventura, CA. December 2010. <u>http://www.vcfloodinfo.com/pdf/Ventura%20County%20HMP_031411.pdf</u>.
- Ventura County Resource Management Agency. 2010. *County of Ventura Expansive Soils Map.* [map]. Tabular digital data and vector digital data. Ventura, CA. March 2010. <u>http://vcrma.org/operations/gis/pdf/gis/Expansive_Soils.pdf</u>. (Accessed April 2017).
- Ventura County Air Pollution Control District (VCAPCD). 2003. *Ventura County Air Quality Assessment Guidelines.* Ventura, CA. October 2003. http://www.vcapcd.org/pubs/Planning/VCAQGuidelines.pdf.
 - . 2017a. *Final 2016 Ventura County Air Quality Management Plan*. Ventura, CA. February 14, 2017. <u>http://www.vcapcd.org/pubs/Planning/AQMP/2016/Final/Final-2016-Ventura-County-AQMP.pdf</u>.
- _____. 2017b. "Health-Based Ambient Air Quality Standards." VCAPCD. <u>http://www.vcapcd.org/air_quality_standards.htm</u>. (Accessed April 2017).
- Ventura County Transportation Commission (VCTC). 2009. 2009 Ventura County Congestion Management Program. Ventura, CA. July 2009. <u>https://www.goventura.org/?q=congestion-management-program-cmp</u>.

List of Preparers

Rincon Consultants, Inc. prepared this IS-MND under contract to the City of Oxnard. Juan Martinez is the project planner from the City Oxnard. Persons involved in data gathering analysis, project management, and quality control include the following.

RINCON CONSULTANTS, INC.

Heather Imgrund, Associate Biologist Jasch Janowicz, Principal Hannah Mize, Associate Environmental Planner Lindsey Sarquilla, Senior Environmental Planner Sarah Sorensen, Associate Environmental Planner Abagale Taylor, Associate Planner Allysen Valencia, GIS Analyst Dr. Chris Williamson, AICP, Project Manager

CalEEMod Results and N₂O Hand Calculation Worksheet

Dixieline Lumber Yard and Home Center

Ventura County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Asphalt Surfaces	203.86	1000sqft	4.68	203,861.00	0
Parking Lot	63.00	Space	0.57	25,200.00	0
Other Non-Asphalt Surfaces	3.90	1000sqft	0.09	3,900.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	31
Climate Zone	8			Operational Year	2019
Utility Company					
CO2 Intensity (Ib/MWhr)	0	CH4 Intensity (Ib/MWhr)	0	N2O Intensity (Ib/MWhr)	0

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.1

Page 2 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

Project Characteristics -

Land Use - Lumber Yard SF based on Site Plan. Other Non-Asphalt Surfaces is rail siding, assuming 650 ft length and 6 ft wide

Construction Phase - Paving assumed at 40 days (double default).

Off-road Equipment - Operations.

Off-road Equipment -

Off-road Equipment -

Trips and VMT - Grading vendor and hauling trips for rail siding construction: assumed 12.03 cubic yards of gravel, with hauling truck capacity of 16 cubic yards, assumed one vendor truck delivery for wood, and two vendor truck trips for rail delivery (assuming one truck could carry a rail that is approximately 20 feet long, and requiring 33 rails total, for approximately 16 rails for each truck trip)

On-road Fugitive Dust - Operations.

Architectural Coating - Operations.

Vehicle Trips -

Energy Use -

Water And Wastewater -

Construction Off-road Equipment Mitigation - Mitigation for VCAPCD Rule 55, fugitive dust reduction.

Area Mitigation -

Operational Off-Road Equipment - Construction calculations.

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	40	0
tblConstructionPhase	NumDays	20.00	40.00
tblLandUse	BuildingSpaceSquareFeet	203,860.00	203,861.00
tblLandUse	LandUseSquareFeet	203,860.00	203,861.00
tblProjectCharacteristics	OperationalYear	2018	2019
tblTripsAndVMT	HaulingTripNumber	0.00	1.00
tblTripsAndVMT	VendorTripNumber	0.00	3.00

2.0 Emissions Summary

Page 3 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2017	0.0788	0.7592	0.4895	8.0000e- 004	0.0694	0.0410	0.1104	0.0347	0.0378	0.0725	0.0000	74.0351	74.0351	0.0216	0.0000	74.5750
Maximum	0.0788	0.7592	0.4895	8.0000e- 004	0.0694	0.0410	0.1104	0.0347	0.0378	0.0725	0.0000	74.0351	74.0351	0.0216	0.0000	74.5750

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year			-		ton	s/yr						-	МТ	/yr		
2017	0.0788	0.7592	0.4895	8.0000e- 004	0.0333	0.0410	0.0744	0.0162	0.0378	0.0539	0.0000	74.0350	74.0350	0.0216	0.0000	74.5749
Maximum	0.0788	0.7592	0.4895	8.0000e- 004	0.0333	0.0410	0.0744	0.0162	0.0378	0.0539	0.0000	74.0350	74.0350	0.0216	0.0000	74.5749

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	51.96	0.00	32.65	53.37	0.00	25.56	0.00	0.00	0.00	0.00	0.00	0.00

Page 4 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
		Highest		

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr			-				MT	/yr		
Area	0.0234	2.0000e- 005	2.5100e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.8400e- 003	4.8400e- 003	1.0000e- 005	0.0000	5.1700e- 003
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Water						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0234	2.0000e- 005	2.5100e- 003	0.0000	0.0000	1.0000e- 005	1.0000e- 005	0.0000	1.0000e- 005	1.0000e- 005	0.0000	4.8400e- 003	4.8400e- 003	1.0000e- 005	0.0000	5.1700e- 003

Page 5 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

2.2 Overall Operational

Mitigated Operational

Percent Reduction	0.00		0.00	0.00	0.00	0.	00 0	.00 0	.00	0.00	0.0	00 0.0	0 0	.00	0.0	0 0.0	00 0.0	00 0	0.00 0.0
	ROG		NOx	со	SO2	Fugi PN			110 otal	Fugitive PM2.5	Exha PM			- CO2	NBio-(CO2 Total	CO2 CI	14 1	120 CO2
Total	0.0234	2.0000e- 005	2.510 003		0000 0	0.0000	1.0000e- 005	1.0000e- 005	0.000		00e- 05	1.0000e- 005	0.0000	-	00e- 03	4.8400e- 003	1.0000e- 005	0.0000	5.1700e- 003
Water		4					0.0000	0.0000	•	0.0	000	0.0000	0.0000	0.0	000	0.0000	0.0000	0.0000	0.0000
Waste	* * *						0.0000	0.0000		0.0	000	0.0000	0.0000	0.0	000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.00		0000 0).0000	0.0000	0.0000	0.000	0.0	000	0.0000	0.0000	0.0	000	0.0000	0.0000	0.0000	0.0000
Energy	0.0000	0.0000	0.00		0000		0.0000	0.0000	•	0.0	000	0.0000	0.0000	0.0	000	0.0000	0.0000	0.0000	0.0000
Area	0.0234	2.0000e- 005	2.510 003		0000		1.0000e- 005	1.0000e- 005		1.00 0	00e- 05	1.0000e- 005	0.0000		00e- 03	4.8400e- 003	1.0000e- 005	0.0000	5.1700e- 003
Category						ton	s/yr									ΜT	Г/yr		
	ROG	NOx	CC) S		ugitive PM10	Exhaust PM10	PM10 Total	Fugiti PM2		aust 12.5	PM2.5 Total	Bio- CO2	NBio	- CO2	Total CO2	CH4	N2O	CO2e

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
	, s	5	10/1/2017	10/27/2017	5	20	
	Paving	•		12/22/2017	5	40	

CalEEMod Version: CalEEMod.2016.3.1

Page 6 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 10

Acres of Paving: 5.34

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Grading	Excavators	1	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Grading	6	15.00	3.00	1.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Clean Paved Roads

Page 7 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

3.2 Grading - 2017

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.0655	0.0000	0.0655	0.0337	0.0000	0.0337	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0307	0.3389	0.1710	3.0000e- 004		0.0178	0.0178		0.0164	0.0164	0.0000	27.5595	27.5595	8.4400e- 003	0.0000	27.7706
Total	0.0307	0.3389	0.1710	3.0000e- 004	0.0655	0.0178	0.0833	0.0337	0.0164	0.0500	0.0000	27.5595	27.5595	8.4400e- 003	0.0000	27.7706

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	1.0000e- 005	1.8000e- 004	3.0000e- 005	0.0000	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0382	0.0382	0.0000	0.0000	0.0383
Vendor	1.6000e- 004	4.1300e- 003	1.1700e- 003	1.0000e- 005	2.0000e- 004	4.0000e- 005	2.4000e- 004	6.0000e- 005	4.0000e- 005	1.0000e- 004	0.0000	0.7554	0.7554	7.0000e- 005	0.0000	0.7572
Worker	7.2000e- 004	5.4000e- 004	5.5400e- 003	1.0000e- 005	1.2100e- 003	1.0000e- 005	1.2200e- 003	3.2000e- 004	1.0000e- 005	3.3000e- 004	0.0000	1.1318	1.1318	4.0000e- 005	0.0000	1.1328
Total	8.9000e- 004	4.8500e- 003	6.7400e- 003	2.0000e- 005	1.4200e- 003	5.0000e- 005	1.4700e- 003	3.8000e- 004	5.0000e- 005	4.3000e- 004	0.0000	1.9254	1.9254	1.1000e- 004	0.0000	1.9283

Page 8 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

3.2 Grading - 2017

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.0295	0.0000	0.0295	0.0152	0.0000	0.0152	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0307	0.3389	0.1710	3.0000e- 004		0.0178	0.0178		0.0164	0.0164	0.0000	27.5594	27.5594	8.4400e- 003	0.0000	27.7705
Total	0.0307	0.3389	0.1710	3.0000e- 004	0.0295	0.0178	0.0473	0.0152	0.0164	0.0315	0.0000	27.5594	27.5594	8.4400e- 003	0.0000	27.7705

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			-		ton	s/yr							MT	/yr		
Hauling	1.0000e- 005	1.8000e- 004	3.0000e- 005	0.0000	1.0000e- 005	0.0000	1.0000e- 005	0.0000	0.0000	0.0000	0.0000	0.0382	0.0382	0.0000	0.0000	0.0383
Vendor	1.6000e- 004	4.1300e- 003	1.1700e- 003	1.0000e- 005	2.0000e- 004	4.0000e- 005	2.4000e- 004	6.0000e- 005	4.0000e- 005	1.0000e- 004	0.0000	0.7554	0.7554	7.0000e- 005	0.0000	0.7572
Worker	7.2000e- 004	5.4000e- 004	5.5400e- 003	1.0000e- 005	1.2100e- 003	1.0000e- 005	1.2200e- 003	3.2000e- 004	1.0000e- 005	3.3000e- 004	0.0000	1.1318	1.1318	4.0000e- 005	0.0000	1.1328
Total	8.9000e- 004	4.8500e- 003	6.7400e- 003	2.0000e- 005	1.4200e- 003	5.0000e- 005	1.4700e- 003	3.8000e- 004	5.0000e- 005	4.3000e- 004	0.0000	1.9254	1.9254	1.1000e- 004	0.0000	1.9283

Page 9 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

3.3 Paving - 2017

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	·/yr		
Off-Road	0.0389	0.4144	0.3006	4.6000e- 004		0.0232	0.0232		0.0213	0.0213	0.0000	42.2865	42.2865	0.0130	0.0000	42.6105
Paving	6.8800e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0458	0.4144	0.3006	4.6000e- 004		0.0232	0.0232		0.0213	0.0213	0.0000	42.2865	42.2865	0.0130	0.0000	42.6105

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	∵/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.4400e- 003	1.0800e- 003	0.0111	3.0000e- 005	2.4200e- 003	2.0000e- 005	2.4400e- 003	6.4000e- 004	2.0000e- 005	6.6000e- 004	0.0000	2.2637	2.2637	8.0000e- 005	0.0000	2.2657
Total	1.4400e- 003	1.0800e- 003	0.0111	3.0000e- 005	2.4200e- 003	2.0000e- 005	2.4400e- 003	6.4000e- 004	2.0000e- 005	6.6000e- 004	0.0000	2.2637	2.2637	8.0000e- 005	0.0000	2.2657

Page 10 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

3.3 Paving - 2017

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	'/yr		
Off-Road	0.0389	0.4144	0.3006	4.6000e- 004		0.0232	0.0232		0.0213	0.0213	0.0000	42.2865	42.2865	0.0130	0.0000	42.6104
Paving	6.8800e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0458	0.4144	0.3006	4.6000e- 004		0.0232	0.0232		0.0213	0.0213	0.0000	42.2865	42.2865	0.0130	0.0000	42.6104

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		-			ton	s/yr		-					MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.4400e- 003	1.0800e- 003	0.0111	3.0000e- 005	2.4200e- 003	2.0000e- 005	2.4400e- 003	6.4000e- 004	2.0000e- 005	6.6000e- 004	0.0000	2.2637	2.2637	8.0000e- 005	0.0000	2.2657
Total	1.4400e- 003	1.0800e- 003	0.0111	3.0000e- 005	2.4200e- 003	2.0000e- 005	2.4400e- 003	6.4000e- 004	2.0000e- 005	6.6000e- 004	0.0000	2.2637	2.2637	8.0000e- 005	0.0000	2.2657

4.0 Operational Detail - Mobile

Page 11 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	∵/yr		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-O or C-NW	H-W or C- W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by	
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Other Non-Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

CalEEMod Version: CalEEMod.2016.3.1

Page 12 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742		0.001117		0.004062	0.000367	0.001851
Parking Lot	0.569685	0.043830	0.191011	0.121658		0.006841	0.018742	0.017061	0.001117		0.004062	0.000367	0.001851
Other Non-Asphalt Surfaces	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117	0.000958	0.004062	0.000367	0.001851

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Page 13 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	∵/yr		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr				-	ton	s/yr						-	MT	/yr		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Page 14 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	/yr	
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	22176	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		МТ	/yr	
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	22176	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

Page 15 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

6.1 Mitigation Measures Area

No Hearths Installed

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	∵/yr		
Mitigated	0.0234	2.0000e- 005	2.5100e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.8400e- 003	4.8400e- 003	1.0000e- 005	0.0000	5.1700e- 003
Unmitigated	0.0234	2.0000e- 005	2.5100e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.8400e- 003	4.8400e- 003	1.0000e- 005	0.0000	5.1700e- 003

Page 16 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МТ	/yr		
Architectural Coating	8.1000e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0151					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	2.4000e- 004	2.0000e- 005	2.5100e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.8400e- 003	4.8400e- 003	1.0000e- 005	0.0000	5.1700e- 003
Total	0.0234	2.0000e- 005	2.5100e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.8400e- 003	4.8400e- 003	1.0000e- 005	0.0000	5.1700e- 003

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr		-				-	МТ	/yr		
Architectural Coating	8.1000e- 003					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0151					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	2.4000e- 004	2.0000e- 005	2.5100e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.8400e- 003	4.8400e- 003	1.0000e- 005	0.0000	5.1700e- 003
Total	0.0234	2.0000e- 005	2.5100e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.8400e- 003	4.8400e- 003	1.0000e- 005	0.0000	5.1700e- 003

7.0 Water Detail

Page 17 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		MT	ī/yr	
Mitigated	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000

7.2 Water by Land Use

Unmitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	⁻/yr	
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Page 18 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	/yr	
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

8.0 Waste Detail

8.1 Mitigation Measures Waste

Page 19 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

Category/Year

	Total CO2	CH4	N2O	CO2e
		MT	/yr	
Mitigated	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000

8.2 Waste by Land Use

Unmitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Page 20 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

	Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
--	----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type Number

Page 21 of 21

Dixieline Lumber Yard and Home Center - Ventura County, Annual

11.0 Vegetation

Dixieline Lumber Yard and Home Center

Ventura County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Asphalt Surfaces	203.86	1000sqft	4.68	203,861.00	0
Parking Lot	63.00	Space	0.57	25,200.00	0
Other Non-Asphalt Surfaces	3.90	1000sqft	0.09	3,900.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	31
Climate Zone	8			Operational Year	2019
Utility Company					
CO2 Intensity (Ib/MWhr)	0	CH4 Intensity (Ib/MWhr)	0	N2O Intensity (Ib/MWhr)	0

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.1

Page 2 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

Project Characteristics -

Land Use - Lumber Yard SF based on Site Plan. Other Non-Asphalt Surfaces is rail siding, assuming 650 ft length and 6 ft wide

Construction Phase - Paving assumed at 40 days (double default).

Off-road Equipment - Operations.

Off-road Equipment -

Off-road Equipment -

Trips and VMT - Grading vendor and hauling trips for rail siding construction: assumed 12.03 cubic yards of gravel, with hauling truck capacity of 16 cubic yards, assumed one vendor truck delivery for wood, and two vendor truck trips for rail delivery (assuming one truck could carry a rail that is approximately 20 feet long, and requiring 33 rails total, for approximately 16 rails for each truck trip)

On-road Fugitive Dust - Operations.

Architectural Coating - Operations.

Vehicle Trips -

Energy Use -

Water And Wastewater -

Construction Off-road Equipment Mitigation - Mitigation for VCAPCD Rule 55, fugitive dust reduction.

Area Mitigation -

Operational Off-Road Equipment - Construction calculations.

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	40	0
tblConstructionPhase	NumDays	20.00	40.00
tblLandUse	BuildingSpaceSquareFeet	203,860.00	203,861.00
tblLandUse	LandUseSquareFeet	203,860.00	203,861.00
tblProjectCharacteristics	OperationalYear	2018	2019
tblTripsAndVMT	HaulingTripNumber	0.00	1.00
tblTripsAndVMT	VendorTripNumber	0.00	3.00

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	day							lb/c	lay		
2017	3.1577	34.3574	17.7877	0.0318	6.6967	1.7827	8.4794	3.4062	1.6403	5.0465	0.0000	3,256.2555	3,256.2555	0.9433	0.0000	3,279.8392
Maximum	3.1577	34.3574	17.7877	0.0318	6.6967	1.7827	8.4794	3.4062	1.6403	5.0465	0.0000	3,256.2555	3,256.2555	0.9433	0.0000	3,279.8392

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/c	Jay		
2017	3.1577	34.3574	17.7877	0.0318	3.0929	1.7827	4.8757	1.5541	1.6403	3.1944	0.0000	3,256.2555	3,256.2555	0.9433	0.0000	3,279.8392
Maximum	3.1577	34.3574	17.7877	0.0318	3.0929	1.7827	4.8757	1.5541	1.6403	3.1944	0.0000	3,256.2555	3,256.2555	0.9433	0.0000	3,279.8392

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	53.81	0.00	42.50	54.37	0.00	36.70	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e		
Category		lb/day										lb/day						
Area	0.1295	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633		
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000		
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000		
Total	0.1295	2.6000e- 004	0.0279	0.0000	0.0000	1.0000e- 004	1.0000e- 004	0.0000	1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004	0.0000	0.0633		

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Area	0.1295	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Total	0.1295	2.6000e- 004	0.0279	0.0000	0.0000	1.0000e- 004	1.0000e- 004	0.0000	1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004	0.0000	0.0633

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Grading		10/1/2017	10/27/2017	5	20	
2	Paving	7	10/28/2017	12/22/2017	5	40	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 10

Acres of Paving: 5.34

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Grading	Excavators	1	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
	Rubber Tired Dozers	1	8.00		0.40
Grading	Tractors/Loaders/Backhoes	3	8.00		0.37
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Grading	6	15.00	3.00	1.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Clean Paved Roads

3.2 Grading - 2017

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day		-					lb/c	lay	-	
Fugitive Dust					6.5523	0.0000	6.5523	3.3675	0.0000	3.3675			0.0000			0.0000
Off-Road	3.0705	33.8868	17.1042	0.0297		1.7774	1.7774		1.6352	1.6352		3,037.9107	3,037.9107	0.9308		3,061.1809
Total	3.0705	33.8868	17.1042	0.0297	6.5523	1.7774	8.3298	3.3675	1.6352	5.0027		3,037.9107	3,037.9107	0.9308		3,061.1809

Page 7 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

3.2 Grading - 2017

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			-		lb/	day		-					lb/d	day		
Hauling	5.2000e- 004	0.0172	3.3500e- 003	4.0000e- 005	8.7000e- 004	1.3000e- 004	1.0000e- 003	2.4000e- 004	1.2000e- 004	3.6000e- 004		4.2396	4.2396	4.1000e- 004		4.2499
Vendor	0.0155	0.4058	0.1109	7.9000e- 004	0.0203	4.2500e- 003	0.0245	5.8300e- 003	4.0700e- 003	9.9000e- 003		84.0636	84.0636	7.6300e- 003		84.2544
Worker	0.0712	0.0476	0.5693	1.3100e- 003	0.1232	9.2000e- 004	0.1241	0.0327	8.5000e- 004	0.0335		130.0416	130.0416	4.4900e- 003		130.1539
Total	0.0872	0.4706	0.6835	2.1400e- 003	0.1444	5.3000e- 003	0.1497	0.0388	5.0400e- 003	0.0438		218.3448	218.3448	0.0125		218.6582

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	-				lb/	day							lb/c	day	-	
Fugitive Dust					2.9486	0.0000	2.9486	1.5154	0.0000	1.5154			0.0000			0.0000
Off-Road	3.0705	33.8868	17.1042	0.0297		1.7774	1.7774		1.6352	1.6352	0.0000	3,037.9107	3,037.9107	0.9308		3,061.1809
Total	3.0705	33.8868	17.1042	0.0297	2.9486	1.7774	4.7260	1.5154	1.6352	3.1506	0.0000	3,037.9107	3,037.9107	0.9308		3,061.1809

Page 8 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

3.2 Grading - 2017

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day		-					lb/d	day		
Hauling	5.2000e- 004	0.0172	3.3500e- 003	4.0000e- 005	8.7000e- 004	1.3000e- 004	1.0000e- 003	2.4000e- 004	1.2000e- 004	3.6000e- 004		4.2396	4.2396	4.1000e- 004		4.2499
Vendor	0.0155	0.4058	0.1109	7.9000e- 004	0.0203	4.2500e- 003	0.0245	5.8300e- 003	4.0700e- 003	9.9000e- 003		84.0636	84.0636	7.6300e- 003		84.2544
Worker	0.0712	0.0476	0.5693	1.3100e- 003	0.1232	9.2000e- 004	0.1241	0.0327	8.5000e- 004	0.0335		130.0416	130.0416	4.4900e- 003		130.1539
Total	0.0872	0.4706	0.6835	2.1400e- 003	0.1444	5.3000e- 003	0.1497	0.0388	5.0400e- 003	0.0438		218.3448	218.3448	0.0125		218.6582

3.3 Paving - 2017

Unmitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	day		
Off-Road	1.9449	20.7178	15.0320	0.0228		1.1592	1.1592		1.0665	1.0665		2,330.6461	2,330.6461			2,348.4988
Paving	0.3439					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	2.2888	20.7178	15.0320	0.0228		1.1592	1.1592		1.0665	1.0665		2,330.6461	2,330.6461	0.7141		2,348.4988

Page 9 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

3.3 Paving - 2017

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0712	0.0476	0.5693	1.3100e- 003	0.1232	9.2000e- 004	0.1241	0.0327	8.5000e- 004	0.0335		130.0416	130.0416	4.4900e- 003		130.1539
Total	0.0712	0.0476	0.5693	1.3100e- 003	0.1232	9.2000e- 004	0.1241	0.0327	8.5000e- 004	0.0335		130.0416	130.0416	4.4900e- 003		130.1539

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		-			lb/o	day						-	lb/c	day	-	
Off-Road	1.9449	20.7178	15.0320	0.0228		1.1592	1.1592		1.0665	1.0665	0.0000	2,330.6461	2,330.6461			2,348.4988
Paving	0.3439					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	2.2888	20.7178	15.0320	0.0228		1.1592	1.1592		1.0665	1.0665	0.0000	2,330.6461	2,330.6461	0.7141		2,348.4988

Page 10 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

3.3 Paving - 2017

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day									lb/day						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0712	0.0476	0.5693	1.3100e- 003	0.1232	9.2000e- 004	0.1241	0.0327	8.5000e- 004	0.0335		130.0416	130.0416	4.4900e- 003		130.1539
Total	0.0712	0.0476	0.5693	1.3100e- 003	0.1232	9.2000e- 004	0.1241	0.0327	8.5000e- 004	0.0335		130.0416	130.0416	4.4900e- 003		130.1539

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Page 11 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day									lb/day						
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %				
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C- W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by		
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0		
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0		
Other Non-Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0		

4.4 Fleet Mix

CalEEMod Version: CalEEMod.2016.3.1

Page 12 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117	0.000958	0.004062	0.000367	0.001851
Parking Lot	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742		0.001117		0.004062	0.000367	0.001851
Other Non-Asphalt Surfaces	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117	0.000958	0.004062	0.000367	0.001851

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day										lb/c	day				
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

Page 13 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day		-					lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr			-		lb/e	day		-	-				lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

No Hearths Installed

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Mitigated	0.1295	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633
Unmitigated	0.1295	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633

Page 15 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/o	day							lb/d	day		
Architectural Coating	0.0444					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.0825					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	2.6500e- 003	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633
Total	0.1295	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day		-					lb/c	day	-	
Architectural Coating	0.0444					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.0825					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	2.6500e- 003	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633
Total	0.1295	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type Number

11.0 Vegetation

Dixieline Lumber Yard and Home Center

Ventura County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Other Asphalt Surfaces	203.86	1000sqft	4.68	203,861.00	0
Parking Lot	63.00	Space	0.57	25,200.00	0
Other Non-Asphalt Surfaces	3.90	1000sqft	0.09	3,900.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	31
Climate Zone	8			Operational Year	2019
Utility Company					
CO2 Intensity (Ib/MWhr)	0	CH4 Intensity (Ib/MWhr)	0	N2O Intensity (Ib/MWhr)	0

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.1

Page 2 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

Project Characteristics -

Land Use - Lumber Yard SF based on Site Plan. Other Non-Asphalt Surfaces is rail siding, assuming 650 ft length and 6 ft wide

Construction Phase - Paving assumed at 40 days (double default).

Off-road Equipment - Operations.

Off-road Equipment -

Off-road Equipment -

Trips and VMT - Grading vendor and hauling trips for rail siding construction: assumed 12.03 cubic yards of gravel, with hauling truck capacity of 16 cubic yards, assumed one vendor truck delivery for wood, and two vendor truck trips for rail delivery (assuming one truck could carry a rail that is approximately 20 feet long, and requiring 33 rails total, for approximately 16 rails for each truck trip)

On-road Fugitive Dust - Operations.

Architectural Coating - Operations.

Vehicle Trips -

Energy Use -

Water And Wastewater -

Construction Off-road Equipment Mitigation - Mitigation for VCAPCD Rule 55, fugitive dust reduction.

Area Mitigation -

Operational Off-Road Equipment - Construction calculations.

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	40	0
tblConstructionPhase	NumDays	20.00	40.00
tblLandUse	BuildingSpaceSquareFeet	203,860.00	203,861.00
tblLandUse	LandUseSquareFeet	203,860.00	203,861.00
tblProjectCharacteristics	OperationalYear	2018	2019
tblTripsAndVMT	HaulingTripNumber	0.00	1.00
tblTripsAndVMT	VendorTripNumber	0.00	3.00

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	day							lb/c	day		
2017	3.1680	34.3683	17.7952	0.0317	6.6967	1.7828	8.4795	3.4062	1.6404	5.0466	0.0000	3,248.0174	3,248.0174	0.9438	0.0000	3,271.6122
Maximum	3.1680	34.3683	17.7952	0.0317	6.6967	1.7828	8.4795	3.4062	1.6404	5.0466	0.0000	3,248.0174	3,248.0174	0.9438	0.0000	3,271.6122

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/c	day		
2017	3.1680	34.3683	17.7952	0.0317	3.0929	1.7828	4.8757	1.5541	1.6404	3.1945	0.0000	3,248.0174	3,248.0174	0.9438	0.0000	3,271.6122
Maximum	3.1680	34.3683	17.7952	0.0317	3.0929	1.7828	4.8757	1.5541	1.6404	3.1945	0.0000	3,248.0174	3,248.0174	0.9438	0.0000	3,271.6122

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	53.81	0.00	42.50	54.37	0.00	36.70	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Area	0.1295	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Total	0.1295	2.6000e- 004	0.0279	0.0000	0.0000	1.0000e- 004	1.0000e- 004	0.0000	1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004	0.0000	0.0633

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Area	0.1295	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Total	0.1295	2.6000e- 004	0.0279	0.0000	0.0000	1.0000e- 004	1.0000e- 004	0.0000	1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004	0.0000	0.0633

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Grading		10/1/2017	10/27/2017	5	20	
2	Paving	7	10/28/2017	12/22/2017	5	40	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 10

Acres of Paving: 5.34

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Grading	Excavators	1	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38

CalEEMod Version: CalEEMod.2016.3.1

Page 6 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Grading	6	15.00	3.00	1.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Clean Paved Roads

3.2 Grading - 2017

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		-			lb/o	day							lb/c	lay	-	
Fugitive Dust					6.5523	0.0000	6.5523	3.3675	0.0000	3.3675			0.0000			0.0000
Off-Road	3.0705	33.8868	17.1042	0.0297		1.7774	1.7774		1.6352	1.6352		3,037.9107	3,037.9107	0.9308		3,061.1809
Total	3.0705	33.8868	17.1042	0.0297	6.5523	1.7774	8.3298	3.3675	1.6352	5.0027		3,037.9107	3,037.9107	0.9308		3,061.1809

Page 7 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

3.2 Grading - 2017

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	5.3000e- 004	0.0174	3.6400e- 003	4.0000e- 005	8.7000e- 004	1.3000e- 004	1.0000e- 003	2.4000e- 004	1.3000e- 004	3.7000e- 004		4.1786	4.1786	4.3000e- 004		4.1894
Vendor	0.0163	0.4082	0.1246	7.7000e- 004	0.0203	4.3500e- 003	0.0246	5.8300e- 003	4.1600e- 003	9.9900e- 003		82.1654	82.1654	8.1700e- 003		82.3696
Worker	0.0808	0.0558	0.5628	1.2400e- 003	0.1232	9.2000e- 004	0.1241	0.0327	8.5000e- 004	0.0335		123.7627	123.7627	4.3800e- 003		123.8723
Total	0.0976	0.4815	0.6910	2.0500e- 003	0.1444	5.4000e- 003	0.1498	0.0388	5.1400e- 003	0.0439		210.1067	210.1067	0.0130		210.4313

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		-			lb/	day							lb/c	day	-	
Fugitive Dust					2.9486	0.0000	2.9486	1.5154	0.0000	1.5154			0.0000			0.0000
Off-Road	3.0705	33.8868	17.1042	0.0297		1.7774	1.7774		1.6352	1.6352	0.0000	3,037.9107	3,037.9107	0.9308		3,061.1809
Total	3.0705	33.8868	17.1042	0.0297	2.9486	1.7774	4.7260	1.5154	1.6352	3.1506	0.0000	3,037.9107	3,037.9107	0.9308		3,061.1809

Page 8 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

3.2 Grading - 2017

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	5.3000e- 004	0.0174	3.6400e- 003	4.0000e- 005	8.7000e- 004	1.3000e- 004	1.0000e- 003	2.4000e- 004	1.3000e- 004	3.7000e- 004		4.1786	4.1786	4.3000e- 004		4.1894
Vendor	0.0163	0.4082	0.1246	7.7000e- 004	0.0203	4.3500e- 003	0.0246	5.8300e- 003	4.1600e- 003	9.9900e- 003		82.1654	82.1654	8.1700e- 003		82.3696
Worker	0.0808	0.0558	0.5628	1.2400e- 003	0.1232	9.2000e- 004	0.1241	0.0327	8.5000e- 004	0.0335		123.7627	123.7627	4.3800e- 003		123.8723
Total	0.0976	0.4815	0.6910	2.0500e- 003	0.1444	5.4000e- 003	0.1498	0.0388	5.1400e- 003	0.0439		210.1067	210.1067	0.0130		210.4313

3.3 Paving - 2017

Unmitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	day		
Off-Road	1.9449	20.7178	15.0320	0.0228		1.1592	1.1592		1.0665	1.0665		2,330.6461	2,330.6461			2,348.4988
Paving	0.3439					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	2.2888	20.7178	15.0320	0.0228		1.1592	1.1592		1.0665	1.0665		2,330.6461	2,330.6461	0.7141		2,348.4988

3.3 Paving - 2017

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0808	0.0558	0.5628	1.2400e- 003	0.1232	9.2000e- 004	0.1241	0.0327	8.5000e- 004	0.0335		123.7627	123.7627	4.3800e- 003		123.8723
Total	0.0808	0.0558	0.5628	1.2400e- 003	0.1232	9.2000e- 004	0.1241	0.0327	8.5000e- 004	0.0335		123.7627	123.7627	4.3800e- 003		123.8723

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		-	-		lb/	day							lb/d	day	-	
Off-Road	1.9449	20.7178	15.0320	0.0228		1.1592	1.1592		1.0665	1.0665	0.0000	2,330.6461	2,330.6461	0.7141		2,348.4988
Paving	0.3439					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	2.2888	20.7178	15.0320	0.0228		1.1592	1.1592		1.0665	1.0665	0.0000	2,330.6461	2,330.6461	0.7141		2,348.4988

Page 10 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

3.3 Paving - 2017

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0808	0.0558	0.5628	1.2400e- 003	0.1232	9.2000e- 004	0.1241	0.0327	8.5000e- 004	0.0335		123.7627	123.7627	4.3800e- 003		123.8723
Total	0.0808	0.0558	0.5628	1.2400e- 003	0.1232	9.2000e- 004	0.1241	0.0327	8.5000e- 004	0.0335		123.7627	123.7627	4.3800e- 003		123.8723

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Page 11 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Other Non-Asphalt Surfaces	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C- W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Other Non-Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

CalEEMod Version: CalEEMod.2016.3.1

Page 12 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Other Asphalt Surfaces	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742		0.001117	0.000958			0.001851
Parking Lot	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117		0.004062		0.001851
Other Non-Asphalt Surfaces	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117	0.000958	0.004062	0.000367	0.001851

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
NaturalGas Mitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

Page 13 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day		-					lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/o	day		-	-	-		-	lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Other Non- Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000

6.1 Mitigation Measures Area

No Hearths Installed

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Mitigated	0.1295	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633
Unmitigated	0.1295	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633

Page 15 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/o	day							lb/d	day		
Architectural Coating	0.0444					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.0825					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	2.6500e- 003	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633
Total	0.1295	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day		-				-	lb/d	day	-	
Architectural Coating	0.0444					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.0825					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	2.6500e- 003	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633
Total	0.1295	2.6000e- 004	0.0279	0.0000		1.0000e- 004	1.0000e- 004		1.0000e- 004	1.0000e- 004		0.0593	0.0593	1.6000e- 004		0.0633

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

_							
	Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type

User Defined Equipment

Equipment Type Number

11.0 Vegetation

Dixieline Lumber Yard and Home Center

Ventura County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unrefrigerated Warehouse-Rail	38.88	1000sqft	0.89	38,880.00	0
Other Asphalt Surfaces	203.86	1000sqft	4.68	203,861.00	0
Parking Lot	63.00	Space	0.57	25,200.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	31
Climate Zone	8			Operational Year	2019
Utility Company					
CO2 Intensity (Ib/MWhr)	0	CH4 Intensity (Ib/MWhr)	0	N2O Intensity (Ib/MWhr)	0

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.1

Page 2 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

Project Characteristics -

Land Use - Lumber Yard SF based on Site Plan.

Construction Phase - Operational Emissions Calculations.

Off-road Equipment - Operations.

Trips and VMT - Operations.

On-road Fugitive Dust - Operations.

Architectural Coating - Operations.

Vehicle Trips - Changes to account for Traffic Study 120 ADT weekday, and half of that for Saturday, based on hours of facility proposed for Saturday.

Energy Use -

Water And Wastewater -

Construction Off-road Equipment Mitigation -

Area Mitigation -

Operational Off-Road Equipment - Assumed 6 forklifts onsite from 5-5 weekdays and 6-12 Saturday.

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	40	0
tblConstructionPhase	NumDays	20.00	0.00
tblLandUse	BuildingSpaceSquareFeet	203,860.00	203,861.00
tblLandUse	LandUseSquareFeet	203,860.00	203,861.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	251.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	52.00
tblOperationalOffRoadEquipment	OperHoursPerDay	8.00	12.00
tblOperationalOffRoadEquipment	OperHoursPerDay	8.00	6.00
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	6.00
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	6.00
tblProjectCharacteristics	OperationalYear	2018	2019
tblTripsAndVMT	WorkerTripNumber	23.00	0.00
tblVehicleTrips	ST_TR	1.68	1.55
tblVehicleTrips	SU_TR	1.68	0.00
tblVehicleTrips	WD_TR	1.68	3.09

2.0 Emissions Summary

Page 4 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							МТ	/yr		
2017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	tons/yr									MT/yr						
2017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Page 5 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
		Highest		

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	⁻/yr		
Area	0.2199	3.0000e- 005	2.8400e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	5.4600e- 003	5.4600e- 003	1.0000e- 005	0.0000	5.8300e- 003
Energy	8.3000e- 004	7.5300e- 003	6.3200e- 003	5.0000e- 005		5.7000e- 004	5.7000e- 004		5.7000e- 004	5.7000e- 004	0.0000	8.1954	8.1954	1.6000e- 004	1.5000e- 004	8.2441
Mobile	0.0308	0.1349	0.4000	1.2100e- 003	0.1043	1.4700e- 003	0.1058	0.0279	1.3900e- 003	0.0293	0.0000	110.9988	110.9988	5.0000e- 003	0.0000	111.1237
Offroad	0.1994	1.7804	1.4886	1.9000e- 003		0.1379	0.1379		0.1269	0.1269	0.0000	171.1140	171.1140	0.0541	0.0000	172.4675
Waste						0.0000	0.0000		0.0000	0.0000	7.4193	0.0000	7.4193	0.4385	0.0000	18.3811
Water						0.0000	0.0000		0.0000	0.0000	2.8524	0.0000	2.8524	0.2930	6.9200e- 003	12.2382
Total	0.4509	1.9229	1.8977	3.1600e- 003	0.1043	0.1400	0.2443	0.0279	0.1289	0.1568	10.2718	290.3136	300.5854	0.7908	7.0700e- 003	322.4603

Page 6 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

2.2 Overall Operational

Mitigated Operational

Percent Reduction	0.00	0	.00 0	.00 0	.00	0.00 0	.00 0	.00	0.00	0.	00 0.0	0 0.	00	0.00	0.0	0 0.0	0 0	0.00 0.00
	ROG	N	IOx (co s				M10 otal	Fugitive PM2.5	Exha PM	aust PM2 I2.5 Tot		CO2 N	Bio-CO2	? Total (CO2 CH	14 1	120 CO20
Total	0.4509	1.9229	1.8977	3.1600e- 003	0.1043	0.1400	0.2443	0.027	9 0.1	289	0.1568	10.2718	290.31	36 30	0.5854	0.7908	7.0700e- 003	322.4603
Water	•					0.0000	0.0000		0.0	000	0.0000	2.8524	0.000	0 2.	.8524	0.2930	6.9200e- 003	12.2382
Waste	•	<u>.</u>				0.0000	0.0000	-	0.0	000	0.0000	7.4193	0.000	0 7.	.4193	0.4385	0.0000	18.3811
Offroad	0.1994	1.7804	1.4886	1.9000e- 003	••••••	0.1379	0.1379		0.1	269	0.1269	0.0000	171.11	40 17 [.]	1.1140	0.0541	0.0000	172.4675
Mobile	0.0308	0.1349	0.4000	1.2100e- 003	0.1043	1.4700e- 003	0.1058	0.027)00e- 03	0.0293	0.0000	110.99	988 110	0.9988	5.0000e- 003	0.0000	111.1237
Energy	8.3000e- 004	7.5300e- 003	6.3200e- 003	5.0000e- 005		5.7000e- 004	5.7000e- 004)00e- 04	5.7000e- 004	0.0000	8.195	54 8.	.1954	1.6000e- 004	1.5000e- 004	8.2441
Area	0.2199	3.0000e- 005	2.8400e- 003	0.0000		1.0000e- 005	1.0000e- 005)00e- 05	1.0000e- 005	0.0000	5.4600 003		4600e- 003	1.0000e- 005	0.0000	5.8300e- 003
Category					to	ons/yr		-							MT	/yr	-	
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitiv PM2.		aust 12.5	PM2.5 Total	Bio- CO2	NBio- (CO2 Tot	al CO2	CH4	N2O	CO2e

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Architectural Coating	Architectural Coating	7/15/2017	7/14/2017	5	0	

CalEEMod Version: CalEEMod.2016.3.1

Page 7 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 5.25

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 58,320; Non-Residential Outdoor: 19,440; Striped Parking Area: 13,744 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	0	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length		Vendor Vehicle Class	Hauling Vehicle Class
Architectural Coating	0	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Page 8 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

3.2 Architectural Coating - 2017

Unmitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr		-					MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Page 9 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

3.2 Architectural Coating - 2017

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr		-					МТ	/yr		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr		-					MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

Page 10 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

4.1 Mitigation Measures Mobile

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	∵/yr		
Mitigated	0.0308	0.1349	0.4000	1.2100e- 003	0.1043	1.4700e- 003	0.1058	0.0279	1.3900e- 003	0.0293	0.0000	110.9988	110.9988	5.0000e- 003	0.0000	111.1237
Unmitigated	0.0308	0.1349	0.4000	1.2100e- 003	0.1043	1.4700e- 003	0.1058	0.0279	1.3900e- 003	0.0293	0.0000	110.9988	110.9988	5.0000e- 003	0.0000	111.1237

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Unrefrigerated Warehouse-Rail	120.14	60.26	0.00	275,669	275,669
Total	120.14	60.26	0.00	275,669	275,669

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C- W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Unrefrigerated Warehouse-Rail	9.50	7.30	7.30	59.00	0.00	41.00	92	5	3

CalEEMod Version: CalEEMod.2016.3.1

Page 11 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Unrefrigerated Warehouse-Rail	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117	0.000958	0.004062	0.000367	0.001851
Other Asphalt Surfaces	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117	0.000958	0.004062	0.000367	0.001851
Parking Lot	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117	0.000958	0.004062	0.000367	0.001851

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr			-				МТ	/yr		
Electricity Mitigated	T T T T					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Electricity Unmitigated	T T T T					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Mitigated	8.3000e- 004	7.5300e- 003	6.3200e- 003	5.0000e- 005		5.7000e- 004	5.7000e- 004		5.7000e- 004	5.7000e- 004	0.0000	8.1954	8.1954	1.6000e- 004	1.5000e- 004	8.2441
NaturalGas Unmitigated	8.3000e- 004	7.5300e- 003	6.3200e- 003	5.0000e- 005		5.7000e- 004	5.7000e- 004		5.7000e- 004	5.7000e- 004	0.0000	8.1954	8.1954	1.6000e- 004	1.5000e- 004	8.2441

Page 12 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr		-					MT	/yr		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-Rail	153576	8.3000e- 004	7.5300e- 003	6.3200e- 003	5.0000e- 005		5.7000e- 004	5.7000e- 004		5.7000e- 004	5.7000e- 004	0.0000	8.1954	8.1954	1.6000e- 004	1.5000e- 004	8.2441
Total		8.3000e- 004	7.5300e- 003	6.3200e- 003	5.0000e- 005		5.7000e- 004	5.7000e- 004		5.7000e- 004	5.7000e- 004	0.0000	8.1954	8.1954	1.6000e- 004	1.5000e- 004	8.2441

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr		-	-			-	MT	/yr		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-Rail	153576	8.3000e- 004	7.5300e- 003	6.3200e- 003	5.0000e- 005		5.7000e- 004	5.7000e- 004		5.7000e- 004	5.7000e- 004	0.0000	8.1954	8.1954	1.6000e- 004	1.5000e- 004	8.2441
Total		8.3000e- 004	7.5300e- 003	6.3200e- 003	5.0000e- 005		5.7000e- 004	5.7000e- 004		5.7000e- 004	5.7000e- 004	0.0000	8.1954	8.1954	1.6000e- 004	1.5000e- 004	8.2441

Page 13 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	∏/yr	
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	22176	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-Rail	164851	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	/yr	
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	22176	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-Rail	164851	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

Page 14 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

6.1 Mitigation Measures Area

No Hearths Installed

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	ory tons/yr								MT/yr							
Mitigated	0.2199	3.0000e- 005	2.8400e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	5.4600e- 003	5.4600e- 003	1.0000e- 005	0.0000	5.8300e- 003
Unmitigated	0.2199	3.0000e- 005	2.8400e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	5.4600e- 003	5.4600e- 003	1.0000e- 005	0.0000	5.8300e- 003

Page 15 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МТ	/yr		
Architectural Coating	0.0530					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.1667					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	2.7000e- 004	3.0000e- 005	2.8400e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	5.4600e- 003	5.4600e- 003	1.0000e- 005	0.0000	5.8300e- 003
Total	0.2199	3.0000e- 005	2.8400e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	5.4600e- 003	5.4600e- 003	1.0000e- 005	0.0000	5.8300e- 003

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	SubCategory tons/yr							MT/yr								
Architectural Coating	0.0530					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.1667					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	2.7000e- 004	3.0000e- 005	2.8400e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	5.4600e- 003	5.4600e- 003	1.0000e- 005	0.0000	5.8300e- 003
Total	0.2199	3.0000e- 005	2.8400e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	5.4600e- 003	5.4600e- 003	1.0000e- 005	0.0000	5.8300e- 003

7.0 Water Detail

Page 16 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		MT	ī/yr	
Mitigated	2.8524	0.2930	6.9200e- 003	12.2382
Unmitigated	2.8524	0.2930	6.9200e- 003	12.2382

7.2 Water by Land Use

Unmitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	⁻/yr	
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-Rail	8.991 / 0	2.8524	0.2930	6.9200e- 003	12.2382
Total		2.8524	0.2930	6.9200e- 003	12.2382

Page 17 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		Π	⊺/yr	
Other Asphalt Surfaces	0/0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-Rail	8.991 / 0	2.8524	0.2930	6.9200e- 003	12.2382
Total		2.8524	0.2930	6.9200e- 003	12.2382

8.0 Waste Detail

8.1 Mitigation Measures Waste

Page 18 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

Category/Year

	Total CO2	CH4	N2O	CO2e
		МТ	/yr	
Mitigated	7.4193	0.4385	0.0000	18.3811
Unmitigated	7.4193	0.4385	0.0000	18.3811

8.2 Waste by Land Use

Unmitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-Rail	36.55	7.4193	0.4385	0.0000	18.3811
Total		7.4193	0.4385	0.0000	18.3811

Page 19 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		MT	/yr	
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-Rail	36.55	7.4193	0.4385	0.0000	18.3811
Total		7.4193	0.4385	0.0000	18.3811

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Forklifts	6	12.00	_	89		Diesel
Forklifts	6	6.00		89		Diesel

Page 20 of 20

Dixieline Lumber Yard and Home Center - Ventura County, Annual

UnMitigated/Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type					ton	s/yr							MT	/yr		
Forklifts	0.1994	1.7804	1.4886	1.9000e- 003		0.1379	0.1379		0.1269	0.1269	0.0000	171.1140	171.1140	0.0541	0.0000	172.4675
Total	0.1994	1.7804	1.4886	1.9000e- 003		0.1379	0.1379		0.1269	0.1269	0.0000	171.1140	171.1140	0.0541	0.0000	172.4675

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					

11.0 Vegetation

Dixieline Lumber Yard and Home Center

Ventura County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unrefrigerated Warehouse-Rail	38.88	1000sqft	0.89	38,880.00	0
Other Asphalt Surfaces	203.86	1000sqft	4.68	203,861.00	0
Parking Lot	63.00	Space	0.57	25,200.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	31
Climate Zone	8			Operational Year	2019
Utility Company					
CO2 Intensity (Ib/MWhr)	0	CH4 Intensity (Ib/MWhr)	0	N2O Intensity (Ib/MWhr)	0

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.1

Page 2 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

Project Characteristics -

Land Use - Lumber Yard SF based on Site Plan.

Construction Phase - Operational Emissions Calculations.

Off-road Equipment - Operations.

Trips and VMT - Operations.

On-road Fugitive Dust - Operations.

Architectural Coating - Operations.

Vehicle Trips - Changes to account for Traffic Study 120 ADT weekday, and half of that for Saturday, based on hours of facility proposed for Saturday.

Energy Use -

Water And Wastewater -

Construction Off-road Equipment Mitigation -

Area Mitigation -

Operational Off-Road Equipment - Assumed 6 forklifts onsite from 5-5 weekdays and 6-12 Saturday.

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	40	0
tblConstructionPhase	NumDays	20.00	0.00
tblLandUse	BuildingSpaceSquareFeet	203,860.00	203,861.00
tblLandUse	LandUseSquareFeet	203,860.00	203,861.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	251.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	52.00
tblOperationalOffRoadEquipment	OperHoursPerDay	8.00	12.00
tblOperationalOffRoadEquipment	OperHoursPerDay	8.00	6.00
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	6.00
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	6.00
tblProjectCharacteristics	OperationalYear	2018	2019
tblTripsAndVMT	WorkerTripNumber	23.00	0.00
tblVehicleTrips	ST_TR	1.68	1.55
tblVehicleTrips	SU_TR	1.68	0.00
tblVehicleTrips	WD_TR	1.68	3.09

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day									lb/day						
2017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	day							lb/o	day		
2017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	lay		
Area	1.2067	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715
Energy	4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949
Mobile	0.2273	0.8998	2.8291	8.7800e- 003	0.7426	0.0103	0.7529	0.1983	9.6700e- 003	0.2080		886.1968	886.1968	0.0386		887.1613
Offroad	2.1593	19.2822	16.1216	0.0206		1.4938	1.4938		1.3743	1.3743		2,042.8255	2,042.8255	0.6463		2,058.9837
Total	3.5978	20.2235	19.0169	0.0296	0.7426	1.5073	2.2499	0.1983	1.3872	1.5855		2,978.5899	2,978.5899	0.6860	9.1000e- 004	2,996.0113

Page 6 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		-			۱b	/day	-		-			-	lb/d	day		
Area	1.2067	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715
Energy	4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949
Mobile	0.2273	0.8998	2.8291	8.7800e- 003	0.7426	0.0103	0.7529	0.1983	9.6700e- 003	0.2080		886.1968	886.1968	0.0386		887.1613
Offroad	2.1593	19.2822	16.1216	0.0206		1.4938	1.4938		1.3743	1.3743		2,042.8255	2,042.8255	0.6463		2,058.9837
Total	3.5978	20.2235	19.0169	0.0296	0.7426	1.5073	2.2499	0.1983	1.3872	1.5855		2,978.5899	2,978.5899	0.6860	9.1000e- 004	2,996.0113
	ROG		NOx	co s						aust PM2		CO2 NBio-	CO2 Total	CO2 CH	14 N2	20 CO

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Pha Num		Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Architectural Coating	Architectural Coating	7/15/2017	7/14/2017	5	0	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Page 7 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

Acres of Paving: 5.25

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 58,320; Non-Residential Outdoor: 19,440; Striped Parking Area: 13,744 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	0	6.00	78	0.48

Trips and VMT

	Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
/	Architectural Coating	0	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Architectural Coating - 2017

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.2 Architectural Coating - 2017

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day		-					lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day		-					lb/c	day		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.2 Architectural Coating - 2017

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Page 10 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Mitigated	0.2273	0.8998	2.8291	8.7800e- 003	0.7426	0.0103	0.7529	0.1983	9.6700e- 003	0.2080		886.1968	886.1968	0.0386		887.1613
Unmitigated	0.2273	0.8998	2.8291	8.7800e- 003	0.7426	0.0103	0.7529	0.1983	9.6700e- 003	0.2080		886.1968	886.1968	0.0386		887.1613

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Unrefrigerated Warehouse-Rail	120.14	60.26	0.00	275,669	275,669
Total	120.14	60.26	0.00	275,669	275,669

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C- W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Unrefrigerated Warehouse-Rail	9.50	7.30	7.30	59.00	0.00	41.00	92	5	3

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Unrefrigerated Warehouse-Rail	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117	0.000958	0.004062	0.000367	0.001851
Other Asphalt Surfaces	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117	0.000958	0.004062	0.000367	0.001851
Parking Lot	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117	0.000958	0.004062	0.000367	0.001851

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			-	-	lb/	day							lb/d	day		
NaturalGas Mitigated	4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949
NaturalGas Unmitigated	4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949

Page 12 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/o	day							lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-Rail	420.756	4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949
Total		4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr	-				lb/o	day							lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-Rail	0.420756	4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949
Total		4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949

6.0 Area Detail

6.1 Mitigation Measures Area

No Hearths Installed

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Mitigated	1.2067	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715
Unmitigated	1.2067	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715

Page 14 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/o	day							lb/d	day		
Architectural Coating	0.2905					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.9132					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	2.9900e- 003	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715
Total	1.2067	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day						-	lb/c	day	-	
Architectural Coating	0.2905					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.9132					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	2.9900e- 003	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715
Total	1.2067	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Forklifts	6		-	89		Diesel
Forklifts	6	6.00				Diesel

UnMitigated/Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type					lb/	day							lb/c	lay		
Forklifts	2.1593	19.2822	16.1216	0.0206		1.4938	1.4938		1.3743	1.3743		2,042.8255	2,042.8255	0.6463		2,058.9837
Total	2.1593	19.2822	16.1216	0.0206		1.4938	1.4938		1.3743	1.3743		2,042.8255	2,042.8255	0.6463		2,058.9837

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Page 16 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Summer

_				
-				
Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
]]]]

Dixieline Lumber Yard and Home Center

Ventura County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Unrefrigerated Warehouse-Rail	38.88	1000sqft	0.89	38,880.00	0
Other Asphalt Surfaces	203.86	1000sqft	4.68	203,861.00	0
Parking Lot	63.00	Space	0.57	25,200.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.6	Precipitation Freq (Days)	31
Climate Zone	8			Operational Year	2019
Utility Company					
CO2 Intensity (Ib/MWhr)	0	CH4 Intensity (Ib/MWhr)	0	N2O Intensity (Ib/MWhr)	0

1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.1

Page 2 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

Project Characteristics -

Land Use - Lumber Yard SF based on Site Plan.

Construction Phase - Operational Emissions Calculations.

Off-road Equipment - Operations.

Trips and VMT - Operations.

On-road Fugitive Dust - Operations.

Architectural Coating - Operations.

Vehicle Trips - Changes to account for Traffic Study 120 ADT weekday, and half of that for Saturday, based on hours of facility proposed for Saturday.

Energy Use -

Water And Wastewater -

Construction Off-road Equipment Mitigation -

Area Mitigation -

Operational Off-Road Equipment - Assumed 6 forklifts onsite from 5-5 weekdays and 6-12 Saturday.

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	40	0
tblConstructionPhase	NumDays	20.00	0.00
tblLandUse	BuildingSpaceSquareFeet	203,860.00	203,861.00
tblLandUse	LandUseSquareFeet	203,860.00	203,861.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	0.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	251.00
tblOperationalOffRoadEquipment	OperDaysPerYear	260.00	52.00
tblOperationalOffRoadEquipment	OperHoursPerDay	8.00	12.00
tblOperationalOffRoadEquipment	OperHoursPerDay	8.00	6.00
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	6.00
tblOperationalOffRoadEquipment	OperOffRoadEquipmentNumber	0.00	6.00
tblProjectCharacteristics	OperationalYear	2018	2019
tblTripsAndVMT	WorkerTripNumber	23.00	0.00
tblVehicleTrips	ST_TR	1.68	1.55
tblVehicleTrips	SU_TR	1.68	0.00
tblVehicleTrips	WD_TR	1.68	3.09

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year													lb/c	day		
2017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Year	lb/day											lb/day					
2017	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Maximum	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category																
Area	1.2067	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715
Energy	4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949
Mobile	0.2179	0.9460	2.8613	8.4100e- 003	0.7426	0.0104	0.7530	0.1983	9.7700e- 003	0.2081		849.3771	849.3771	0.0391		850.3536
Offroad	2.1593	19.2822	16.1216	0.0206		1.4938	1.4938		1.3743	1.3743		2,042.8255	2,042.8255	0.6463		2,058.9837
Total	3.5884	20.2697	19.0491	0.0293	0.7426	1.5074	2.2500	0.1983	1.3873	1.5856		2,941.7702	2,941.7702	0.6865	9.1000e- 004	2,959.2036

Page 6 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	C	C	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		-				lb/	day		-	-			-	lb/c	day		
Area	1.2067	2.9000 004	e- 0.03	15	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715
Energy	4.5400e- 003	0.0413	3 0.03	47	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949
Mobile	0.2179	0.9460	0 2.86	13	8.4100e- 003	0.7426	0.0104	0.7530	0.1983	9.7700e- 003	0.2081		849.3771	849.3771	0.0391		850.3536
Offroad	2.1593	19.282	2 16.1	216	0.0206		1.4938	1.4938		1.3743	1.3743		2,042.8255	2,042.8255	0.6463		2,058.9837
Total	3.5884	20.269	07 19.04	491	0.0293	0.7426	1.5074	2.2500	0.1983	1.3873	1.5856		2,941.7702	2,941.7702	0.6865	9.1000e- 004	2,959.2036
	ROG	ROG NOX CO SO2 Fugitive Exhaust PM10 Fugitive Exhaust PM10 PM10 Total PM2.5 PM2.5									CO2 NBio-	CO2 Total	CO2 CH	14 N2	20 CO		

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phas Num		Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Architectural Coating	Architectural Coating	7/15/2017	7/14/2017	5	0	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

CalEEMod Version: CalEEMod.2016.3.1

Page 7 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

Acres of Paving: 5.25

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 58,320; Non-Residential Outdoor: 19,440; Striped Parking Area: 13,744 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	0	6.00	78	0.48

Trips and VMT

	Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Ar	rchitectural Coating	0	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Architectural Coating - 2017

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.2 Architectural Coating - 2017

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day		-					lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category			-		lb/	day		-				-	lb/c	day		
Archit. Coating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.2 Architectural Coating - 2017

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Page 10 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	day		
Mitigated	0.2179	0.9460	2.8613	8.4100e- 003	0.7426	0.0104	0.7530	0.1983	9.7700e- 003	0.2081		849.3771	849.3771	0.0391		850.3536
Unmitigated	0.2179	0.9460	2.8613	8.4100e- 003	0.7426	0.0104	0.7530	0.1983	9.7700e- 003	0.2081		849.3771	849.3771	0.0391		850.3536

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	te	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Other Asphalt Surfaces	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Unrefrigerated Warehouse-Rail	120.14	60.26	0.00	275,669	275,669
Total	120.14	60.26	0.00	275,669	275,669

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C- W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Other Asphalt Surfaces	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Unrefrigerated Warehouse-Rail	9.50	7.30	7.30	59.00	0.00	41.00	92	5	3

4.4 Fleet Mix

CalEEMod Version: CalEEMod.2016.3.1

Page 11 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Unrefrigerated Warehouse-Rail	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117	0.000958	0.004062	0.000367	0.001851
Other Asphalt Surfaces	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117	0.000958	0.004062	0.000367	0.001851
Parking Lot	0.569685	0.043830	0.191011	0.121658	0.022817	0.006841	0.018742	0.017061	0.001117	0.000958	0.004062	0.000367	0.001851

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category				-	lb/	day		-				-	lb/d	day		
NaturalGas Mitigated	4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949
NaturalGas Unmitigated	4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949

Page 12 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-Rail	420.756	4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949
Total		4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day				-			lb/c	lay		
Other Asphalt Surfaces	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Unrefrigerated Warehouse-Rail	0.420756	4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949
Total		4.5400e- 003	0.0413	0.0347	2.5000e- 004		3.1400e- 003	3.1400e- 003		3.1400e- 003	3.1400e- 003		49.5007	49.5007	9.5000e- 004	9.1000e- 004	49.7949

6.0 Area Detail

6.1 Mitigation Measures Area

No Hearths Installed

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Mitigated	1.2067	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715
Unmitigated	1.2067	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715

Page 14 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day							lb/day								
Architectural Coating	0.2905					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.9132					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	2.9900e- 003	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715
Total	1.2067	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day							lb/day								
Architectural Coating	0.2905					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	0.9132					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	2.9900e- 003	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715
Total	1.2067	2.9000e- 004	0.0315	0.0000		1.1000e- 004	1.1000e- 004		1.1000e- 004	1.1000e- 004		0.0669	0.0669	1.8000e- 004		0.0715

7.0 Water Detail

7.1 Mitigation Measures Water

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
Forklifts	6		-	89		Diesel
Forklifts	6	6.00				Diesel

UnMitigated/Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Equipment Type	lb/day							lb/day								
Forklifts	2.1593	19.2822	16.1216	0.0206		1.4938	1.4938		1.3743	1.3743		2,042.8255	2,042.8255	0.6463		2,058.9837
Total	2.1593	19.2822	16.1216	0.0206		1.4938	1.4938		1.3743	1.3743		2,042.8255	2,042.8255	0.6463		2,058.9837

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Page 16 of 16

Dixieline Lumber Yard and Home Center - Ventura County, Winter

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Boilers						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					
11.0 Vegetation						

Greenhouse Gas Emission Worksheet N20 Mobile Emissions

Dixieline Lumber Yard and Home Center

From CalEEMod Vehicle Fleet Mix Output:

Annual VMT:

275,669

				N2O	
			CH4	Emission	N2O
	Percent	CH4 Emission	Emission	Factor	Emission
Vehicle Type	Туре	Factor (g/mile)*	(g/mile)**	(g/mile)*	(g/mile)**
Light Auto	57.0%	0.04	0.0228	0.04	0.0228
Light Truck < 3750 lbs	4.4%	0.05	0.00219	0.06	0.002628
Light Truck 3751-5750 lbs	19.1%	0.05	0.00955	0.06	0.01146
Med Truck 5751-8500 lbs	12.2%	0.12	0.01464	0.2	0.0244
Lite-Heavy Truck 8501-10,000 lbs	2.3%	0.12	0.00276	0.2	0.0046
Lite-Heavy Truck 10,001-14,000 lbs	0.7%	0.09	0.00063	0.125	0.000875
Med-Heavy Truck 14,001-33,000 lbs	1.9%	0.06	0.00114	0.05	0.00095
Heavy-Heavy Truck 33,001-60,000 lbs	1.7%	0.06	0.00102	0.05	0.00085
Other Bus	0.1%	0.06	0.00006	0.05	0.00005
Urban Bus	0.1%	0.06	0.000054	0.05	0.000045
Motorcycle	0.4%	0.09	0.00036	0.01	0.00004
School Bus	0.0%	0.06	0	0.05	0
Motor Home	0.1%	0.09	0.00009	0.125	0.000125
Total	100.0%		0.055294		0.068823

Total Emissions (metric tons) =

Emission Factor by Vehicle Mix (g/mi) x Annual VMT(mi) x 0.000001 metric tons/g

Conversion to Carbon Dioxide Equivalency (CO2e) Units based on Global Warming Potential (GWP)

CH4	
N2O	

1 ton (short, US) =

21	GWP
310	GWP
0.90718474	metric ton

Annual Mobile Emissions:

	Total Emission	ons	Total CO2e units	
N20 Emissions:	0.0190	metric tons N2O	5.88 metric tons CO2e	
		Project Total:	5.88 metric tons CO2e	

References

* from Table C.4: Methane and Nitrous Oxide Emission Factors for Mobile Sources by Vehicle and Fuel Type (g/mile).

in California Climate Action Registry General Reporting Protocol, Reporting Entity-Wide Greenhouse Gas Emissions, Version 3.1, January 2009.

Assume Model year 2000-present, gasoline fueled.

** Source: California Climate Action Registry General Reporting Protocol, Reporting Entity-Wide Greenhouse Gas Emissions, Version 3.1, January 2009.

Appendix B

Construction Noise Calculation Worksheets and Attenuation Worksheets

Heavy Equipment Noise Impact Estimation Dixieline Lumberyard and Home Center, Oxnard, CA

Scenario: Grading Receptor Location: SFR

	Ave. Maximum SPL @ 50 ft.,		Percentage of Workday	Effective		
Noise Source	dBA	Number	Hours In Use	Use Factor *	Distance, Ft.	Leq, dBA
Graders [3]	85	1	0.8	0.5	120	73
Rubber Tired Dozers [2]	85	1	0.8	0.5	120	73
Tractor/Loader/Backhoe [2]	85	3	0.8	0.5	120	78
TOTAL Leq DURING NORMAL OPE	80	dBA				
Daytime Ambient without Equipment	70	dBA				
Nighttime Ambient without Equipmen	0	dBA				
Daytime Hours Operating:	8					
Evening Hours Operating:	0					
Nighttime Hours Operating:	0					
Combined Daytime Hourly Leq:	81	dBA				
Combined Nighttime Hourly Leg:	0	dBA				
ESTIMATED Ldn:	76	dBA				
ESTIMATED CNEL:	76	dBA				
Distance attenuation assumed at:	6	dBA per dou	bling of distance			

Notes: #N/A = Not Applicable

* Assumed percentage of time that equipment is operating at near maximum sound level. * Equipment type per assumed equipment type and duration

eavy Equipment Noise Impact Estimation Dixieline Lumberyard and Home Center, Oxnard, C

Scenario: Grading Receptor Location: Channel Islands Inn

	Ave. Maximum SPL @ 50 ft.,		Percentage of Workday	Effective		
Noise Source	dBA	Number	Hours In Usel	Jse Factor *	Distance, Ft.	Leq, dBA
Graders [3]	85	1	0.8	0.5	90	76
Rubber Tired Dozers [2]	85	1	0.8	0.5	90	76
Tractor/Loader/Backhoe [2]	85	3	0.8	0.5	90	81
TOTAL Leq DURING NORMAL (83	dBA				
Daytime Ambient without Equipme	68	dBA				
Nighttime Ambient without Equipn	ר 0	dBA				
Daytime Hours Operating:	8					
Evening Hours Operating:	0					
Nighttime Hours Operating:	0					
Combined Daytime Hourly Leq:	83	dBA				
Combined Nighttime Hourly Leq:	0	dBA				
ESTIMATED Ldn:	78	dBA				
ESTIMATED CNEL:	78	dBA				
Distance attenuation assumed at: Notes: #N/A = Not Applicable	6	dBA per do	ubling of distanc	e		

* Assumed percentage of time that equipment is operating at near maximum sound level.

* Equipment type per assumed equipment type and duration

eavy Equipment Noise Impact Estimation Dixieline Lumberyard and Home Center,

Scenario: Paving Receptor Location: SFR

	Ave. Maximum SPL @ 50 ft.,		Percentage of Workday	Effective	
Noise Source	dBA	Number	•		Distance, Ft.
Cement and Mortar Mixers[2]	85	1	0.8	0.5	90
Pavers[2]	89	2	0.8	0.5	90
Paving Equipment[3]	85	1	0.8	0.5	90
Rollers[2]	74	2	0.8	0.5	90
Tractor/Loader/Backhoe[2]	85	3	0.8	0.5	90
TOTAL Leq DURING NORMAL	C 86	dBA			
Daytime Ambient without Equipm	e 70	dBA			
Nighttime Ambient without Equipr	n <mark>0</mark>	dBA			
Daytime Hours Operating:	8				
Evening Hours Operating:	0				
Nighttime Hours Operating:	0				
Combined Daytime Hourly Leq:	86	dBA			
Combined Nighttime Hourly Leq:	0	dBA			
ESTIMATED Ldn:	81	dBA			
ESTIMATED CNEL:	81	dBA			
Distance attenuation assumed at:	6	dBA per do	ubling of distand	ce	

Notes: #N/A = Not Applicable

* Assumed percentage of time that equipment is operating at near maximum sound level.

* Equipment type per assumed equipment type and duration

Equipment Use Source:

[2] Federal Transit Administration (FTA) (2006), Transit Noise and Vibration Assessment

[3] Federal Highway Administration (FHWA) (2006), Construction Noise Handbook.

Accessed at https://www.fhwa.dot.gov/environment/noise/construction_noise/handbook/

Oxnard, CA

2	3	4.5	6
	1	1.5	2

Leq, dBA

76	126491106	39040465
83	635462588	196130428
76	126491106	39040465
68	20095091	6202188.7
81	379473319	117121395

397534942

eavy Equipment Noise Impact Estimation Dixieline Lumberyard and Home Center,

Scenario: Paving

Receptor Location: Channel Islands Inn

	Ave. Maximum SPL @ 50 ft.,		Percentage of Workday	f Effective	
Noise Source	dBA	Number	Hours In Use	Use Factor *	Distance, Ft.
Cement and Mortar Mixers[2]	85	1	0.8	0.5	90
Pavers[2]	89	2	0.8	0.5	90
Paving Equipment[3]	85	1	0.8	0.5	90
Rollers[2]	74	2	0.8	0.5	90
Tractor/Loader/Backhoe[2]	85	3	0.8	0.5	90
TOTAL Leq DURING NORMAL	C 86	dBA			
Daytime Ambient without Equipm	e 68	dBA			
Nighttime Ambient without Equipr	n <mark>O</mark>	dBA			
Daytime Hours Operating:	8				
Evening Hours Operating:	0				
Nighttime Hours Operating:	0				
Combined Daytime Hourly Leq:	86	dBA			
Combined Nighttime Hourly Leq:	0	dBA			
ESTIMATED Ldn:	81	dBA			
ESTIMATED CNEL:	81	dBA			
Distance attenuation assumed at:	6	dBA per do	ubling of distand	ce	

Distance attenuation assumed at: 6 Notes: #N/A = Not Applicable dBA per doubling of distance

* Assumed percentage of time that equipment is operating at near maximum sound level.

* Equipment type per assumed equipment type and duration

Equipment Use Source:

[2] Federal Transit Administration (FTA) (2006), Transit Noise and Vibration Assessment

[3] Federal Highway Administration (FHWA) (2006), Construction Noise Handbook.

Accessed at https://www.fhwa.dot.gov/environment/noise/construction_noise/handbook/

Oxnard, CA

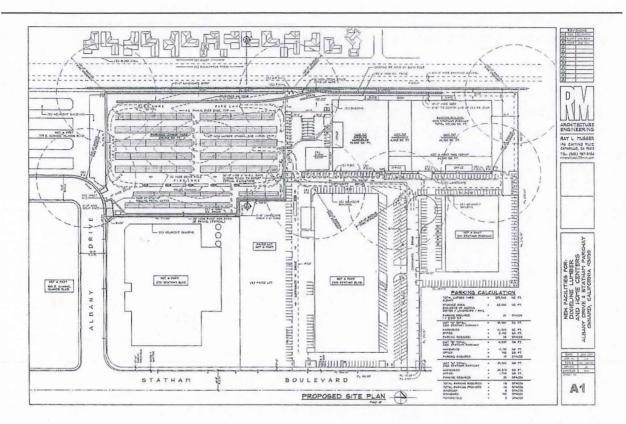
2	3	4.5	6
	1	1.5	2

Leq, dBA

76	126491106	39040465
83	635462588	196130428
76	126491106	39040465
68	20095091	6202188.7
81	379473319	117121395

397534942

TO DETERMINE NOISE CO	ONTOURS FOR A	GIVEN NO	DISE LEVEL		
ATTENUATION RATE:	6	dBA/DOUE	BLING OF DIS	STANCE	
(Choice: 3, 4.5, or 6)			Note: Within	0-10 feet f	rom
NOISE LEVEL:	70.3	dBA	the source, th	nere is	
REFERENCE DISTANCE:	15	FEET	virtually no at	ttenuation.	
	DISTANCE		SPECIFIC	NOISE	
NOISE CONTOUR	FROM SOURCE		DISTANCE	LEVEL	
75	9	feet	50	59.8	
70		feet	100	53.8	
65		feet	150	50.3	
60		feet	200	47.8	
55	87	feet	400	41.8	
50	155	feet	120	52.2	
75	9	feet			
74		feet			
73		feet			
72	12	feet			
71	14	feet			
70	16	feet			
69	17	feet			
68		feet			
67	22	feet			
66	25	feet			
65	28	feet			
64	31	feet			
63	35	feet			
62	39	feet			
61	44	feet			
60	49	feet			


TO DETERMINE NOISE CO	ONTOURS FOR A	GIVEN NO	DISE LEVEL		
ATTENUATION RATE:	6	dBA/DOUE	BLING OF DIS	STANCE	
(Choice: 3, 4.5, or 6)			Note: Within	0-10 feet fi	rom
NOISE LEVEL:	70.3	dBA	the source, th	nere is	
REFERENCE DISTANCE:	15	FEET	virtually no at	ttenuation.	
	DISTANCE		SPECIFIC	NOISE	
NOISE CONTOUR	FROM SOURCE		DISTANCE	LEVEL	
75	9	feet	50	59.8	
70	16	feet	100	53.8	
65	28	feet	150	50.3	
60		feet	200	47.8	
55	87	feet	400	41.8	
50	155	feet	90	54.7	
75	9	feet			
74		feet			
73	11	feet			
72		feet			
71	14	feet			
70	16	feet			
69	17	feet			
68	20	feet			
67	22	feet			
66	25	feet			
65	28	feet			
64		feet			
63	35	feet			
62	39	feet			
61	44	feet			
60	49	feet			

Associated Transportation Engineers Draft Traffic Study

DIXIELINE LUMBER AND HOME CENTERS OXNARD, CALIFORNIA

TRAFFIC AND CIRCULATION STUDY

July 6, 2017

ATE Project 17028

Prepared for:

Dixieline Lumber and Home Centers 3250 Sports Arena Boulevard San Diego, California 92110

ASSOCIATED TRANSPORTATION ENGINEERS 100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 • (805) 687-4418 • FAX (805) 682-8509

Since 1978

Richard L. Pool, P.E. Scott A. Schell, AICP, PTP

July 6, 2017

Mr. loe Lawrence **Dixieline Lumber and Home Centers** 3250 Sports Center Arena San Diego, California 92110

TRAFFIC AND CIRCULATION STUDY FOR THE DIXIELINE LUMBER AND HOME CENTERS PROJECT - CITY OF OXNARD

Associated Transportation Engineers (ATE) has prepared the following traffic and circulation study for Dixieline Lumber and Home Centers. It our understanding that the results of the study will be used by the City of Oxnard to process the project's development application. We appreciate the opportunity to assist Dixieline Lumber and home Centers with this project.

Associated Transportation Engineers

By:

Scott A. Schell, AICP, PTP Vice President

TABLE OF CONTENTS

INTRODUCTION 1
PROJECT DESCRIPTION 1
EXISTING CONDITIONS 1 Existing Street Network 1 Existing Volumes and Levels of Service 4
IMPACT THRESHOLD CRITERIA 7
PROJECT GENERATED TRAFFIC VOLUMES 8 Project Trip Generation 8 Project Trip Distribution and Assignment 9
PROJECT-SPECIFIC IMPACTS
CUMULATIVE (EXISTING + APPROVED/PENDING PROJECTS) CONDITIONS 12 Cumulative + Project Impacts 14
SITE ACCESS
VEHICLE FLEET
PROJECT RAIL SERVICE
PROJECT MITIGATION MEASURES
VENTURA COUNTY GENERAL PLAN CONSISTENCY
VENTURA COUNTY CONGESTION MANAGEMENT PROGRAM
REFERENCES AND PERSONS CONTACTED
TECHNIC AL APPENDIX

LIST OF TABLES

Table 1 - Existing Peak Hour Levels of Service	7
Table 2 - Project Trip Generation	8
Table 3 - Existing + Project A.M. Peak Hour Levels of Service	9
Table 4 - Existing + Project P.M. Peak Hour Levels of Service	9
Table 5 - Approved/Pending Projects Trip Generation 1	2
Table 6 - Cumulative Peak Hour Levels of Service 1	4
Table 7 - Cumulative + Project A.M. Peak Hour Level of Service 1	4
Table 8 - Cumulative + Project P.M. Peak Hour Level of Service 1	6

LIST OF FIGURES

Figure 1	Existing Street Network/Project Site Location	2
Figure 2	Project Site Plan	3
Figure 3	Intersection Lane Geometries and Traffic Controls	5
Figure 4	Existing Traffic Volumes	6
Figure 5	Project Trip Distribution and Assignment	10
Figure 6	Existing + Project Traffic Volumes	11
Figure 7	Cumulative Traffic Volumes	13
Figure 8	Cumulative + Project Traffic Volumes	15

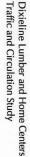
INTRODUCTION

The following study contains an analysis of the potential traffic and circulation impacts associated with the proposed Dixieline Lumber and Home Centers Project (the "Project"), located in the City of Oxnard. The guidelines set forth in the City of Oxnard's Traffic Impact Study standards were utilized in formatting the various sections of the traffic study. The study provides information relative to existing, existing + project, cumulative (existing + approved/pending projects) and cumulative + project traffic conditions. Site access and rail service are also addressed.

PROJECT DESCRIPTION

As shown on Figure 1, the Dixieline Lumber and Home Centers Project is located at 2325 Statham Parkway, north of Albany Drive in the City of Oxnard. The project will occupy 38,880 square feet of an existing 103,680 square foot warehouse building. The project will construct a 203,860 square foot lumber yard. Access to the project site will be provided via Statham Parkway and a new driveway connections to Albany Drive. In addition to truck deliveries, the project site will be served by heavy rail. A Ventura County Rail Road (VCRR) track runs adjacent to the project's western boundary. A new rail spur will be constructed as part of the project improvements. The project site plan is illustrated on Figure 2.

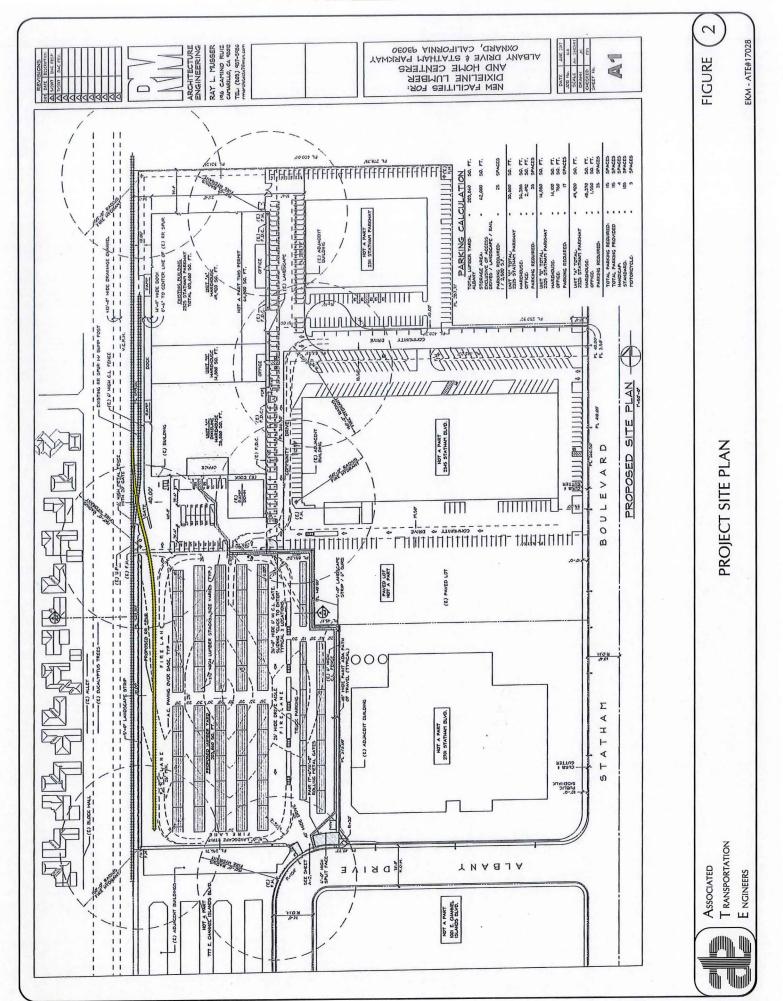
EXISTING CONDITIONS


Existing Street Network

The project site is served by a circulation system comprised of arterial and collector streets, which are illustrated on Figure 1. The major roadways serving the site are discussed in the following text.

Oxnard Boulevard, located east of the Project site, is a 6-lane divided arterial roadway extending south from U.S. Highway 101 to Pleasant Valley Road. Oxnard Boulevard serves as a major arterial for the City of Oxnard and is its principal intra City route along the California Coast. The Oxnard Boulevard/Statham Boulevard and Oxnard Boulevard/Rose Avenue intersections are signalized.

Rose Avenue is a 2- to 4-lane north-south roadway that extends north from Sanford Street to State Route 118 (Los Angeles Avenue). Rose Avenue provides a major link between the residential areas in Oxnard and the commercial centers along the U.S. Highway 101 corridor.


Channel Islands Boulevard is a 2- to 4-lane divided arterial roadway that extends easterly from Ocean Drive to the Rice Avenue. Channel Islands Boulevard serves residential and commercial uses in the cities of Port Hueneme and Oxnard. Channel Islands Boulevard is signalized at Albany Drive, Statham Boulevard and Rose Avenue.

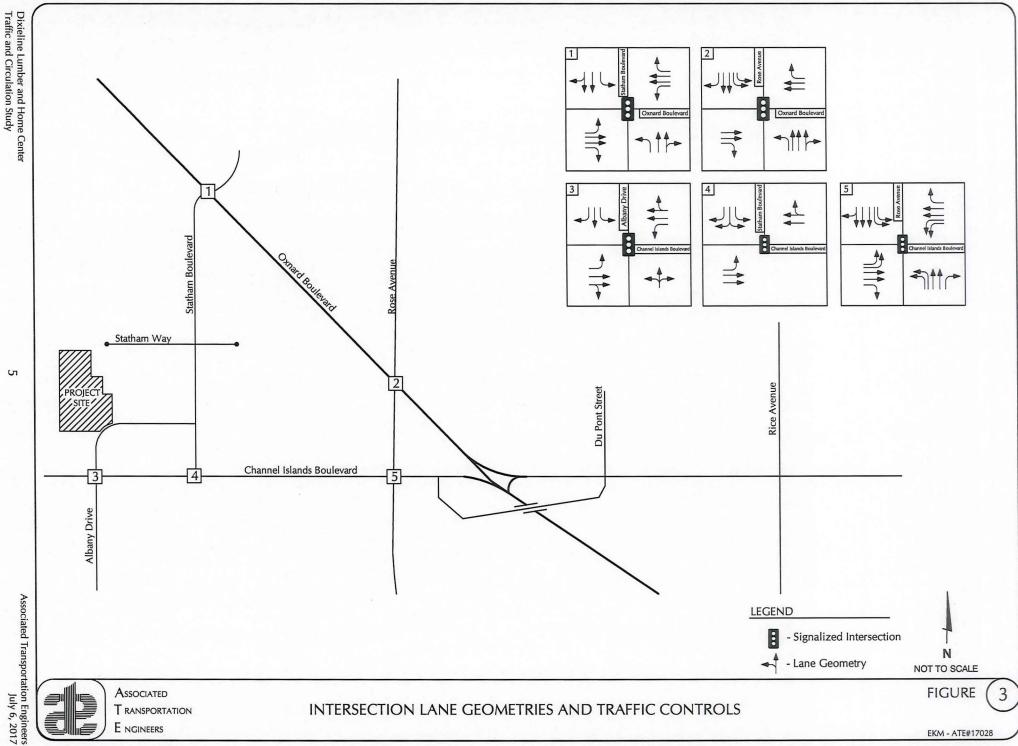
Associated Transportation Engineers July 6, 2017

Ν

Statham Boulevard, is a 2- to 4-lane north-south roadway that extends north from Channel Inlands Boulevard to Emerson Avenue in the City of Oxnard. Statham Boulevard serves industrial and commercial land uses and is signalized at Oxnard Boulevard and Channels Islands Boulevard.

Albany Drive, located along the Project' southern frontage, is a 2-lane north-south roadway that extends north from Gary Drive to Statham Boulevard. Albany Drive serves primarily residential land uses south of Channel Islands Boulevard and commercial land uses north of Channel Islands Boulevard. Access to the Project site would be provided via a new driveway on Albany Drive. Albany Drive is signalized at Channels Islands Boulevard.

Statham Parkway, is a 2-lane east-west roadway that provides access to light industrial uses located off of Statham Boulevard south of Oxnard Boulevard. Statham Parkway will provide direct access to the Project site via it's connection to Statham Boulevard.


Existing Volumes and Levels of Service

Intersection Operations

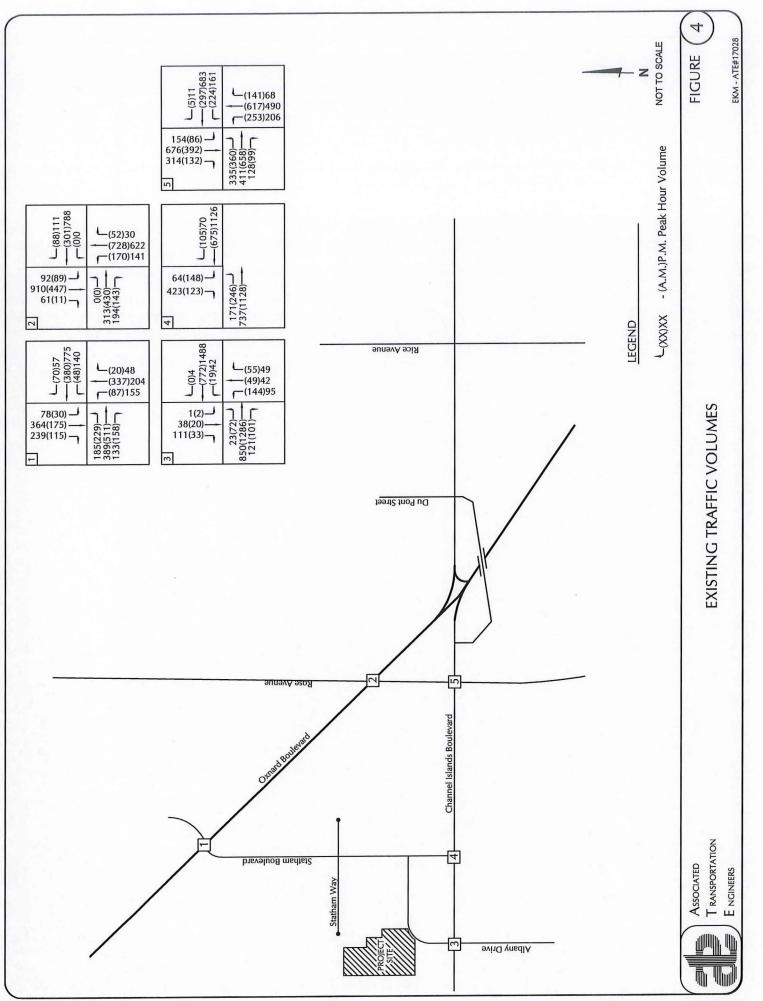

Traffic flow on urban arterials is most constrained at intersections. Therefore, a detailed analysis of traffic flows must examine the operating conditions of critical intersections during peak travel periods. In rating intersection operations, "Levels of Service" (LOS) A through F are used, with LOS A indicating free flow operations and LOS F indicating congested operations (more complete definitions of levels of service are included in the Technical Appendix). In the City of Oxnard LOS "C" is the acceptable operating standard for intersections.

Figure 3 illustrates the existing traffic controls and geometries for the study-area intersections. The existing A.M. and P.M. peak hour traffic volumes at the study-area intersections are illustrated on Figure 4. These volumes were collected in March of 2017 for this study (traffic count data contained in the Technical Appendix).

Existing levels of service for the study-area intersections were calculated using the Intersection Capacity Utilization (ICU) methodology as required by the City of Oxnard. Worksheets illustrating the level of service calculations are contained in the Technical Appendix for reference. Table 1 lists the existing levels of service for the study-area intersections for the A.M. and P.M. peak hour periods.

ъ

		A.M. P	eak Hour	P.M. Peak Hour	
Intersection	Control Type	ICU	LOS	ICU	LOS
Rose Avenue/Oxnard Boulevard	Signal	0.33	LOS A	0.62	LOS B
Rose Avenue/Channel Islands Boulevard	Signal	0.50	LOS A	0.59	LOS A
Channel Islands Boulevard/Statham Boulevard	Signal	0.45	LOS A	0.58	LOS A
Channel Islands Boulevard/Albany Drive	Signal	0.63	LOS B	0.40	LOS A
Oxnard Boulevard/Statham Boulevard	Signal	0.39	LOS A	0.64	LOS B

Table 1 Existing Peak Hour Levels of Service

The data presented in Table 1 indicate that the study-area intersections currently operate at LOS B or better during the A.M. peak hour and P.M. peak hour periods, which meet the City's LOS C standard.

IMPACT THRESHOLD CRITERIA

The City of Oxnard's criteria for evaluating project impacts at intersections is based upon the change in ICU/LOS attributable to the project. The City of Oxnard has established LOS "C" as the threshold of significance for determining project impacts at intersections. If the addition of project traffic increases the ICU by 0.02 or more at an intersection operating at LOS C or worse, it should be mitigated to the ICU level identified without the project traffic. These criteria were used to determine the significance of the impacts generated by the project at the study-area intersections.

PROJECT GENERATED TRAFFIC VOLUMES

Project Trip Generation

Trip generation estimates are typically developed based on rates presented in the Institute of Transportation Engineers (ITE), Trip Generation, 9th Edition. However, there are no trip generation rates published for lumber yards. Trip generation estimates for the Project were therefore calculated using the following operational data provided by the applicant. The Dixieline Lumber and Home Centers facility will operate Monday through Friday with 45 fulltime employees (Yard Personnel, Drivers and Office). There will also be an occasional half day on Saturdays. During a **peak** operational day, there could be up to 14 truck deliveries (28 truck trips) and 1 miscellaneous delivery to/from the facility. Since the majority of the truck deliveries are required to be on the job sites prior to 7:00 A.M., the outbound truck delivery trips would occur prior to the A.M. peak hour. There would be approximately 2 returning delivery truck trips during the A.M. peak hour commute period (7:00 A.M. - 9:00 A.M.). No truck trips would occur during the P.M. peak hour commute period between (4:00 P.M. - 6:00 P.M.) since deliveries will have been completed by 3:00 P.M. It is estimated that 7 employee trips will occur during the A.M. add P.M. peak hour commute periods since most employees begin the work day before 7:00 A.M. and end before 4:00 P.M. The following represents the maximum daily operations that potentially could occur:

14 Tuck Deliveries	28 truck trips/day (14 in and 14 out)
1 Miscellaneous Delivery	2 trips/day (1 in and 1 out)
45 Employees	90 employee trips/day (45 in and 45 out)
- 10 employees work schedule	5:00 A.M 2:00 P.M.
- 28 employees work schedule	6:00 A.M 3:00 P.M.
- 7 employees work schedule	7:00 A.M 4:00 P.M.

Table 2 summarizes the A.M. and P.M. peak hour trip generation estimates for the Project based on the peak day operational data.

		Weekday Pea	ak Hour Trips
Project Component	Size	A.M. Peak Hour	P.M. Peak Hour
Truck Deliveries	14 Trucks	2 (2 In/0 Out)	0 (0 In/0 Out)
Misc. Deliveries	1 Truck	0 (0 In/0 Out)	0 (0 In/0 Out)
Employees	45 Employees	7 (7 In/0 Out)	7 (0 In/7 Out)
	Total	9 (9 In/0 Out)	7 (0 In/7 Out)

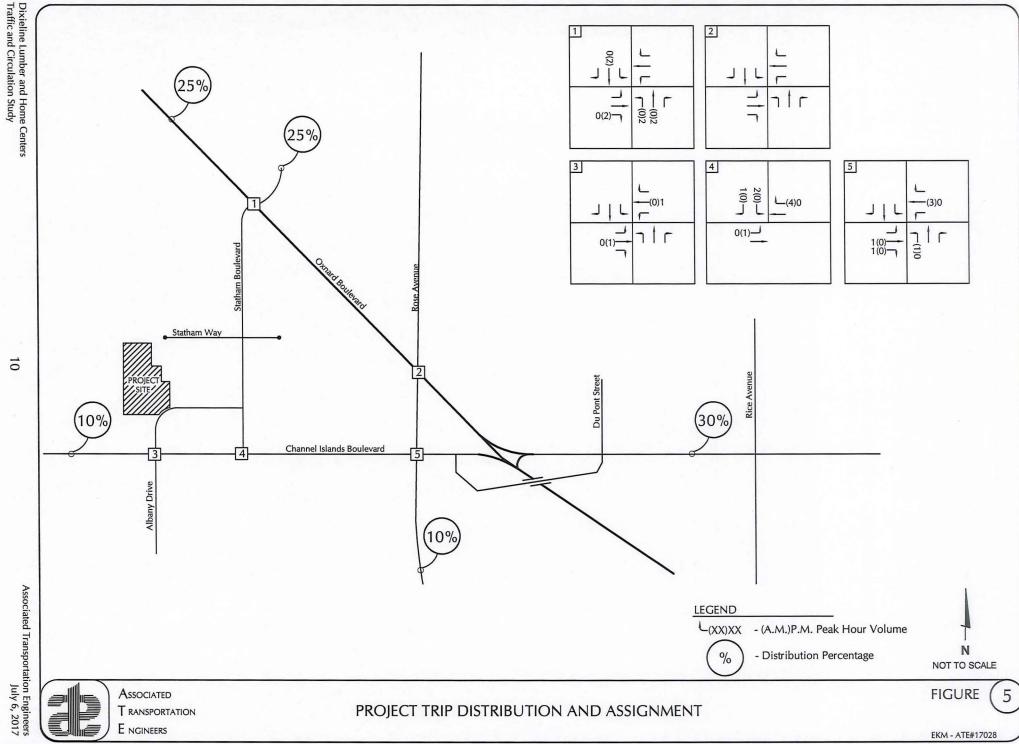
Table 2 Project Peak Day Trip Generation

The data presented in Table 2 show that the Project would generate a total of 9 A.M. peak hour trips, and 7 P.M. peak hour trips as presented in Table 2.

Project Trip Distribution and Assignment

The Project-generated A.M. and P.M. peak hour traffic volumes were distributed and assigned to the study-area intersections based on travel data derived from the existing traffic volumes as well as a general knowledge of the population, employment and commercial centers in the Oxnard/Ventura area. Figure 5 illustrates the trip distribution and assignment assumed for the Project's trips. Figure 6 illustrates the existing + Project traffic volumes.

PROJECT-SPECIFIC IMPACTS


Levels of service were calculated for the study-area intersections assuming the Existing + Project volumes. Tables 3 and 4 show the results of the calculations and identify the Project's impacts based on the City of Oxnard thresholds.

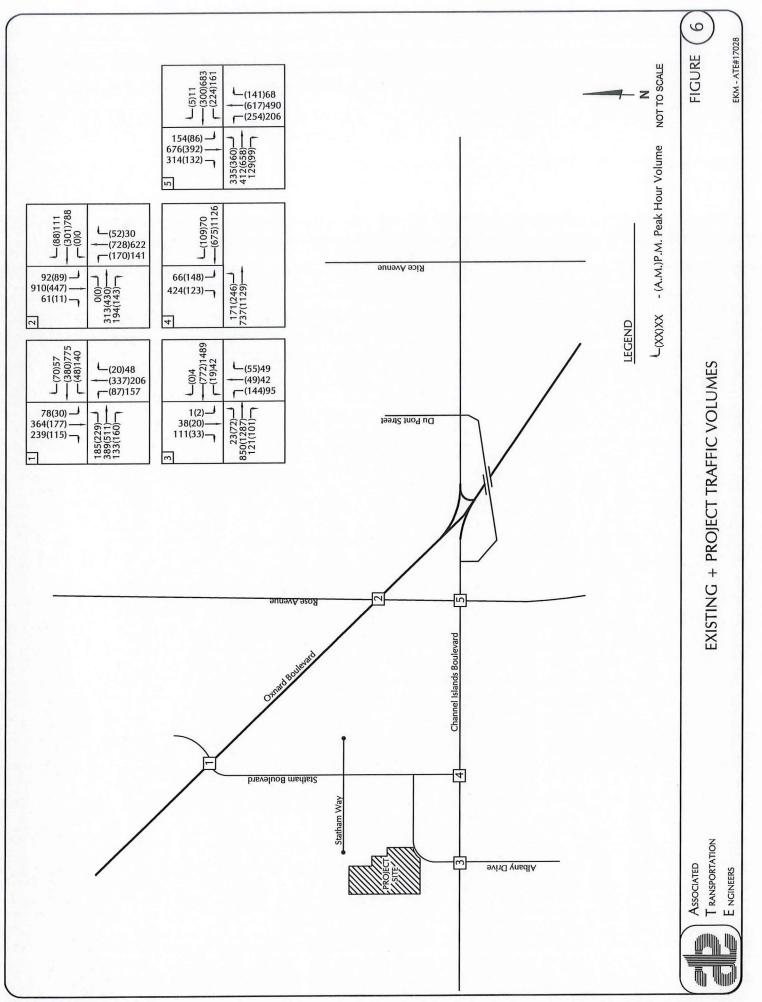
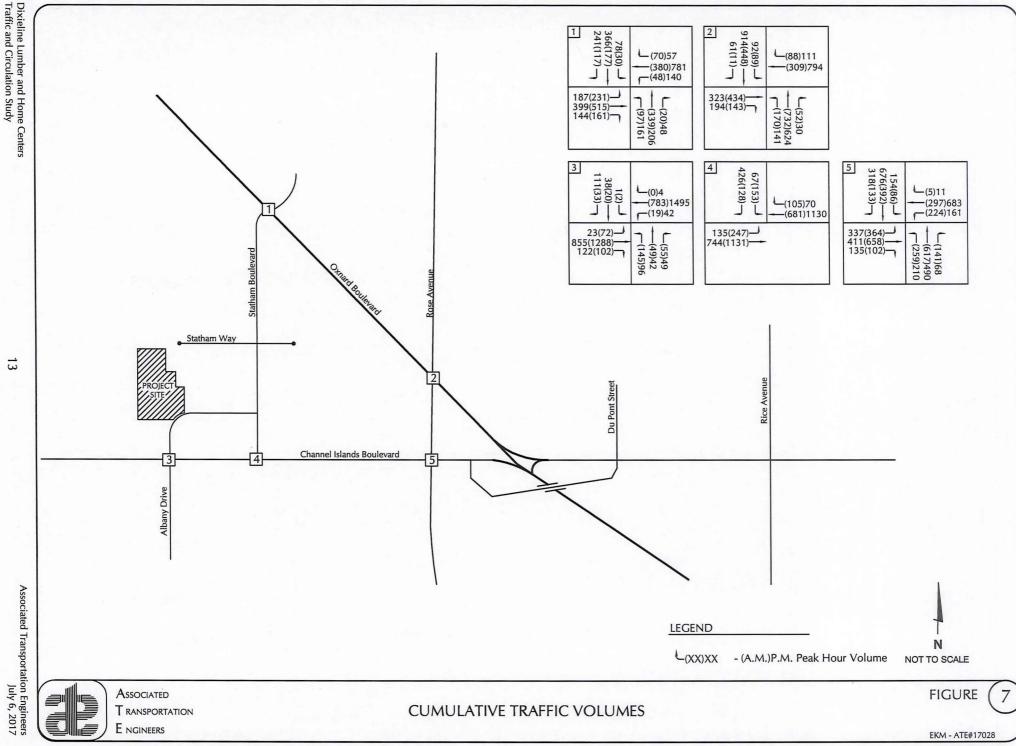

	Exis	ting	Existing + Project			
Intersection	ICU	LOS	ICU	LOS	Change	Impact?
Rose Avenue/Oxnard Boulevard	0.33	LOS A	0.33	LOS A	0.00	No
Rose Avenue/Channel Islands Boulevard	0.50	LOS A	0.50	LOS A	0.00	No
Channel Islands Boulevard/Statham Boulevard	0.45	LOS A	0.46	LOS À	0.01	No
Channel Islands Boulevard/Albany Drive	0.62	LOS B	0.62	LOS B	0.00	No
Oxnard Boulevard/Statham Boulevard	0.39	LOS A	0.40	LOS A	0.01	No

Table 3Existing + Project A.M. Peak Hour Levels of Service

Table 4Existing + Project P.M. Peak Hour Levels of Service

	Existing		Existing + Project			
Intersection	ICU	LOS	ICU	LOS	Change	Impact?
Rose Avenue/Oxnard Boulevard	0.62	LOS B	0.62	LOS B	0.00	No
Rose Avenue/Channel Islands Boulevard	0.59	LOS A	0.59	LOS A	0.00	No
Channel Islands Boulevard/Statham Boulevard	0.58	LOS A	0.59	LOS A	0.01	No
Channel Islands Boulevard/Albany Drive	0.40	LOS A	0.40	LOS A	0.00	No
Oxnard Boulevard/Statham Boulevard	0.64	LOS B	0.65	LOS B	0.01	No

The data presented in Tables 3 and 4 indicate that the Project would not generate significant impact to the study-area intersections based on the City of Oxnard's traffic impact thresholds during the A.M. or the P.M. peak hour periods.


CUMULATIVE (EXISTING + APPROVED/PENDING PROJECTS) CONDITIONS

The City of Oxnard requires that intersection operations be analyzed with the addition of traffic generated by projects which have been approved or are pending within the Project study-area. Trip generation estimates were developed for the cumulative developments using the rates presented in the ITE, <u>Trip Generation</u>, 9th Edition. Table 5 summarizes the average daily, A.M. and P.M. peak hour trip generation estimates for the approved/pending projects.

No.	Project	Land Use	Units/Size	ADT	A.M. Peak Hour	P.M. Peak Hour
1.	Channel Islands Apts.	Multi-Family Res.	72 units	474	33	42
2.	Cheyenne Development	Single Family Res.	3 units	28	2	3
3.	Triplex	Multi-Family Res.	3 units	20	1	2
4.	Naumann Ranch	Multi-Family Res.	101 units	666	46	58
4.	Naumann Kanch	Assisted Living	70 units	197	13	21
6.	Coptic Church	Church	35,000 SF	319	20	20
			Total Trips :	1,704	115	146

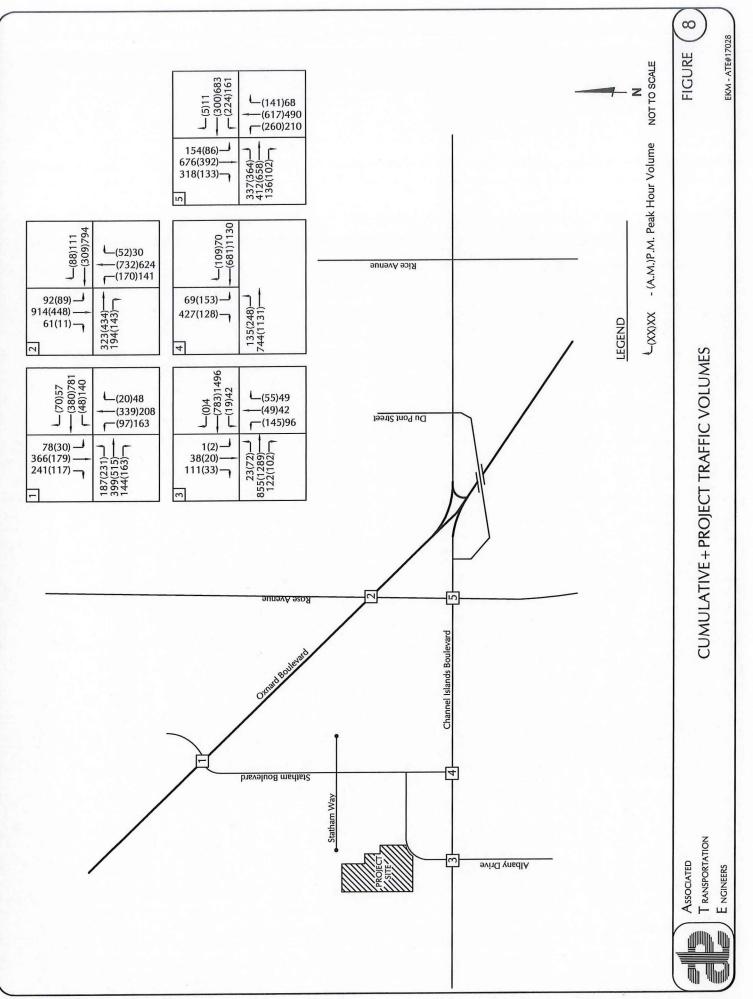
Table 5Approved/Pending Projects Trip Generation

The data presented in Table 5 indicate that the approved/pending projects would generate a total of 1,704 average daily trips, 115 A.M. peak hour trips and 146 P.M. peak hour trips. The traffic generated by the approved/pending projects was distributed and assigned to the study-area intersections based on the location of each project, recent traffic studies, existing traffic patterns observed in the study area as well as a general knowledge of the population, employment and commercial centers in Oxnard and surrounding Ventura County area. Figure 7 illustrates the Cumulative peak hour traffic volumes at the study-area intersections. The Cumulative levels of service for the study-area intersections are shown in Table 6.

13

		A.M. Pea	ak Hour	P.M. Peak Hour		
Intersection	Control Type	ICU	LOS	ICU	LOS	
Rose Avenue/Oxnard Boulevard	Signal	0.33	LOS A	0.62	LOS B	
Rose Avenue/Channel Islands Boulevard	Signal	0.50	LOS A	0.59	LOS A	
Channel Islands Boulevard/Statham Boulevard	Signal	0.46	LOS A	0.59	LOS A	
Channel Islands Boulevard/Albany Drive	Signal	0.62	LOS B	0.40	LOS A	
Oxnard Boulevard/Statham Boulevard	Signal	0.42	LOS A	0.65	LOS B	

Table 6Cumulative A.M. and P.M. Peak Hour Levels of Service


The data presented in Table 6 indicate that the study-area intersections would operate at LOS B or better during the A.M. and P.M. peak hour periods with cumulative traffic volumes, which meets the City's LOS C standard.

Cumulative + Project Impacts

Levels of service were calculated for the study-area intersections assuming the Cumulative + Project volumes illustrated on Figure 8. Tables 7 and 8 show the results of the calculations and identify the impacts of the Project based on City of Oxnard thresholds.

	Cumulative		Cumulative + Project			
Intersection	ICU	LOS	ICU	LOS	Change	Impact?
Rose Avenue/Oxnard Boulevard	0.33	LOS A	0.33	LOS A	0.00	No
Rose Avenue/Channel Islands Boulevard	0.50	LOS A	0.50	LOS A	0.00	No
Channel Islands Boulevard/Statham Boulevard	0.46	LOS A	0.46	LOS A	0.00	No
Channel Islands Boulevard/Albany Drive	0.62	LOS B	0.62	LOS B	0.00	No
Oxnard Boulevard/Statham Boulevard	0.42	LOS A	0.43	LOS A	0.01	No

Table 7Cumulative + Project A.M. Peak Hour Levels of Service

Intersection	Cumulative		Cumulative + Project			
	ICU	LOS	ICU	LOS	Change	Impact?
Rose Avenue/Oxnard Boulevard	0.62	LOS B	0.63	LOS B	0.01	No
Rose Avenue/Channel Islands Boulevard	0.59	LOS A	0.59	LOS A	0.00	No
Channel Islands Boulevard/Statham Boulevard	0.59	LOS A	0.59	LOS A	0.00	No
Channel Islands Boulevard/Albany Drive	0.40	LOS A	0.40	LOS A	0.00	No
Oxnard Boulevard/Statham Boulevard	0.65	LOS B	0.66	LOS B	0.01	No

Table 8Cumulative + Project P.M. Peak Hour Levels of Service

The data presented in Tables 7 and 8 indicate that the Project would not generate significant cumulative impacts to the study-area intersections based on the City of Oxnard's traffic impact thresholds during the A.M. or the P.M. peak hour periods. The addition of Project trips would not result in an impact since the intersections operate al LOS B or better and the increase in the ICU values is less than 0.02.

SITE ACCESS

As illustrated on Figure 2, access to the Project site would be provided by Statham Parkway and a new 25-foot wide driveway connection to Albany Drive. Employees and delivery trucks will enter the site via Statham Parkway. Employees will exit the site via Statham Parkway. Loaded delivery trucks will exit the site via the new Albany Drive connection.

Statham Parkway is an industrial collector street that its approximately 40 feet wide. The roadway provides access to the industrial buildings located to the north, south and west. The roadway has adequate capacity to accommodate the traffic generated by the Project.

The Albany Drive driveway will be designed and constructed to City of Oxnard design standards. Albany Drive is generally straight and level however the new Project driveway is located in a 90 degree curve. The sight distance should be evaluated at the driveway when the improvement plans are submitted to verify that the proposed location provides adequate sight lines. Given the estimated Project trip generation and traffic on Albany Drive (14 exiting truck trips per day), the driveway would operate at an acceptable level of service. The Project will be required to complete any and all necessary roadway improvements on Albany Drive along its frontage.

VEHICLE FLEET

Dixieline Lumber and Home Centers will maintain a fleet of 6 forklifts and 3 delivery trucks on-site. Forklifts will be parked inside the warehouse building at the end of each work day to protect the equipment from the elements. The delivery truck fleet will consist of the following types of truck (descriptions included in the Technical Appendix). 1 Freightliner M2-106; 1 Freightliner Cascadia 125; 1 Freightliner 114-SD. Additional third party owned trucks will be used for deliveries on an as-needed basis. Delivery trucks will be loaded the night before and stagged in the drive aisle of the lumber yard for deliveries the next morning (see Figure 2).

PROJECT RAIL SERVICE

In addition to truck deliveries, the Project site will be served by heavy rail. The Ventura County Rail Road (VCRR) is the local provider of rail service in the area. A VCRR track runs adjacent to the Project's western boundary. A new rail spur with will be constructed as part of the Project's improvements as shown on the site plan.

The existing VCRR rail service crosses Channel Islands Boulevard and Oxnard Boulevard in the study-area twice each day. The VCRR will provide rail service to the Project Monday through Friday, between the hours of 9:00 A.M. to 3:00 P.M.(outside of the A.M. and P.M. peak hour periods). Deliveries to the Project site would occur on existing scheduled train routes and no new train crossings of Channel Islands Boulevard or Oxnard Boulevard would occur. The average train length is 15 rail cars. The proposed switch will allow trains to enter the site from

the north which creates the least amount of street interference to Channel Islands Boulevard or Oxnard Boulevard. With the proposed switch and by entering the site from the north, the rail crossing gates at Channel Islands Boulevard and Oxnard Boulevard would not be down and traffic flows would not be interrupted. In the event that a train blocks a roadway during a switch, the VCRR standard practice is to abandon rail switches and move the train in the event of emergency response vehicles.

PROJECT MITIGATION MEASURES

Based on the City of Oxnard traffic impact thresholds, it was determined that the Project would not generate significant impacts at the six study-area intersections. Thus no mitigation measures were developed for the study-area intersections under the City's jurisdiction. The Project would, however, be required to pay the City's traffic mitigation fees to off-set it's contribution to cumulative traffic volumes in the City.

VENTURA COUNTY GENERAL PLAN CONSISTENCY

The City of Oxnard and Ventura County have executed a "Reciprocal Traffic Mitigation Agreement" wherein the City and the County agree that a pro-rata share of the cost of mitigations will be collected by each agency for identified traffic impacts in the other jurisdiction. The Project would be consistent with the Ventura County General Plan by complying with the terms of the "Reciprocal Traffic Mitigation Agreement" between the City of Oxnard and the County of Ventura approved on February 2, 1993.

VENTURA COUNTY CONGESTION MANAGEMENT PROGRAM

According to the County's Congestion Management Program (CMP), the minimum acceptable standard for traffic operations is LOS E.¹ However, so that local jurisdictions are not unfairly penalized for existing congestion, CMP locations currently operating in the LOS F range are considered acceptable.

Intersection Operation

The study-area intersections along Oxnard Boulevard and Channel Islands Boulevard are included in the County's CMP. The intersections are all expected to operate at LOS B or better with the addition of Cumulative + Project peak hour volumes, and thus would not exceed the CMP LOS E standard.

<u>Traffic LOS Monitoring for the Ventura County Congestion Management Program</u>, Ventura County Transportation Commission, 2009.

REFERENCES AND PERSONS CONTACTED

Associated Transportation Engineers

Scott A. Schell, AICP, PTP, Principal Planner Darryl F. Nelson, Senior Transportation Planner Erica K. Monson, Traffic Technician I

Persons Contacted

Earnel Bihis, City of Oxnard Clinton Ashmead, Genesse & Wyoming Rail Road

References

Highway Capacity Manual, Transportation Research Board, National Research Council, 2000.

Trip Generation, Institute of Transportation Engineers, 9th Edition, 2013.

<u>Traffic LOS Monitoring for the Ventura County Congestion Management Program</u>, Ventura County Transportation Commission, 2009.