This document is released for the purpose of information exchange review and planning only under the authority of Tracy Anne Clinton, September 2017, State of California, PE No. 48199 and Christopher Alan Carvalho, September 2017, State of California, PE No. E20740.
PREFACE

The analysis and evaluations contained in these Project Memorandum (PM) are based on data and information available at the time of the original date of publication, December 2015. After development of the December 2015 Final Draft PMs, the City continued to move forward on two concurrent aspects: 1) advancing the facilities planning for the water, wastewater, recycled water, and stormwater facilities; and 2) developing Updated Cost of Service (COS) Studies (Carollo, 2017) for the wastewater/collection system and the water/distribution system. The updated 2017 COS studies contain the most recent near-term Capital Improvement Projects (CIP). The complete updated CIP based on the near-term and long-term projects is contained in the Brief History and Overview of the City of Oxnard Public Works Department’s Integrated Planning Efforts: May 2014 – August 2017 section.

At the time of this Revised PWIMP, minor edits were also incorporated into the PMs. Minor edits included items such as table title changes and updating reports that were completed after the December 2015 original publication date.
City Of Oxnard
Public Works Integrated Master Plan

WASTEWATER

PROJECT MEMORANDUM 3.10
SCADA ASSESSMENT

TABLE OF CONTENTS

Page No.
1.0 INTRODUCTION .. 1
 1.1 PMs Used for Reference ... 1
 1.2 Other Reports Used for Reference ... 1

2.0 SUMMARY OF FINDINGS ... 1
 2.1 Existing System ... 1
 2.2 Condition ... 2

3.0 SCADA SYSTEM NEEDS .. 3
 3.1 Recommended Projects .. 3

4.0 CAPITAL IMPROVEMENT PROGRAM ... 8
 4.1 Unit Costs .. 8

APPENDIX A – WASTEWATER PCM EVALUATION
APPENDIX B – PLC LIFECYCLES
APPENDIX C - ICS NETWORK ARCHITECTURE

LIST OF TABLES

Table 1 Recommended Capital Improvement Projects, Cost Estimates, and Phasing for OWTP SCADA .. 8
1.0 INTRODUCTION

The purpose of this Project Memo (PM) is to develop the list of projects to be included in the wastewater Capital Improvement Program (CIP) of the Public Works Integrated Master Plan (PWIMP) with associated project cost and drivers. The CIP is an estimate of the City’s capital expenses over the next 25 years to address limitations, rehabilitation needs, and recommended improvements to the wastewater treatment plant. The CIP is intended to assist the City in planning future budgets and making financial decisions.

1.1 PMs Used for Reference

The recommendations outlined in this PM include recommendations from the following other PMs:

- PM 3.2 - Wastewater - Flow and Load Projections.
- PM 3.4 - Wastewater - Treatment Plant Performance and Capacity.
- PM 3.5 - Wastewater - Condition Assessment.
- PM 3.6 - Wastewater - Seismic Assessment.
- PM 3.9 - Wastewater - Arc Flash Assessment.
- PM 3.7 - Wastewater - Treatment Alternatives.

1.2 Other Reports Used for Reference

In developing this report, recommendations from other reports were incorporated to ensure a holistic and, un-biased approach. The followings reports are used in this PWIMP analysis:

2.0 SUMMARY OF FINDINGS

2.1 Existing System

The City of Oxnard’s Waste Water Treatment Plant SCADA System provides plant automation and operates on obsolete hardware and software. The Supervisory Control and Data Acquisition (SCADA) system is a computer system that monitors and controls the facility-based processes. The SCADA system consists of the following subsystems:
SCADA-based Human Machine Interface (HMI), which is the apparatus that presents process data to the human operator; and through this the human operator monitors and controls the process.

A SCADA computer system, acquiring and storing data on the process from the programmable logic controllers (PLCs) and controlling the process by sending commands to the PLC.

Communication infrastructure connecting the SCADA system to the PLCs.

The Oxnard Waste Water Treatment Plant uses a Supervisory Control and Data Acquisition (SCADA) process control system to monitor and control processes at the facility. The automation hardware inside the WW facility was installed as an upgrade to the facility in approximately 1990. It consists primarily of SquareD SY/MAX PLCs interfaced over a RS422 Communication bus for Peer to Peer (PLC to PLC) and PLC to HMI communications. This uses a low bandwidth, ASCII based protocol. There is a Primary and a Secondary Kepware KEPServer that each function as an OPC bridge to provide data to the FactoryTalk View SE 6.0 HMI software platform.

The Lift Stations use an Allen Bradley CompactLogix L33E PLC with local I/O for control. These are interfaced into the rest of the SCADA system through copper phone lines. The phone lines are operated and maintained by Verizon, the local phone provider. There were numerous discussions with plant personnel in regards to the copper lines being switched to fiber. Fiber optic cable provides would provide a much higher data bandwidth to the stations. However, this upgrade is being performed by Verizon and it is unclear when the upgrade would be performed.

2.2 Condition

The life cycle of the SquareD SY/MAX PLC platform ended in the mid-1990s and the last hardware components became obsolete in 2002. Replacement parts are not widely available and would need to be sourced through a 3rd party vendor. These PLCs control nearly the entire WW facility, a PLC hardware failure could mean that an entire section of the facility would have to be operated in manual, with little to no process visualization by which to make process decisions. The current programs were uploaded by Pacific Rim Automation, and are undocumented. This makes any modification of the original code very labor intensive.

The overall wiring condition of the SCADA systems are fair to poor, which is to be expected for the age of the system(s). In discussions with staff that maintains the equipment, many of the repairs to the wiring have gone undocumented, and visual inspection of cabinets verified these reports. Much of the downtime related to the SCADA system stems from loose or failing wire connections, and tracing wires to their source to troubleshoot an outage.
There are also reports of communication faults within the system due to Electro-Magnetic Interference (EMI) that happen during regular system events, such as large motors starting and stopping. This is likely due to poor cable, non-isolated wiring, incorrect shielding, and terminating. These events compound themselves by causing SY/MAX nodes to try and re-establish themselves on the network, resulting in unscheduled messages that will lock-up the OPC server(s). This causes reduced process visualization and disruption of the control system for relatively short amounts of time.

3.0 SCADA SYSTEM NEEDS

3.1 Recommended Projects

3.1.1 PLC Cabinet Replacements

There is an immediate concern surrounding the age of PLCs and equipment used at the waste water treatment facility. It is highly recommended that installation of new PLCs and control cabinets should accompany any process equipment upgrades or replacements. This allows for the process controls to be optimized in a new system rather than conform to the footprint of the existing system, as the existing programs would be difficult and expensive to modify. Based on the city’s desire to match the architecture used at the Advanced Water Purification Facility, any new PLC’s should be in the Allen Bradley Logix 5000 family of controllers. In interviews with plant personnel, this preference was also expressed.

The present state of the panels is such that a field cleanup of the panels is less cost effective than a replacement of the panel in its entirety, given the wiring conditions and age of other equipment inside.

3.1.2 PLC System Standardization

A PLC is an industrialized computer used to automate process used for the treatment and/or conveyance of water. Typically, each major process will have its own PLC.

During interviews with city personnel and ProUsys, there was a preference expressed for the Allen Bradley ControlLogix platform. As this was the platform used in the newly constructed Recycled Water Processing Facility, it is recommended that any new PLCs should also be of the Allen Bradley ControlLogix or CompactLogix platform.

Each PLC processor should be sized to support the required input/output (I/O) plus 25 percent spare I/O capacity for each type of I/O signal at every PLC. All spare I/O points shall be wired to field terminal blocks in the PLC cabinet. The PLC backplane shall include three spare backplane slots or 25 percent additional slots, whichever is greater. Provide a minimum of 50 percent spare program volatile memory. Communication ports should be provided to support the necessary networking requirements of the specific project. Provide a minimum of one Ethernet/IP port for connection to the process communications network as well as uploading and downloading of PLC application programs.
3.1.3 **HMI System Standardization**

The HMI is defined as operator interface devices with a graphic display. These provide operations or maintenance staff access to control and monitor process activities, setpoints, equipment status, and alarms within the PLC. The City of Oxnard’s Waste Water facility HMI application was built with Rockwell Automation’s Factory Talk View SE 6.0 software. Any new PLC should interface with the existing application, and the existing application should be modified to accommodate the new PLC.

3.1.4 **Typical Control Methodologies**

3.1.4.1 **Process Control Interface System (PCIS) Control**

The PCIS system refers to the operator interface system consisting of both the HMI and the SCADA interface.

Where indicated, provide HAND-OFF-AUTO and START-STOP selections in the PCIS, accessed from an HMI or SCADA for operators with sufficient security, to provide the following operating modes:

1. **PCIS AUTO**: The normal, automatic control mode of the strategy, which allows full PLC control in response to process conditions and programmed sequences.

2. **PCIS HAND**: Enables PCIS Manual control where control decisions are made by an operator through the PCIS START-STOP, OPEN/CLOSE, or other selections as indicated.

3. **PCIS OFF**: Automated PCIS control is disabled and PLC calls for all associated equipment to stop and valves to close or go to their identified safe state.

4. Program the PLC so that switching strategy between AUTO and HAND (either direction) occurs with a smooth transition. Keep running or position status unchanged when control is switched to HAND until a change is requested using the operator selections (START, STOP, OPEN, CLOSE). Keep running and position status unchanged when control is switched to AUTO until the control logic determines a change is required.

3.1.4.2 **Motor Control**

1. Provide local controls at each motor. The controls could be housed in a local control panel (LCP) at each motor or at the compartment containing the motor control hardware in the motor control center (MCC):
 a. LOCAL-OFF-REMOTE (LOR) selector switch.
 b. START pushbutton.
 c. STOP pushbutton.
2. Monitor the device’s LOR switch to determine when the PLC has control of the associated equipment:
 a. Display current REMOTE status on the SCADA and HMI screens.

3. Monitor the device’s running status from the starter auxiliary or run status input:
 a. Display the current status (running or stopped) on the SCADA and HMI screens.
 b. Use status to calculate total run time and daily run time, and to count total starts and daily starts.
 c. Provide time stamp for each start.

4. For motors 200 hp and greater, provide software to prevent exceeding the manufacturer’s recommended maximum starts per hour.

5. When equipment control has been given to the PLC as reported by the LOCAL-OFF-REMOTE switch, allow selection of PCIS AUTO or PCIS HAND control modes based upon operator selection using the SCADA or HMI screens.

6. Starting, Stopping, and running when the device LOR is in LOCAL:
 a. With the LOR switch in the LOCAL position, the motor is controlled by the START and STOP pushbuttons.
 b. With the LOR switch in the OFF position, the motor is prohibited from running.
 c. With the LOR switch in the REMOTE position, the motor is controlled remotely.

7. Starting, stopping, and running when the device LOR is in REMOTE:
 a. When the motor is expected to be running (PLC has issued a START or RUN due to process conditions or operator selection), LOR is in REMOTE, and the device is not reported to be running, start an operator adjustable “Control Activation” time:
 1) Provide “Control Activation” timers for each piece of controlled equipment:
 a) If the LOR and required running status do not change, and the PLC does not receive running status within the “Control Activation” time period:
 (1) De-activate the output.
 (2) Place the device in a “Failed” state.
 (3) Generate a “Failed to Respond” alarm.
 b. When the motor is not expected to be running (PLC has issued a STOP or removed the RUN output, LOR is in REMOTE, and the device is reported to be running, start the “Control Activation” timer:
 1) If the LOR and required stopped status do not change, and the PLC does not lose the running status within the “Control Activation” timer period:
 a) Keep the RUN output off or the STOP output on.
 b) Place the device in a “Failed” state.
 c) Generate a “Failed to Respond” alarm.
c. Re-establish PLC control of a device in a “Failed” state only after operator turns the device’s LOR switch out of REMOTE, and back to REMOTE (i.e., REMOTE input to the PLC cycles off and back on).

8. Simultaneous starts:
 a. Prevent more than one motor-driven load 25 hp or larger in the same facility from starting concurrently:
 1) When starting one load, inhibit start logic for all other such equipment until the load being started is up to speed (reduced voltage solid state RVSS or variable frequency drive VFD, or after a setpoint time delay (full-voltage starters and miscellaneous equipment).
 b. Use the same logic to prevent multiple large devices from starting concurrently on restoration of power after a power outage, whether operating on generator or utility power.

9. Speed control:
 a. Modulate speed on VFD-driven motors using jog and hold, or process identification document (PID) control algorithms to maintain process conditions as described in the specific loop descriptions.
 b. Operate speed control within a pre-defined range:
 1) Minimum speed as determined by equipment manufacturer. The higher of:
 a) Minimum motor speed to maintain adequate cooling for the type of load driven (constant or variable torque).
 b) Minimum equipment speed, such as minimum speed to deliver flow or to deliver minimum flow for equipment cooling or lubrication.
 2) Maximum speed 100 percent (60 Hz) or as identified by equipment manufacturer.
 c. Where multiple equipment may operate together to maintain the same process condition:
 1) Provide an operator selection for starting sequence.
 2) Start the first equipment at a preset starting speed.
 3) When one or more equipment is running and the speed control algorithm reaches a preset “Start Nex” speed value (initially 95 percent of speed range) through a preset time delay:
 a) Start the next available equipment at the preset starting speed.
 b) Ramp speed of previously running equipment down to a preset value based on the number of items running. Determine preset values for each condition based on equipment and system characteristics to provide approximately the same flow or process condition with the new load running at the starting speed.
c) Once the previously running equipment reaches the preset speed, resume the speed control algorithm for that equipment.

d) Ramp the speed of the equipment that had just started until it reaches the speed of the previously running equipment.

e) Operate all equipment at the same speed following the output of the speed control algorithm.

4) When two or more pieces of equipment are running, monitor for a “Stop Next” condition:

a) Where flow rate is monitored, use a preset “Stop Next” flow rate for each possible number and combination of equipment:

 (1) Determine initial “Stop Next” speed based on the flow that can be provided with one fewer piece of equipment running at a speed slightly below the “Start Next” speed.

b) When the “Stop Next” condition exists through a preset time delay:

 (1) Ramp Speed of running equipment except for the equipment to be stopped up to a preset value based on the number of items running. Determine preset values for each condition based on equipment and system characteristics to provide approximately the same total flow or process condition with one fewer load running (typically slightly below the preset “Start Next” speed) while ramping speed of equipment to be stopped down to the preset minimum speed.

 (2) Stop the load once it reaches minimum speed.

 (3) Operate all remaining equipment at the same speed following the output of the speed control algorithm.

3.1.5 Facility SCADA and Control Communication Networking Standardization

For PLC and SCADA, networks will utilize a fiber optic backbone for Ethernet/IP communication throughout the facility. Managed Ethernet switches shall be located in each PLC or network panel for both the SCADA and PLC network. A connection port shall be provided on the front of all PLC cabinets to allow connection to the SCADA network. Switches shall utilize the IEEE Rapid Spanning Tree Protocol (RSTP) for network routing and optimization in a ring topology. In the event of a network switch failure, RSTP will automatically determine the most efficient way to re-route network traffic in order to re-establish communication throughout the network. Vendor PLCs and control panels will also comply with this design.

Appendix C contains a typical diagram for an Industrial Network with the architecture and security infrastructure recommended by the National Institute of Standards and Technology (NIST) and the Department of Homeland Security (DHS). Staff interviews indicate that the ability to view facility status throughout the City’s Wide Area Network (WAN) is desired.
Further information can be found in NIST Special Publication (SP) 800-82, *Guide to Industrial Control Systems (ICS) Security*.

4.0 CAPITAL IMPROVEMENT PROGRAM

The purpose of this section is to summarize the estimated capital funding requirements for SCADA system projects. The costs presented here are based on direct replacement of equipment in layouts of the existing system. Project costs are estimated based on unit costs developed from estimates of similar facilities and configurations at other locations. Please see Project Memo (PM) 1.5 for a more detailed discussion on the Basis of Cost for the costs shown in Table 1.

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Driver</th>
<th>End Year</th>
<th>Start Year</th>
<th>Un-escalated Project Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC Cabinet Replacements (12)</td>
<td>R&R</td>
<td>2018</td>
<td>2015</td>
<td>$4,601,000</td>
</tr>
<tr>
<td>SCADA Programming (12)</td>
<td>Performance</td>
<td>2021</td>
<td>2016</td>
<td>$4,989,000</td>
</tr>
<tr>
<td>Asset Management Software Package Installation</td>
<td>Performance</td>
<td>2022</td>
<td>2021</td>
<td>$104,000</td>
</tr>
<tr>
<td>Network Upgrades (12)</td>
<td>Performance</td>
<td>2022</td>
<td>2015</td>
<td>$776,000</td>
</tr>
<tr>
<td>Control Room Upgrades</td>
<td>Performance</td>
<td>2021</td>
<td>2016</td>
<td>$346,000</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td></td>
<td></td>
<td>$10,816,000</td>
</tr>
</tbody>
</table>

Notes:

(1) Project costs, schedules, and phasing are based on data and information available at the time of the original date of preparation – December 2015. The updated CIP is contained in the Brief History section of the PMs, the Summary Report, and the Executive Summary.

4.1 Unit Costs

The unit cost multiplier used was based upon replacement of the existing twelve RTU and “MUX” control panels. For incremental replacements based on the process improvements identified in PM 3.7, the costs can be used proportionally.
APPENDIX A – WASTEWATER PCM EVALUATION
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Plant Control Center
Equipment Name: SYMAX OPC Servers
Discipline: Electrical / Instrumentation

Cabinet ID: ____________________ Inspection Date: 8/6/2014
Cabinet Location: PCC Inspection By: K. Pepler
Process(es) Served: Multiple Install Date: ____________________
Panel Dimensions: ____________________ Condition*: 4 out of 5
GPS Location:

General Comments:

Controller Model: N/A

Component Models

Enclosure
- Model Number: N/A
- NEMA: None
- Mounting: Ambient A/C
- Accessories:
- Side Panels: ____________

UPS
- Model: ____________________
- Size: ____________________
- Communication: SY/COMM to OPC
- Condition*: out of 5

Components

PLC
- Manufacturer: Dell
- Processor: KEPServer
- Communications: SY/COMM to OPC
- Accessories:
- Redundant Processors: Yes

Controller
- Circuit Breaker: ____________________
- SPD: ____________________
- Relays: ____________________
- HMI/OIT: ____________________
- Ethernet: ____________________
- Radio: ____________________
- DC Power Supply: ____________________
- Switches: ____________________
- Amount of I/O: ______
- Other: ____________________

Other
- Picture – Panel External
- Picture – Panel Internal

*Condition
1 – Very Good
2 – Minor Defects
3 – Needs Significant Maintenance
4 – Requires Rehabilitation
5 – Requires Replacement (>50%)
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water
Equipment Location: Lift Station 2
Equipment Name: Harbor rd
Discipline: Electrical / Instrumentation

Equipment Information

- Cabinet ID: Lift Station 2
- Cabinet Location: Lift Station 2
- Process(es) Served: Lift Station 2
- Panel Dimensions: 34.151856, -119.180149
- GPS Location: 34.151856, -119.180149
- Controller Model: AB Compact Logix

General Comments:
Manual Pump Controls on Front Cabinet which has pump controls.
Rear cabinet houses Control System hardware.

Controller Model: AB Compact Logix

Component Models

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number:</td>
<td>4X</td>
</tr>
<tr>
<td>NEMA:</td>
<td>4X</td>
</tr>
<tr>
<td>Mounting:</td>
<td>Flange</td>
</tr>
<tr>
<td>Thermal Management:</td>
<td>Forced Air</td>
</tr>
<tr>
<td>Accessories:</td>
<td>No</td>
</tr>
<tr>
<td>Side Panels:</td>
<td>No</td>
</tr>
<tr>
<td>PLC</td>
<td></td>
</tr>
<tr>
<td>Manufacturer:</td>
<td>Allen Bradley</td>
</tr>
<tr>
<td>Processor:</td>
<td>L34E</td>
</tr>
<tr>
<td>Communications:</td>
<td>Ethernet / Modem</td>
</tr>
<tr>
<td>Accessories:</td>
<td></td>
</tr>
<tr>
<td>Redundant Processors:</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model:</td>
</tr>
<tr>
<td>Size:</td>
</tr>
<tr>
<td>Communication:</td>
</tr>
<tr>
<td>Condition*:</td>
</tr>
<tr>
<td>Circuit Breaker:</td>
</tr>
<tr>
<td>SPD:</td>
</tr>
<tr>
<td>Relays:</td>
</tr>
<tr>
<td>HMI/OIT:</td>
</tr>
<tr>
<td>Ethernet:</td>
</tr>
<tr>
<td>Radio:</td>
</tr>
<tr>
<td>DC Power Supply:</td>
</tr>
<tr>
<td>Switches:</td>
</tr>
<tr>
<td>Amount of I/O:</td>
</tr>
<tr>
<td>Other:</td>
</tr>
</tbody>
</table>
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water
Equipment Location: Lift Station 4
Equipment Name:
Discipline: Electrical / Instrumentation

Equipment Information

<table>
<thead>
<tr>
<th>Cabinet ID:</th>
<th>Lift Station 4</th>
<th>Inspection Date: 8/6/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet Location:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process(es) Served:</td>
<td>Lift Station 4</td>
<td></td>
</tr>
<tr>
<td>Panel Dimensions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS Location:</td>
<td>34.190296, -119.242545</td>
<td>Condition*: 3 out of 5</td>
</tr>
</tbody>
</table>

General Comments:
Manual Pump Controls on Front Cabinet which has pump controls.
Rear cabinet houses Control System hardware.

Controller Model: AB Compact Logix

Component Models

Enclosure

| Model Number: |
NEMA:	4X
Mounting:	Flange
Thermal Management:	Forced Air
Accessories:	
Side Panels:	No

PLC

Manufacturer:	Allen Bradley
Processor:	L34E
Communications:	Ethernet / Modem
Accessories:	
Redundant Processors:	No

UPS

| Model: | Yes |
| Size: |
| Communication: |
| Condition*: | out of 5 |

Components

| Circuit Breaker: |
| SPD: |
| Relays: |
| HMI/OIT: |
| Ethernet: | 1 Switch |
| Radio: |
| DC Power Supply: |
| Switches: |
| Amount of I/O: | 7 |
| Other: Cabinets Built by FluidIQs |

City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Lift Station 8
Equipment Name:
Discipline: Electrical / Instrumentation

Cabinet ID: Lift Station 8 Inspection Date: 8/6/2014
Cabinet Location: Lift Station 8 Inspection By: K. Pepler
Process(es) Served: Lift Station 8 Install Date:
Panel Dimensions: Condition*: 3 out of 5
GPS Location: 34.188542, -119.224652

General Comments:
Manual Pump Controls on Front Cabinet which has pump controls.
Rear cabinet houses Control System hardware.

Controller Model: AB Compact Logix

Component Models

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number:</td>
<td>Model: Yes</td>
</tr>
<tr>
<td>NEMA:</td>
<td>Size:</td>
</tr>
<tr>
<td>Mounting: Flange</td>
<td>Communication:</td>
</tr>
<tr>
<td>Thermal Management: Forced Air</td>
<td>Condition*: out of 5</td>
</tr>
<tr>
<td>Accessories:</td>
<td></td>
</tr>
<tr>
<td>Side Panels: No</td>
<td>Circuit Breaker:</td>
</tr>
<tr>
<td>PLC</td>
<td></td>
</tr>
<tr>
<td>Manufacturer: Allen Bradley</td>
<td>SPD:</td>
</tr>
<tr>
<td>Processor: L34E</td>
<td>HMI/OIT:</td>
</tr>
<tr>
<td>Communications: Ethernet / Modem</td>
<td>Ethernet: 1 Switch</td>
</tr>
<tr>
<td>Accessories:</td>
<td>Radio:</td>
</tr>
<tr>
<td>Redundant Processors: No</td>
<td>DC Power Supply:</td>
</tr>
<tr>
<td></td>
<td>Switches:</td>
</tr>
<tr>
<td></td>
<td>Amount of I/O: 7</td>
</tr>
<tr>
<td>Other: Cabinets Built by FluidIQs</td>
<td></td>
</tr>
</tbody>
</table>
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: MCC DP1A
Equipment Name:
Discipline: Electrical / Instrumentation

Equipment Information

<table>
<thead>
<tr>
<th>Cabinet ID:</th>
<th>MCC DP1A</th>
<th>Inspection Date: 8/6/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet Location:</td>
<td>Sedimentation Bldg</td>
<td>Inspection By: K. Pepler</td>
</tr>
<tr>
<td>Process(es) Served:</td>
<td>Sedimentation</td>
<td>Install Date:</td>
</tr>
<tr>
<td>Panel Dimensions:</td>
<td></td>
<td>Condition*: 3 out of 5</td>
</tr>
<tr>
<td>GPS Location:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Comments:

Controller Model:

Component Models

Enclosure
Model Number: N/A
NEMA: 12
Mounting:
Thermal Management:
Accessories:
Side Panels:
PLC
Manufacturer: N/A
Processor: N/A
Communications: Hardwired
Accessories:
Redundant Processors:

UPS
Model:
Size:
Communication:
Condition*: out of 5

Components
Circuit Breaker:
SPD:
Relays:
HMI/OIT:
Ethernet:
Radio:
DC Power Supply:
Switches:
Amount of I/O:
Other:

*Condition
1 – Very Good
2 – Minor Defects
3 – Needs Significant Maintenance
4 – Requires Rehabilitation
5 – Requires Replacement (>50%)
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Sedimentation
Equipment Name: MCC DP1B
Discipline: Electrical / Instrumentation

Equipment Information

<table>
<thead>
<tr>
<th>Cabinet ID:</th>
<th>MCC DP1B</th>
<th>Inspection Date: 8/6/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet Location:</td>
<td>Sedimentation</td>
<td>Inspection By: K. Pepler</td>
</tr>
<tr>
<td>Process(es) Served:</td>
<td>Sedimentation</td>
<td>Install Date:</td>
</tr>
<tr>
<td>Panel Dimensions:</td>
<td></td>
<td>Condition*: 3 out of 5</td>
</tr>
<tr>
<td>GPS Location:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Comments:

Controller Model: __

Component Models

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number:</td>
<td>Model:</td>
</tr>
<tr>
<td>NEMA:</td>
<td>Size:</td>
</tr>
<tr>
<td>Mounting:</td>
<td>Communication:</td>
</tr>
<tr>
<td>Thermal Management:</td>
<td>Condition*: out of 5</td>
</tr>
<tr>
<td>Accessories:</td>
<td></td>
</tr>
<tr>
<td>Side Panels:</td>
<td>Circuit Breaker:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer:</td>
</tr>
<tr>
<td>Processor:</td>
</tr>
<tr>
<td>Communications:</td>
</tr>
<tr>
<td>Accessories:</td>
</tr>
<tr>
<td>Redundant Processors:</td>
</tr>
</tbody>
</table>

Other: ____________________________

*Condition
1 – Very Good
2 – Minor Defects
3 – Needs Significant Maintenance
4 – Requires Rehabilitation
5 – Requires Replacement (>50%)
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Influent Pump Station
Equipment Name: MCC DP2A
Discipline: Electrical / Instrumentation

Equipment Information

- **Cabinet ID:** ______________
- **Inspection Date:** 8/6/2014
- **Cabinet Location:** Influent PS
- **Inspection By:** K. Pepler
- **Process(es) Served:** Influent
- **Install Date:**
- **Panel Dimensions:**
- **Condition**: 2 out of 5

Picture – Panel External

Picture – Panel Internal

GPS Location:

General Comments:

Controller Model: SquareD SY/MAX

Component Models

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number:</td>
<td>Model:</td>
</tr>
<tr>
<td>NEMA:</td>
<td>Size:</td>
</tr>
<tr>
<td>Mounting:</td>
<td>Communication:</td>
</tr>
<tr>
<td>Thermal Management:</td>
<td>Condition: out of 5</td>
</tr>
<tr>
<td>Accessories:</td>
<td>Components</td>
</tr>
<tr>
<td>Side Panels:</td>
<td>Circuit Breaker:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLC</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer: SquareD</td>
<td>SPD:</td>
</tr>
<tr>
<td>Processor: SY/MAX 400</td>
<td>Relays:</td>
</tr>
<tr>
<td>Communications: SY/COMM</td>
<td>HMI/OIT:</td>
</tr>
<tr>
<td>Accessories:</td>
<td>Ethernet:</td>
</tr>
<tr>
<td>Redundant Processors:</td>
<td>Radio:</td>
</tr>
<tr>
<td>Amount of I/O:</td>
<td>DC Power Supply:</td>
</tr>
<tr>
<td>Other:</td>
<td>Switches:</td>
</tr>
</tbody>
</table>

*Condition:

1 – Very Good
2 – Minor Defects
3 – Needs Significant Maintenance
4 – Requires Rehabilitation
5 – Requires Replacement (>50%)

City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: MCC DP3C
Equipment Name: MCC DP3C
Discipline: Electrical / Instrumentation

Equipment Information

<table>
<thead>
<tr>
<th>Cabinet ID</th>
<th>MCC DP3C</th>
<th>Inspection Date: 8/6/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet Location</td>
<td>MCC DP3C</td>
<td>Inspection By: K. Pepler</td>
</tr>
<tr>
<td>Process(es) Served</td>
<td></td>
<td>Install Date:</td>
</tr>
<tr>
<td>Panel Dimensions</td>
<td></td>
<td>Condition*: 3 out of 5</td>
</tr>
<tr>
<td>GPS Location</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Comments:

*Condition
1 – Very Good
2 – Minor Defects
3 – Needs Significant Maintenance
4 – Requires Rehabilitation
5 – Requires Replacement (>50%)

Controller Model:__________________________

Component Models

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number:</td>
<td>Model:</td>
</tr>
<tr>
<td>NEMA:</td>
<td>Size:</td>
</tr>
<tr>
<td>Mounting:</td>
<td>Communication:</td>
</tr>
<tr>
<td>Thermal Management:</td>
<td>Condition*: out of 5</td>
</tr>
<tr>
<td>Accessories:</td>
<td></td>
</tr>
<tr>
<td>Side Panels:</td>
<td>Circuit Breaker:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer: SquareD</td>
</tr>
<tr>
<td>Processor: SY/MAX 400</td>
</tr>
<tr>
<td>Communications: SY/COMM</td>
</tr>
<tr>
<td>Accessories:</td>
</tr>
<tr>
<td>Redundant Processors:</td>
</tr>
<tr>
<td>DC Power Supply:</td>
</tr>
<tr>
<td>Switches:</td>
</tr>
<tr>
<td>Other:</td>
</tr>
</tbody>
</table>
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Sedimentation
Equipment Name: MCC EDP1A
Discipline: Electrical / Instrumentation

Equipment Information

Cabinet ID: ___________________________ Inspection Date: 8/6/2014
Cabinet Location: _________________________ Inspection By: K. Pepler
Process(es) Served: _________________________ Install Date: _________________________
Panel Dimensions: _________________________ Condition*: 3 out of 5
GPS Location:

Picture – Panel External

Picture – Panel Internal

General Comments:

Controller Model: __

*Condition
1 – Very Good
2 – Minor Defects
3 – Needs Significant Maintenance
4 – Requires Rehabilitation
5 – Requires Replacement (>50%)

Component Models

Enclosure
Model Number: ___________________________
NEMA: ___________________________
Mounting: ___________________________
Thermal Management: ___________________________
Accessories: ___________________________
Side Panels: ____

PLC
Manufacturer: SquareD
Processor: SY/MAX 400
Communications: SY/COMM
Accessories: ___________________________
Redundant Processors: ____

UPS
Model: ___________________________
Size: ___________________________
Communication: ___________________________
Condition*: out of 5

Components
Circuit Breaker: ___________________________
SPD: ___________________________
Relays: ___________________________
HMI/OIT: ___________________________
Ethernet: ___________________________
Radio: ___________________________
DC Power Supply: ___________________________
Switches: ___________________________
Amount of I/O: _____
Other: ___________________________

Other: ___________________________
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Old Headworks
Equipment Name: MCC EDP1B
Discipline: Electrical / Instrumentation

Equipment Information

<table>
<thead>
<tr>
<th>Cabinet ID:</th>
<th>MCC EDP1B</th>
<th>Inspection Date: 8/6/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet Location:</td>
<td>Old Headworks</td>
<td>Inspection By: K. Pepler</td>
</tr>
<tr>
<td>Process(es) Served:</td>
<td></td>
<td>Install Date:</td>
</tr>
<tr>
<td>Panel Dimensions:</td>
<td></td>
<td>Condition*: 5 out of 5</td>
</tr>
<tr>
<td>GPS Location:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Comments:

Controller Model :

Component Models

Enclosure

- Model Number: _________________________
- NEMA: _________________________
- Mounting: _________________________
- Thermal Management: _________________________
- Accessories: _________________________
- Side Panels: _____

PLC

- Manufacturer: _________________________
- Processor: _________________________
- Communications: _________________________
- Accessories: _________________________
- Redundant Processors: _____

UPS

- Model: _________________________
- Size: _________________________
- Communication: _________________________

Components

- Circuit Breaker: _________________________
- SPD: _________________________
- Relays: _________________________
- HMI/OIT: _________________________
- Ethernet: _________________________
- Radio: _________________________
- DC Power Supply: _________________________
- Switches: _________________________
- Amount of I/O: _____
- Other: _________________________

*Condition
1 – Very Good
2 – Minor Defects
3 – Needs Significant Maintenance
4 – Requires Rehabilitation
5 – Requires Replacement (>50%)
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Old Headworks
Equipment Name: MCC EDP1B-1
Discipline: Electrical / Instrumentation

Equipment Information

- **Cabinet ID:** MCC EDP1B-1
- **Inspection Date:** 8/6/2014
- **Cabinet Location:** Old Headworks
- **Process(es) Served:** Old Headworks
- **Panel Dimensions:**
- **Condition:** 4 out of 5
- **GPS Location:**
- **General Comments:** All but one breaker in MCC was locked out.

Controller Model:

Component Models

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number:</td>
<td>Model:</td>
</tr>
<tr>
<td>NEMA:</td>
<td>Size:</td>
</tr>
<tr>
<td>Mounting:</td>
<td>Communication:</td>
</tr>
<tr>
<td>Thermal Management:</td>
<td>Condition*: out of 5</td>
</tr>
<tr>
<td>Accessories:</td>
<td></td>
</tr>
<tr>
<td>Side Panels:</td>
<td></td>
</tr>
</tbody>
</table>

PLC

- **Manufacturer:** SquareD
- **Processor:** SY/MAX 400
- **Communications:** Hardwired
- **Accessories:**
- **Redundant Processors:**

Components

- **Circuit Breaker:**
- **SPD:**
- **Relays:**
- **HMI/OIT:**
- **Ethernet:**
- **Radio:**
- **DC Power Supply:**
- **Switches:**
- **Amount of I/O:**
- **Other:**

Condition
1 – Very Good
2 – Minor Defects
3 – Needs Significant Maintenance
4 – Requires Rehabilitation
5 – Requires Replacement (>50%)
Facility: Waste Water Campus
Equipment Location: Digesters
Equipment Name: MCC GF
Discipline: Electrical / Instrumentation

Equipment Information

- **Cabinet ID:**
- **Inspection Date:** 8/6/2014
- **Cabinet Location:**
- **Inspection By:** K. Pepler
- **Process(es) Served:**
- **Install Date:**
- **Panel Dimensions:**
- **Condition:** 5 out of 5
- **GPS Location:**

General Comments:

- *Condition*
 1 – Very Good
 2 – Minor Defects
 3 – Needs Significant Maintenance
 4 – Requires Rehabilitation
 5 – Requires Replacement (>50%)

Controller Model:

Component Models

Enclosure

- Model Number:
- NEMA:
- Mounting:
- Thermal Management:
- Accessories:
- Side Panels:

UPS

- Model:
- Size:
- Communication:
- Condition*: out of 5

Components

- Controller Model:
- PLC:
- Manufacturer: SquareD
- Processor: SY/MA
- Communications: Hardwired
- Accessories:
- Redundant Processors:
- SPD:
- Relays:
- HMI/OIT:
- Ethernet:
- Radio:
- DC Power Supply:
- Switches:
- Amount of I/O:
- Other:

City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: North Control Center
Equipment Name: MCC NC
Discipline: Electrical / Instrumentation

Equipment Information

<table>
<thead>
<tr>
<th>Cabinet ID:</th>
<th>MCC NC</th>
<th>Inspection Date:</th>
<th>8/6/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet Location:</td>
<td>North Control Area</td>
<td>Inspection By:</td>
<td>K. Pepler</td>
</tr>
<tr>
<td>Process(es) Served:</td>
<td></td>
<td>Install Date:</td>
<td></td>
</tr>
<tr>
<td>Panel Dimensions:</td>
<td></td>
<td>Condition*:</td>
<td>2 out of 5</td>
</tr>
<tr>
<td>GPS Location:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Comments:

*Condition
1 – Very Good
2 – Minor Defects
3 – Needs Significant Maintenance
4 – Requires Rehabilitation
5 – Requires Replacement (>50%)

Controller Model: _________________________

Component Models

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number:</td>
<td>Model:</td>
</tr>
<tr>
<td>NEMA:</td>
<td>Size:</td>
</tr>
<tr>
<td>Mounting:</td>
<td>Communication:</td>
</tr>
<tr>
<td>Thermal Management:</td>
<td>Condition*: out of 5</td>
</tr>
<tr>
<td>Accessories:</td>
<td></td>
</tr>
<tr>
<td>Side Panels:</td>
<td>Circuit Breaker:</td>
</tr>
<tr>
<td>PLC</td>
<td></td>
</tr>
<tr>
<td>Manufacturer:</td>
<td>SPD:</td>
</tr>
<tr>
<td>Processor:</td>
<td>Relays:</td>
</tr>
<tr>
<td>Communications:</td>
<td>HMI/OIT:</td>
</tr>
<tr>
<td>Accessories:</td>
<td>Ethernet:</td>
</tr>
<tr>
<td>Redundant Processors:</td>
<td>Radio:</td>
</tr>
<tr>
<td>DC Power Supply:</td>
<td></td>
</tr>
<tr>
<td>Switches:</td>
<td>Amount of I/O:</td>
</tr>
<tr>
<td>Other:</td>
<td></td>
</tr>
</tbody>
</table>
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Influent Pump Station
Equipment Name: MUX 20
Discipline: Electrical / Instrumentation

Equipment Information

<table>
<thead>
<tr>
<th>Cabinet ID:</th>
<th>MUX 20</th>
<th>Inspection Date: 8/6/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet Location:</td>
<td>Influent PS</td>
<td>Inspection By: K. Pepler</td>
</tr>
<tr>
<td>Process(es) Served:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel Dimensions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS Location:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Comments:

Condition

1 – Very Good
2 – Minor Defects
3 – Needs Significant Maintenance
4 – Requires Rehabilitation
5 – Requires Replacement (>50%)

Component Models

Enclosure

- **Model Number:**
- **NEMA:**
- **Mounting:**
- **Thermal Management:**
- **Accessories:**
- **Side Panels:**
- **PLC**
 - **Manufacturer:** SquareD
 - **Processor:** SY/MAX 400
 - **Communications:** SY/COMM
- **Redundant Processors:** N

UPS

- **Model:**
- **Size:**
- **Communication:**
- **Condition**: out of 5

Components

- **Circuit Breaker:**
- **SPD:**
- **Relays:**
- **HMI/OIT:**
- **Ethernet:**
- **Radio:**
- **DC Power Supply:**
- **Switches:**
- **Amount of I/O:**
- **Other:**

Controller Model: SquareD SY/MAX
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Sedimentation
Equipment Name: MUX 30
Discipline: Electrical / Instrumentation

Equipment Information

Cabinet ID: ____________________ Inspection Date: 8/6/2014
Cabinet Location: ____________________ Inspection By: K. Pepler
Process(es) Served: ____________________ Install Date: ____________________
Panel Dimensions: ____________________ Condition*: 5 out of 5
GPS Location: ____________________

General Comments:

*Condition
1 – Very Good
2 – Minor Defects
3 – Needs Significant Maintenance
4 – Requires Rehabilitation
5 – Requires Replacement (>50%)

Controller Model: ____________________

Component Models

Enclosure
Model Number: ____________________
NEMA: ____________________
Mounting: ____________________
Thermal Management: ____________________
Accessories: ____________________
Side Panels: ______

PLC
Manufacturer: SquareD
Processor: SY/MAX 400
Communications: SY/COMM
Redundant Processors: N

UPS
Model: APC
Size: ____________________
Communication: ____________________
Condition*: ______ out of 5

Components
Circuit Breaker: ____________________
SPD: ____________________
Relays: ____________________
HMI/OIT: ____________________
Ethernet: ____________________
Radio: ____________________
DC Power Supply: ____________________
Switches: ____________________
Amount of I/O: ______
Other: ____________________
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Digesters Bldg
Equipment Name: MUX 60
Discipline: Electrical / Instrumentation

<table>
<thead>
<tr>
<th>Equipment Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet ID: MUX 60</td>
</tr>
<tr>
<td>Cabinet Location: Digesters Bldg</td>
</tr>
<tr>
<td>Process(es) Served:</td>
</tr>
<tr>
<td>Panel Dimensions:</td>
</tr>
<tr>
<td>GPS Location:</td>
</tr>
<tr>
<td>Condition: 5 out of 5</td>
</tr>
<tr>
<td>Inspection Date: 8/6/2014</td>
</tr>
<tr>
<td>Inspection By: K. Pepler</td>
</tr>
</tbody>
</table>

Controller Model: SquareD SY/MAX

Component Models

Enclosure
- **Model Number**:
- **NEMA**:
- **Mounting**:
- **Thermal Management**:
- **Accessories**:
- **Side Panels**:

PLC
- **Manufacturer**: SquareD
- **Processor**: SY/MAX 400
- **Communications**: SY/COMM

UPS
- **Model**: None Found

Components
- **Circuit Breaker**:
- **SPD**:
- **Relays**:
- **HMI/OIT**:
- **Ethernet**:
- **Radio**:
- **DC Power Supply**:
- **Switches**:
- **Amount of I/O**:

General Comments:

Waste Water Campus

Digesters

Bldg

MUX 60

8/6/2014

K. Pepler
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Old Influent Pump Station
Equipment Name: MUX 70
Discipline: Electrical / Instrumentation

Equipment Information
Cabinet ID: MUX 70 Inspection Date: 8/6/2014
Cabinet Location: Old Influent PS Inspection By: K. Pepler
Process(es) Served: ________________ Install Date: ________________
Panel Dimensions: ________________ Condition*: 5 out of 5
GPS Location:

Picture – Panel External

Picture – Panel Internal

General Comments:

Controller Model: SquareD SY/MAX

Component Models

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number:</td>
<td>Model: None Found</td>
</tr>
<tr>
<td>NEMA:</td>
<td>Size:</td>
</tr>
<tr>
<td>Mounting:</td>
<td>Communication:</td>
</tr>
<tr>
<td>Thermal Management:</td>
<td>Condition*: out of 5</td>
</tr>
<tr>
<td>Accessories:</td>
<td></td>
</tr>
<tr>
<td>Side Panels:</td>
<td></td>
</tr>
<tr>
<td>PLC</td>
<td></td>
</tr>
<tr>
<td>Manufacturer: SquareD</td>
<td>SPD:</td>
</tr>
<tr>
<td>Processor: SY/MAX 400</td>
<td>Relays:</td>
</tr>
<tr>
<td>Communications: SY/COMM</td>
<td>HMI/OIT:</td>
</tr>
<tr>
<td>Accessories:</td>
<td>Ethernet:</td>
</tr>
<tr>
<td>Redundant Processors: N</td>
<td>Radio:</td>
</tr>
<tr>
<td>DC Power Supply:</td>
<td></td>
</tr>
<tr>
<td>Switches:</td>
<td>Amount of I/O:</td>
</tr>
<tr>
<td>Other:</td>
<td></td>
</tr>
</tbody>
</table>
Facility: Waste Water Campus
Equipment Location: Landscaping Bldg
Equipment Name: New SCADA Server Rack
Discipline: Electrical / Instrumentation

Cabinet ID: ____________ Inspection Date: 8/6/2014
Cabinet Location: Landscaping Bldg Inspection By: K. Pepler
Process(es) Served: Multiple Install Date: ____________
Panel Dimensions: ____________ Condition*: 2 out of 5
GPS Location:

General Comments:
Server Rack is in isolated large “closet” with locked door in building that stores landscaping equipment.

Controller Model: Dell Poweredge

Component Models

Enclosure
Model Number: __________________________
NEMA: __________________________
Mounting: __________________________
Thermal Management: __________________________
Accessories: __________________________
Side Panels: ______

PLC
Manufacturer: Dell
Processor: __________________________
Communications: __________________________
Accessories: KVM
Redundant Processors: N

UPS
Model: APC
Size: __________________________
Communication: __________________________
Condition*: out of 5

Components

Circuit Breaker: __________________________
SPD: __________________________
Relays: __________________________
HMI/OIT: __________________________
Ethernet: __________________________
Radio: __________________________
DC Power Supply: __________________________
Switches: __________________________
Amount of I/O: ______
Other: __________________________
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Plant Control Center
Equipment Name: HMI Computers/Console
Discipline: Electrical / Instrumentation

Equipment Information

Cabinet ID:	________________	Inspection Date: 8/6/2014
Cabinet Location:	PCC	Inspection By: K. Pepler
Process(es) Served:	Multiple	Install Date:
Panel Dimensions:		Condition*: 3 out of 5
GPS Location:		

General Comments:

Controller Model: ________________________________

Component Models

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number:</td>
<td>Model:</td>
</tr>
<tr>
<td>NEMA:</td>
<td>Size:</td>
</tr>
<tr>
<td>Mounting:</td>
<td>Communication:</td>
</tr>
<tr>
<td>Thermal Management:</td>
<td>Condition*: out of 5</td>
</tr>
<tr>
<td>Accessories:</td>
<td></td>
</tr>
<tr>
<td>Side Panels:</td>
<td>Circuit Breaker:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer:</td>
</tr>
<tr>
<td>Processor:</td>
</tr>
<tr>
<td>Communications:</td>
</tr>
<tr>
<td>Accessories:</td>
</tr>
<tr>
<td>Redundant Processors:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPD:</td>
</tr>
<tr>
<td>Relays:</td>
</tr>
<tr>
<td>HMI/OIT:</td>
</tr>
<tr>
<td>Ethernet:</td>
</tr>
<tr>
<td>Radio:</td>
</tr>
<tr>
<td>DC Power Supply:</td>
</tr>
<tr>
<td>Switches:</td>
</tr>
<tr>
<td>Amount of I/O:</td>
</tr>
<tr>
<td>Other:</td>
</tr>
</tbody>
</table>
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: PCC
Equipment Name: RTU Network Panel
Discipline: Electrical / Instrumentation

Equipment Information

<table>
<thead>
<tr>
<th>Cabinet ID</th>
<th>Inspection Date: 8/6/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet Location</td>
<td>PCC</td>
</tr>
<tr>
<td>Process(es) Served</td>
<td>Multiple</td>
</tr>
<tr>
<td>Panel Dimensions</td>
<td></td>
</tr>
<tr>
<td>GPS Location</td>
<td></td>
</tr>
</tbody>
</table>

General Comments:
This is a recently “remade” panel for securing the Serial/BNC connections to the SY/MAX PLC controllers to the OPC Gateway PC’s

Controller Model:

Component Models

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number:</td>
<td>Model:</td>
</tr>
<tr>
<td>NEMA:</td>
<td>Size:</td>
</tr>
<tr>
<td>Mounting:</td>
<td>Communication:</td>
</tr>
<tr>
<td>Thermal Management:</td>
<td>Condition*: out of 5</td>
</tr>
<tr>
<td>Accessories:</td>
<td></td>
</tr>
<tr>
<td>Side Panels:</td>
<td>Circuit Breaker:</td>
</tr>
</tbody>
</table>

PLC

Manufacturer:	SPD:
Processor:	Relays:
Communications:	HMI/OIT:
Accessories:	Ethernet:
Redundant Processors: N	Radio:

Components

| DC Power Supply: |
| Switches: |
| Amount of I/O: |
| Other: |
Facility: Waste Water Campus
Equipment Location: _________________________
Equipment Name: RTU 2
Discipline: Electrical / Instrumentation

Cabinet ID: _________________________ Inspection Date: 8/6/2014
Cabinet Location: _________________________ Inspection By: K. Pepler
Process(es) Served: _________________________ Install Date: _________________________
Panel Dimensions: _________________________ Condition*: 5 out of 5
GPS Location:

Controller Model: SquareD SY/MAX

Component Models

Enclosure
- Model Number: _________________________
- NEMA: _________________________
- Mounting: _________________________
- Thermal Management: _________________________
- Accessories: _________________________
- Side Panels: _____

UPS
- Model: _________________________
- Size: _________________________
- Communication: _________________________

Components
- Circuit Breaker: _________________________
- SPD: _________________________
- Relays: _________________________
- HMI/OIT: _________________________
- Ethernet: _________________________
- Radio: _________________________
- DC Power Supply: _________________________
- Switches: _________________________
- Amount of I/O: _____
- Other: _________________________

*Condition
1 – Very Good
2 – Minor Defects
3 – Needs Significant Maintenance
4 – Requires Rehabilitation
5 – Requires Replacement (>50%)
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: North Area Control Center
Equipment Name: RTU 5
Discipline: Electrical / Instrumentation

Equipment Information

Cabinet ID: RTU 5 Inspection Date: 8/6/2014
Cabinet Location: North Area CC Inspection By: K. Pepler
Process(es) Served: __________ Install Date: __________
Panel Dimensions: __________ Condition*: 5 out of 5
GPS Location: __________

General Comments:

Controller Model: SquareD SY/MAX

Component Models

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number:</td>
<td>Model:</td>
</tr>
<tr>
<td>NEMA:</td>
<td>Size:</td>
</tr>
<tr>
<td>Mounting:</td>
<td>Communication:</td>
</tr>
<tr>
<td>Thermal Management:</td>
<td>Condition*: out of 5</td>
</tr>
<tr>
<td>Accessories:</td>
<td></td>
</tr>
<tr>
<td>Side Panels:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer: SquareD</td>
</tr>
<tr>
<td>Processor: SY/MAX 400</td>
</tr>
<tr>
<td>Communications: SY/COMM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Breaker:</td>
</tr>
<tr>
<td>SPD:</td>
</tr>
<tr>
<td>Relays:</td>
</tr>
<tr>
<td>HMI/OIT:</td>
</tr>
<tr>
<td>Ethernet:</td>
</tr>
<tr>
<td>Radio:</td>
</tr>
<tr>
<td>DC Power Supply:</td>
</tr>
<tr>
<td>Switches:</td>
</tr>
<tr>
<td>Amount of I/O:</td>
</tr>
<tr>
<td>Other:</td>
</tr>
</tbody>
</table>
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Interstage PS
Equipment Name: RTU 6
Discipline: Electrical / Instrumentation

Equipment Information

Cabinet ID: LCP-P
Cabinet Location: Interstage PS
Process(es) Served: Interstage PS
Panel Dimensions: ________________
GPS Location:

Inspection Date: 8/6/2014
Inspection By: K. Pepler
Install Date:
Condition*: 4 out of 5

General Comments:

Controller Model: SquareD SY/MAX

Component Models

Enclosure
Model Number: _________________________
NEMA: _________________________
Mounting: _________________________
Thermal Management: _________________________
Accessories: _________________________
Side Panels: ______

PLC
Manufacturer: SquareD
Processor: SY/MAX 400
Communications: SY/COMM
Accessories: _________________________
Redundant Processors: N

UPS
Model: None Seen
Size: _________________________
Communication: _________________________
Condition*: out of 5

Components
Circuit Breaker: _________________________
SPD: _________________________
Relays: _________________________
HMI/OIT: _________________________
Ethernet: _________________________
Radio: _________________________
DC Power Supply: _________________________
Switches: _________________________
Amount of I/O: ______
Other: _________________________
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Main Electrical Bldg
Equipment Name: RTU 9
Discipline: Electrical / Instrumentation

Equipment Information

<table>
<thead>
<tr>
<th>Cabinet ID:</th>
<th>RTU-9</th>
<th>Inspection Date: 8/6/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet Location:</td>
<td></td>
<td>Inspection By: K. Pepler</td>
</tr>
<tr>
<td>Process(es) Served:</td>
<td></td>
<td>Install Date:</td>
</tr>
<tr>
<td>Panel Dimensions:</td>
<td></td>
<td>Condition*: 5 out of 5</td>
</tr>
<tr>
<td>GPS Location:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Comments:

Controller Model: SquareD SY/MAX

Component Models

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>UPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Number:</td>
<td>Model: Best ME</td>
</tr>
<tr>
<td>NEMA:</td>
<td>Size:</td>
</tr>
<tr>
<td>Mounting:</td>
<td>Communication:</td>
</tr>
<tr>
<td>Thermal Management:</td>
<td>Condition*: out of 5</td>
</tr>
<tr>
<td>Accessories:</td>
<td></td>
</tr>
<tr>
<td>Side Panels:</td>
<td></td>
</tr>
</tbody>
</table>

PLC

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>Model:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor:</td>
<td>sy/max 400</td>
</tr>
<tr>
<td>Communications:</td>
<td>SY/COMM</td>
</tr>
<tr>
<td>Accessories:</td>
<td></td>
</tr>
<tr>
<td>Redundant Processors: N</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circuit Breaker:</td>
</tr>
<tr>
<td>SPD:</td>
</tr>
<tr>
<td>Relays:</td>
</tr>
<tr>
<td>HMI/OIT:</td>
</tr>
<tr>
<td>Ethernet:</td>
</tr>
<tr>
<td>Radio:</td>
</tr>
<tr>
<td>DC Power Supply:</td>
</tr>
<tr>
<td>Switches:</td>
</tr>
<tr>
<td>Amount of I/O:</td>
</tr>
<tr>
<td>Other:</td>
</tr>
</tbody>
</table>
City of Oxnard WWTP
Condition Assessment Form

Facility: Waste Water Campus
Equipment Location: Gallery
Equipment Name: RTU 4
Discipline: Electrical / Instrumentation

Equipment Information

<table>
<thead>
<tr>
<th>Cabinet ID:</th>
<th>RTU-4</th>
<th>Inspection Date: 8/6/2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet Location:</td>
<td></td>
<td>Inspection By: K. Pepler</td>
</tr>
<tr>
<td>Process(es) Served:</td>
<td></td>
<td>Install Date:</td>
</tr>
<tr>
<td>Panel Dimensions:</td>
<td></td>
<td>Condition*: 4 out of 5</td>
</tr>
<tr>
<td>GPS Location:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Comments:

Condition
1 – Very Good
2 – Minor Defects
3 – Needs Significant Maintenance
4 – Requires Rehabilitation
5 – Requires Replacement (>50%)

Controller Model: SquareD SY/MAX

Component Models

Enclosure

- Model Number: __________
- NEMA: 4X
- Mounting: Floor Mount
- Thermal Management: FA
- Accessories: __________
- Side Panels: ___

PLC

- Manufacturer: SquareD
- Processor: SY/MAX
- Communications: SY/COMM
- Accessories: __________
- Redundant Processors: N

UPS

- Model: __________
- Size: __________
- Communication: __________

Components

- Circuit Breaker: __________
- SPD: __________
- Relays: __________
- HMI/OIT: __________
- Ethernet: __________
- Radio: __________
- DC Power Supply: __________
- Switches: __________
- Amount of I/O: ___
- Other: __________
Dear Schneider Electric Customer:

At Schneider Electric, we recognize that you have a lot of resources, knowledge and intellectual property invested in your Schneider Electric SY/MAX™ PLC applications. Because of this, we have continued to provide you with new SY/MAX PLC modules to help you protect your investment. We find ourselves in a situation where it is becoming increasingly difficult to secure the components required to maintain this level of support.

The End of Commercialization (EOC) of the SY/MAX PLC product offer will occur on 30 July 2014. End of Service (EOS) is scheduled for 30 July 2022. Last Buy is 31 March 2014. In the event that certain components become unavailable more quickly than anticipated, we will not be able to maintain the planned EOC or EOS dates for any module that requires the components that are no longer available. We are making this announcement now to provide you with ample time to determine how best to manage your application.

It is important to know that we offer several tools to minimize the impact of upgrading your applications. We can provide mounting plates that will allow you to mount new Modicon™ Quantum™ PLCs in the cabinet using the same mounting holes that were already drilled for the SY/MAX PLC. We also offer Quick Wiring Adapters that let you move your field wiring terminal from the SY/MAX I/O module directly to the new Quantum I/O modules. By using the same terminal strips and wiring used to connect to your existing SY/MAX I/O, you can reduce your down time for the upgrade and the potential for wiring errors considerably. The commissioning of the upgrade will take much less time.

We can also convert your existing application directly into Unity™ Pro IEC ladder logic. The converted program will look and operate very much the same as before. This will reduce the amount of time and effort required for your people to get up to speed on the new application software program. This conversion service uses a proprietary conversion utility to greatly reduce the time taken to convert your PLC logic versus manual methods.

We help you manage your budget, productivity and profitability during the upgrade by offering options in how to perform the upgrade. You could change everything at the same time. You would experience only one period of scheduled down time to do this. When complete, you would have a new application that would allow you to take advantage of all the new technology available in our newest Modicon Quantum PLCs to help you improve your operating efficiency.
You could also schedule your upgrade to be completed in phases. This would allow you to manage your budget and minimize the down time during each phase of the upgrade process. This approach is especially helpful if you have limited time for regular maintenance outages. The same tools still apply. The new Modicon Quantum PLC can manage both the Quantum I/O and any SY/MAX I/O remaining in your application. In either scenario, our goal is to help you minimize the business impact of performing an upgrade.

If you have any questions, you should contact your Schneider Electric authorized Distributor or your Schneider Electric Industry Business Account Manager or Application Engineer.

Sincerely,

Schneider Electric Representative

Brochure: “Boost your productivity by upgrading your SQD Sy/MAX PLCs”

APPENDIX C - ICS NETWORK ARCHITECTURE