Geotechnical Engineering Report

Proposed Project Bruin (Confidential) Southwest Corner of Hwy 101 and N Del Norte Blvd. Oxnard, California

March 20, 2020

Terracon Project No. 60205029

Prepared for:

Seefried Industrial Properties, Inc. El Segundo, California

Prepared by:

Terracon Consultants, Inc. Tustin, California

March 20, 2020

lerracon

Seefried Industrial Properties, Inc. 2301 Rosecrans Avenue, Suite 3165 El Segundo, CA 90245

- Attn: Mr. Dan Bick P: 310-536-7900 E: danbick@seefriedproperties.com
- Re: Geotechnical Engineering Report Proposed Project Bruin (Confidential) Southwest Corner of Hwy 101 and N Del Norte Blvd. Oxnard, California Terracon Project No. 60205029

Dear Mr. Bick:

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above referenced project. These services were performed in general accordance with our proposal number P60205029 dated February 14, 2020.

This geotechnical engineering report presents the results of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations, floor slab, pavements, and infiltration systems for the proposed development.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

Sivasubramaniam (Raj) Pirathiviraj, P.E., G.E. Senior Geotechnical Engineer F. Fred Buhamdan, P.E. Principal

Terracon Consultants, Inc 1421 Edinger Avenue, Suite C Tustin, California 92780 P [949] 261 0051 F [949] 261 6110 terracon.com

TABLE OF CONTENTS

1.0	INTRO	RODUCTION1				
2.0	PROJ	ECT INFORMATION	1			
	2.1	Project Description	1			
	2.2	Site Location and Description	3			
3.0	SUBS	URFACE CONDITIONS	3			
	3.1	Site Geology	3			
	3.2	Typical Subsurface Profile	3			
	3.3	Geophysical Survey	4			
	3.4	Groundwater4				
	3.5	Seismic Considerations				
		3.5.1 Faulting and Estimated Ground Motions	5			
		3.5.2 Site Specific Ground Motion Study				
		3.5.3 Liquefaction Potential				
	3.6	Percolation Test Results				
	3.7	Corrosion Potential				
4.0	RECO	MMENDATIONS FOR DESIGN AND CONSTRUCTION	9			
	4.1	Geotechnical Considerations				
	4.2					
		4.2.1 Site Preparation				
		4.2.2 Excavation				
		4.2.3 Subgrade Preparation	12			
		4.2.4 Fill Placement and Settlement Monitoring	13			
		4.2.5 Fill Materials				
		4.2.6 Compaction Requirements				
		4.2.7 Grading and Drainage				
		4.2.8 Exterior Slab Design and Construction	16			
		4.2.9 Utility Trenches				
		4.2.10 Construction Considerations	16			
	4.3	Foundations				
		4.3.1 Rammed Aggregate Pier (RAP) Recommendations				
		4.3.2 Shallow Foundations with RAP Design Recommendations				
		4.3.3 Shallow Foundations Design Recommendations				
	4.4	Floor Slab				
	4.5	Lateral Earth Pressures				
	4.6	Pavements				
		4.6.1 Design Recommendations				
		4.6.2 Pavement Construction Considerations				
5.0	GENE	RAL COMMENTS	24			

TABLE OF CONTENTS (continued)

APPENDIX A – FIELD EXPLORATION

Site Location Plan Boring Location Diagram Field Exploration Description Boring Logs Log of CPT Soundings Geophysical Evaluation Report

APPENDIX B – LABORATORY TESTING

Laboratory Test Description Atterberg Limits Results Grain Size Distribution Swell Consolidation Test Direct Shear Test Moisture-Density Relationship Results of Corrosivity Analysis "R" Value

APPENDIX C – SUPPORTING DOCUMENTS

General Notes Unified Soil Classification Design Maps Detailed Report

APPENDIX D – LIQUEFACTION ANALYSIS

Liquefaction Analysis Chart - CPT-16 Liquefaction Analysis Summary - CPT-16 Liquefaction Analysis Chart - CPT-18 Liquefaction Analysis Summary - CPT-18 Liquefaction Analysis Chart - CPT-19 Liquefaction Analysis Summary - CPT-19 Liquefaction Analysis Chart - CPT-20 Liquefaction Analysis Summary - CPT-20

GEOTECHNICAL ENGINEERING REPORT PROPOSED PROJECT BRUIN (CONFIDENTIAL) SOUTHWEST CORNER OF HWY 101 AND N DEL NORTE BLVD. OXNARD, CALIFORNIA

Terracon Project No. 60205029 March 20, 2020

1.0 INTRODUCTION

This report presents the results of our geotechnical engineering services performed for the Project Bruin to be located at the southwest corner of Hwy 101 and N Del Norte Blvd. in Oxnard, California. The Site Location Plan (Exhibit A-1) is included in Appendix A of this report. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- subsurface soil conditions
- earthwork
- seismic considerations
- floor slab design and construction
- groundwater conditions
- foundation design and construction
- pavement design and construction
- infiltration systems

Our geotechnical engineering scope of work for this project included the advancement of six (6) test borings during the current field explorations and thirty-seven (37) test borings and six (6) Cone Penetrometer Test (CPT) soundings that were previously conducted in 2018. All the borings and CPTs were advanced to approximate depths ranging between 5 to 58 feet below existing site grades.

Logs of the borings along with the Exploration Location Plan are included in Appendix A of this report. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included in Appendix B of this report. Descriptions of the field exploration and laboratory testing are included in their respective appendices.

2.0 PROJECT INFORMATION

ITEM	DESCRIPTION
Site layout Refer to the Exploration Location Plan.	
Structures	The proposed project will consist in the development of the 64.65-acre project site to include a 857,173-square foot (approximately 1,500 feet by 570 feet) warehouse surrounded by rigid and flexible pavement.

2.1 **Project Description**

ITEM	DESCRIPTION
Construction	Reinforced concrete columns and masonry walls or tilt-up walls supported on a reinforced concrete foundation system with concrete slab-on-grade floors.
Finished floor elevation	Based on the grading plans provided by civil designers, the finished floor elevation is 67.1 feet. As a result, finished floor elevation is approximately 3 to 7 feet above the existing ground levels.
Maximum loads	 Provided structural loads are presented below: Columns: 250 to 860 kips Walls: 20 kips per linear foot (klf) Slabs: 500 pounds per square foot (psf) plus weight of the slab
Proposed Roadway	A new approximately 100-foot wide roadway (Labelled as Road A) is proposed with an east-west alignment and approximate length of 3,200 feet. The road will pass along the northern border of the project and extends from N Del Norte Boulevard to new roadway, labelled as Road B. Road B is extending to the south and connecting to the project site.
Grading	Based on the provided cut and fill maps prepared by Kimley-Horn and dated March 5, 2020, mass grading includes 3 to 7 feet of fill within the footprint of the proposed building. Additionally, up to 4 feet of cut is anticipated near the western end of the project site.
	Grading for the proposed stormwater basins includes cuts on the order of 5 to 12 feet.
Below Grade Structures / Basements	Not Anticipated
Onsite Infiltration Systems	The development will also include a storm water retention system along the south side of the property.
	Paved driveway and parking will be constructed as part of the project. We assume both rigid (concrete) and flexible (asphalt) pavement sections should be considered.
Pavements	Based on the information provided by client, anticipated traffic during peak hours is as follows:
	 Cars: 6,202 vehicles per day Trucks: 594 vehicles per day
	 Tractor-trailer trucks in drive lanes: approximately 200 vehicles per day (assumed)
	The pavement design period is 20 years based on Caltrans Highway Design Manual.

2.2 Site Location and Description

Item	Description
Location	The site is located west of North Del Norte Boulevard approximately 2,250 feet south of Highway 101 in Oxnard, California. The site encompasses an approximate area of 64.65 acres.
Existing improvements	The project site is currently vacant agricultural land.
Current ground cover	Asphalt pavement with associated hardscape and landscape.
Existing topography	Based on the grading plan provided by the civil designers, the existing ground surface elevation varies between 60 feet near the eastern end of the project site and 66 feet near the western end of the project site.
Anticipated Seismic Hazards	Based on our review of the State Fault Hazard Maps, the project site is not located within Alquist-Priolo Earthquake Fault Zones. However, the project site is mapped within a liquefaction potential zone as designated by the California Geologic Survey.

3.0 SUBSURFACE CONDITIONS

3.1 Site Geology

The site is situated within the eastern Transverse Range Geomorphic Province in Southern California. Geologic structures within the Transverse Ranges Province trend mostly east west, in contrast to the prevailing northwest trend elsewhere in the state. The Transverse Range Province contains the highest peaks composed of pre-Phanerozoic rocks south of the Sierra Nevada, four of the eight islands off the southern California coast, and is both bounded and transected by several major fault zones.^{1, 2} Based on the geologic map of California (Los Angeles Sheet), the proposed project site is underlain by Alluvium (Qal).

3.2 Typical Subsurface Profile

Specific conditions encountered at the boring locations are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual. Details for the borings can be found on the boring logs included in Appendix A. Based on the results of the borings, subsurface conditions on the project site can be generalized as follows:

¹ Harden, D. R., "*California Geology, Second Edition*," Pearson Prentice Hall, 2004.

² Norris, R. M. and Webb, R. W., "Geology of California, Second Edition," John Wiley & Sons, Inc., 1990.

Description	Approximate Depth to Bottom of Stratum	Material Encountered	Consistency/ Density
Stratum 1	2 to 8	Clayey Sand	Very Loose to Loose
Stratum 2	Stratum 210 to 15Sand with variable amounts of silt a clay with interbedded layers of Lea Clay with variable amounts of san		Very Loose to Medium Dense
Stratum 3 25 to 29 sand with interbed		Lean Clay with variable amounts of sand with interbedded layers of Sand with variable amounts of silt and clay	Very Soft to Hard
Stratum 4 28 to 35 Sand with variable amounts of classilit and gravel		Sand with variable amounts of clay, silt and gravel	Medium Dense
Stratum 5	51½	Lean Clay and Silt with variable amounts of sand with interbedded layers of Clayey Sand	Medium Stiff to Hard

Laboratory tests were conducted on selected soil samples and the test results are presented in Appendix B. Atterberg limits test indicates that on-site clayey soils have low to medium plasticity. An Expansion Index test was performed on the near surface clayey soils and indicates that these materials have an Expansion Index of 12 and 17. Consolidation/swell tests indicate that the clayey soils encountered at approximate depth of 2½ feet have slight collapse potential when saturated under normal footing loads of 2,000 psf. Direct shear test was performed in a sandy soils encountered at the depth of 7½ feet indicates a ultimate friction angle of 32 degrees and corresponding cohesion of 78 psf. R-value test indicates that the near surface clayey sand materials have R-values ranging between 69 and 72 and clay materials have R-value of 6.

3.3 Geophysical Survey

A site-specific seismic refraction survey was performed on-site to develop shear wave velocity profiles. The Geophysical Evaluation report, dated June 6, 2018, is included in Appendix A of this report. The results of seismic shear wave velocity surveys indicate an average shear wave velocity in the upper 100 feet of site soils of 757 feet per second (231 meters per second).

3.4 Groundwater

Groundwater was observed in the test borings at depths ranging between 8 and 11 feet below ground surface (bgs) in the most recent exploration and between the depths of 3 and 11 feet bgs in the 2018 borings. These observations represent groundwater conditions at the time of the field exploration and may not be indicative of other times, or at other locations.

In clayey soils with low permeability, the accurate determination of groundwater level may not be possible without long term observation. Long term observation after drilling could not be performed as borings were backfilled immediately upon completion due to safety concerns.

Groundwater levels can best be determined by implementation of a groundwater monitoring plan. Such a plan would include installation of groundwater monitoring wells, and periodic measurement of groundwater levels over a sufficient period of time.

Based on regional data, historical groundwater is anticipated to occur at depths of less than 10 feet below the ground surface at the project location.³

3.5 Seismic Considerations

3.5.1 Faulting and Estimated Ground Motions

The site is located in a seismically active area. The type and magnitude of seismic hazards affecting the site are dependent on the distance to causative faults, the intensity, and the magnitude of the seismic event. The following table indicates the distance of the fault zones and the associated maximum credible earthquake that can be produced by nearby seismic events, as calculated using the USGS Unified Hazard Tool. The Simi-Santa Rosa Fault, which is located approximately 3.5 kilometers from the site, is considered to have the most significant effect at the site from a design standpoint.

Estimated Earthquakes for Regional Faults				
Fault Name	Approximate Distance to Site (kilometers)	Maximum Credible Earthquake (MCE) Magnitude		
Simi-Santa Rosa	3.5	6.94		
Oak Ridge (Onshore)	6.5	7.36		
Ventura-Pitas Point	10.4	7.41		
Oak Ridge (Offshore)	13.3	6.87		

The site is not located within an Alquist-Priolo Earthquake Fault Zone based on our review of the State Fault Hazard Maps.⁴

3.5.2 Site Specific Ground Motion Study

We performed a site-specific ground motion study consisting of a ground motion hazard analysis per Section 21.2 of ASCE 7-16. Based on a site-specific seismic refraction survey, average shear wave velocity in the upper 100 feet of site soils is 757 feet per second (231 meters per second). According to ASCE 7-16, the **Site Classification is D**.

^{3.} California Geologic Survey, Seismic Hazard Zone Report for the Oxnard 7.5-Minute Quadrangle, Orange County, CA.

^{4.} California Department of Conservation Division of Mines and Geology (CDMG), "Digital Images of Official Maps of Alquist-Priolo Earthquake Fault Zones of California, Southern Region", CDMG Compact Disc 2000-003, 2000.

An addendum report is being prepared to present the results of this site-specific ground motion study. This addendum report will be submitted separately. The addendum report presents the seismic design acceleration parameters based on Section 21.4 of ASCE 7-16. Based on the study, a magnitude of (M) 7.1 and peak ground acceleration (PGA_M) of 0.69g were used for the liquefaction evaluation.

3.5.3 Liquefaction Potential

Liquefaction is a mode of ground failure that results from the generation of high pore water pressures during earthquake ground shaking, causing loss of shear strength. Liquefaction is typically a hazard where loose sandy soils exist below groundwater. The California Geologic Survey (CGS) has designated certain areas within southern California as potential liquefaction hazard zones. These are areas considered at a risk of liquefaction-related ground failure during a seismic event, based upon mapped surficial deposits and the presence of a relatively shallow water table.

The project site is located within a potential liquefaction hazard zone as designated by the CGS. Materials encountered at the project site generally consisted of interbedded layers of fine and coarse grained soils. Groundwater was observed in the test borings at depths ranging between 8 and 11 feet below ground surface (bgs) in the current boring and between the depths of 3 and 11 feet bgs in the 2018 borings. Historical high groundwater in the project vicinity is shallower than 10 feet below the ground surface.

Liquefaction analysis for the site was performed in general accordance with the DMG Special Publication 117. The liquefaction study utilized the software "LiquefyPro" by CivilTech Software. This analysis was based on the soils data using CPT soundings CPT-16, CPT-18, CPT-19 and CPT-20. Peak Ground Acceleration (PGA_M) was of 0.69 g was used. The CPT calculation was performed using the modified Robertson et al method which includes fine correction for liquefaction and settlement. Settlement analysis used the Tokimatsu, M-correction method. Liquefaction potential analysis was calculated from a depth of 0 to 50 feet bgs. Liquefaction potential analysis is attached in Appendix D of this report.

Based on the subsurface conditions presented in CPTs and based on the calculation results, seismically-induced settlements are expected to range between 2.5 and 2.75 inches. Typically, seismically-induced differential settlements are expected to be on the order of 50% to 67% of the total calculated settlement, which results in a range between 1.2 and 1.8 inches. However, the differential settlement among the four performed analysis was found to be between 1/4 and 1/2 of an inch.

3.6 Percolation Test Results

Six (6) borings were advanced to approximate depths ranging between 3 and 7 feet bgs and were utilized for percolation testing (falling head borehole permeability). After the borings were advanced the augers were removed from the ground and an approximately 2-inch thick layer of gravel was placed in the bottom of each boring, and a 3-inch diameter perforated pipe was installed on top of the gravel layer in the three borings. Gravel was used to backfill between the perforated pipes and the boring sidewall. The borings were then filled with water for a pre-soak period. At the beginning of each test, the pipes were refilled with water and readings were taken at 10-minute time intervals. Percolation rates are provided in the following table:

TEST RESULTS				
Test Location (depth of percolation)	Soil Classification	Percolation Rate, in/hr	Infiltration Rate ¹ , in/hr	Initial Water Head, in
Perc-1 (0ft - 5ft)	Clayey Sand	5.0	0.44	42
Perc-2 (0ft - 5ft)	Clayey Sand	0.5	<0.1	56
Perc-3 (0ft - 5ft)	Clayey Sand	2.0	0.15	51
Perc-4 (0ft - 6ft)	Clayey Sand	19.5	1.35	57
Perc-5 (0ft - 7ft)	Clayey Sand	3.0	0.31	35
Perc-6 (0ft - 3ft)	Clayey Sand	1.0	0.11	31

¹If proposed infiltration system will mainly rely on vertical downward seepage, the correlated infiltration rates should be used. The correlated infiltration rates were calculated using the LA County Reduction Factor method

Based on the test results and the shallow depth of groundwater, it is our opinion that infiltration onsite may not be considered feasible. However, the feasibility of infiltration onsite will be evaluated by the civil engineer. The field test results are not intended to be design rates. They represent the result of our tests, at the depths and locations indicated, as described above.

The design rate should be determined by the designer by applying an appropriate factor of safety. The factor of safety may be calculated by considering the reduction factors based on the reliability of the test method, site variability, number of tests and level of pre-treatment. Based on this, we recommend a minimum safety factor of 2 to be applied to the test rates. Higher safety factors will be required if the water will not be treated prior to infiltration. The designer should take into consideration the variability of the native soils when selecting appropriate design rates. With time, the bottoms of infiltration systems tend to plug with organics, sediments, and other debris. Long term maintenance will likely be required to remove these deleterious materials to help reduce decreases in actual percolation rates.

Geotechnical Engineering Report

Proposed Project Bruin (Confidential) Oxnard, California March 20, 2020 Terracon Project No. 60205029

The percolation test was performed with clear water, whereas the storm water will likely not be clear, but may contain organics, fines, and grease/oil. The presence of these deleterious materials will tend to decrease the rate that water percolates from the infiltration system. Design of the storm water infiltration systems should account for the presence of these materials and should incorporate structures/devices to remove these deleterious materials.

Based on the soils encountered in our borings, we expect the percolation rates of the soils could be different than measured in the field due to variations in fines and gravel content. The design elevation and size of the proposed infiltration system should account for this expected variability in infiltration rates.

Infiltration testing should be performed after construction of the infiltration system to verify the design infiltration rates. It should be noted that siltation and vegetation growth, along with other factors, may affect the infiltration rates of the infiltration areas. The actual infiltration rate may vary from the values reported here. Infiltration systems should be located at least 10 feet from any existing or proposed foundation system.

3.7 Corrosion Potential

Results of soluble sulfate testing indicate that ASTM Type V Portland cement should be used for all concrete on and below grade. Foundation concrete may be designed for exposure class S2 in accordance with the provisions of the ACI Design Manual, Section 318, Chapter 19.

Laboratory test results indicate the on-site soils have a pH of 7.97 and 8.43, a minimum resistivity values of 669 and 1,164 ohm-centimeters, sulfate contents of 0.04 and 0.37 percent, and a chloride contents of 95 and 170 ppm, as shown on the attached Summary of Laboratory Results sheet.

These values indicate corrosive environment for the ferrous metals and corrosion engineer should be consulted to further evaluate corrosive potential of the on-site soils to underground ferrous metals.

Refer to the Summary of Laboratory Results in Appendix B for the complete results of the corrosivity testing conducted in conjunction with this geotechnical exploration.

4.0 **RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION**

4.1 Geotechnical Considerations

The site appears suitable for the proposed construction based upon geotechnical conditions encountered in the test borings and provided the geotechnical engineering recommendations included in this report are implemented in the design and construction of the project.

Due to the anticipated seismic induced settlement, liquefaction potential, and presence of relatively high compressibility of clay soils, we recommend that the upper subsurface soils be improved and densified by rammed aggregate pier (RAP) systems. The proposed building may be supported by shallow foundations bearing on the RAP improved soils. Shallow foundations bearing on engineered fill may be used to support minor on-site structures.

Based on the grading plans provided by civil designers, major rough grading operations are proposed within the entire project site. Based on the grading plan, grading includes up to 7 feet of fill and 4 feet of excavations. Excavations are proposed near the western end of the project site. Within the building footprint, the proposed new fill thickness varies between 3 feet near the western end of the building and 7 feet near the eastern end of the building. Additionally, about 1.5 feet of cut is proposed near the western edge of the building footprint. The site should be initially graded to create a relatively level surface to receive fill and provide for a relatively uniform thickness of engineered fill beneath proposed building structure.

Overexcavation should be performed to the depth of about 2 to 6 feet prior to place the new fill. Based on the amount of overexcavation and proposed new fill, the mass grading operation should accommodate placement of minimum of 9 feet of uniform engineered fill beneath floor slab within the entire building footprint. Additionally, grading for the proposed building should incorporate the limits of the proposed building plus a lateral distance of 10 feet beyond the outside edge of perimeter footings. On-site soils are considered suitable for use as engineered fill beneath floor slabs and foundations.

Geotechnical engineering recommendations for foundation systems and other earth connected phases of the project are outlined below. The recommendations contained in this report are based upon the results of field and laboratory testing (which are presented in Appendices A and B), engineering analyses, and our current understanding of the proposed project.

4.2 Earthwork

The following presents recommendations for site preparation, excavation, subgrade preparation and placement of engineered fills on the project. The recommendations presented for the design and construction of earth supported elements including, foundations, slabs, and pavements, are contingent upon following the recommendations outlined in this section.

Earthwork on the project should be observed and evaluated by Terracon. The evaluation of earthwork should include observation and testing of engineered fill, subgrade preparation, foundation bearing soils, and other geotechnical conditions exposed during the construction of the project.

4.2.1 Site Preparation

Based on the grading plan, up to 7 feet of fill and 4 feet of cut will be required to bring the site to planned construction grade. Excavations are primarily proposed near the western end of the project site.

Prior to the mass grading, within the entire project site, strip and remove existing vegetation, top soil, organic materials, root systems, and other deleterious materials from proposed building and pavement areas. We recommend stripping topsoil to depths that expose soils with less than 3 percent organics and no roots having a diameter greater than 1/8 inch. While the depth of the unsuitable soils should be expected to vary, the thickness of the top soil layer may be estimated to range between 6 and 12 inches for construction budgeting purposes. The thickness of the top soil layer was not determined during our field exploration. Therefore, the actual depth of stripping should be verified by engineering observations made during the grading operations at the project. Exposed surfaces should be free of mounds and depressions which could prevent uniform compaction.

For sloped areas receiving fill, the overexcavation bottom should be benched per the following detail prior to placing the fill materials.

Stripped materials consisting of vegetation and organic materials should be wasted from the site, or used to revegetate landscaped areas or exposed slopes after completion of grading operations.

If it is necessary to dispose of organic materials on site, they should be placed in non-structural areas, and in fill sections not exceeding 5 feet in height

Although evidence of fill or underground facilities such as septic tanks, cesspools, basements, and utilities was not observed during the site reconnaissance, such features could be encountered during construction. If fill materials or underground facilities are encountered, such materials and features should be removed and the excavation thoroughly cleaned prior to backfill placement and/or construction.

4.2.2 Excavation

It is anticipated that excavations for the proposed construction can be accomplished with conventional earthmoving equipment. The bottom of excavations should be thoroughly cleaned of loose soils and disturbed materials prior to backfill placement and/or construction.

Depending upon depth of excavation and seasonal conditions, groundwater may be encountered in excavations on the site. Pumping from sumps may be utilized to control water within excavations. Well points may be required for significant groundwater flow, or where excavations penetrate groundwater to a significant depth. Excavation contractors are responsible for dewatering the planned temporary excavations.

Care should be taken in determining the dewatering procedures. Lowering groundwater beneath nearby improvements may cause unwanted settlements. However, while locating recharge points close to the excavation may maintain groundwater levels beneath surrounding improvements, groundwater levels may rise surrounding the excavation. Additional hydrostatic loads should be accounted for in the design of shoring with adjacent recharge points.

Prior to the construction phase of the project, additional evaluation of groundwater and fluctuations in groundwater levels should be performed. Depending upon the depth of excavation and seasonal conditions, groundwater may be encountered within the excavations planned on the site.

Soils from the excavation should not be stockpiled higher than six (6) feet or within ten (10) feet of the edge of an open trench. Construction of open cuts adjacent to existing structures, including underground pipes, is not recommended within a $1\frac{1}{2}$ H:1V plane extending beyond and down from the perimeter of the structure. Cuts that are proposed within five (5) feet of light standards, other utilities, underground structures, and pavement should be provided with temporary shoring.

It may be necessary for the contractor to retain a geotechnical engineer to monitor the soils exposed in all excavations and provide engineering services for slopes. This will provide an opportunity to monitor the soils encountered and to modify the excavation slopes as necessary. It also offers an opportunity to verify the stability of the excavation slopes during construction.

Individual contractors are responsible for designing and constructing stable, temporary excavations. Excavations should be sloped or shored in the interest of safety following local, and federal regulations, including current OSHA excavation and trench safety standards.

4.2.3 Subgrade Preparation

Based on the grading plans provided by civil designers, major rough grading operations are proposed within the entire project site. Within the building footprint, new fill thickness varies between 3 feet near the western end of the building and 7 feet near the eastern end of the building. Additionally, about 1.5 feet of cut is proposed near the western edge of the building footprint. The site should be initially graded to create a relatively level surface to receive fill and provide for a relatively uniform thickness of engineered fill beneath proposed building structure.

The mass grading operation should accommodate placement of minimum of 9 feet of uniform engineered fill beneath floor slab within the entire building footprint. Based on the existing ground surface elevation and proposed fill thicknesses, we anticipate approximately 6 feet of overexcavation is required near the western end of the building and approximately 2 feet of overexcavation is required near the eastern end of the building. Grading for the proposed building should incorporate the limits of the proposed building plus a lateral distance of 10 feet beyond the outside edge of perimeter footings.

Excavations should then be backfilled with engineered fill placed in lifts of 8 inches or less in loose thickness and should be moisture conditioned and compacted following the recommendations in section 4.2.6 of this report.

Care should be taken to prevent wetting or drying of the bearing materials during construction. Wet, dry, or loose/disturbed material in the bottom of the footing excavations should be removed before foundation concrete is placed.

Exposed areas which will receive fill, once properly cleared and benched where necessary, should be scarified to a minimum depth of 10 inches, moisture conditioned, and compacted per the compaction requirements in Section 4.2.6.

Subsequent to the surface clearing, grubbing, and other overexcavation efforts, subgrade soils beneath exterior slabs and pavements should be scarified, moisture conditioned, and compacted to a minimum depth of 10 inches. The moisture content and compaction of subgrade soils should be maintained until slab or pavement construction.

The exposed soils at the bottom of the excavations are expected to have elevated water contents and may pump or yield during attempts to compact the bottom of the excavation. If such conditions occur, the bottom of the excavations should be over-excavated to a minimum depth of 12 inches, and replaced with well sorted crushed aggregate materials. The aggregate materials should be wrapped (top, bottom and sides) with non-woven geotextile such as Mirafi 140N, or an approved equivalent. The crushed aggregate could have a nominal particle size of ³/₄ to 1 inch. The aggregate layer and the geotextile layer are anticipated to create a stable platform beneath the overlying backfill materials.

4.2.4 Fill Placement and Settlement Monitoring

Based on the grading plans, approximately 7 feet of new engineered fill will be placed within the footprint of the proposed building. Additionally, overexcavation should be performed to depths up to 6 feet. Due to the new fill, settlement analyses were performed using Hough and Westergaard methods. The soil parameters were derived based on the lab consolidation tests and Hough method. Based on our engineering analysis, up to 6 inches of settlement is anticipated due to the placement of this new fill. Due to this anticipated settlement, we recommend settlement monitoring for a minimum period of six weeks to monitor the settlement and rate of settlement. After the minimum settlement period of six weeks, it is anticipated that the remaining settlement may be on the order of the 30% of the total calculated settlement. Once the settlement monitoring is completed, additional fill may be necessary to bring the site to the proposed grade.

Instrumentation including a system of settlement plates and survey monuments would be required, along with period surveys to record the time rate and magnitude of the expected settlement. The engineering analyses of this data will be necessary to determine when primary consolidation is complete prior to the construction of the building foundations.

We recommend that an instrumentation program, consisting of nine settlement monitoring hubs within the footprint of the building be developed before the placement of the engineered fill. The settlement monitoring hubs should be mounted at the bottom of the overexcavation.

We recommend that the settlements should be recorded by a licensed surveyor on a daily basis during grading. After completion of grading, settlement should be recorded weekly basis for a minimum period of six (6) weeks. We recommend that the settlement readings be forwarded to Terracon to evaluate the settlement rate. Based on the settlement rate, the remaining settlement could be evaluated.

Since proposed foundations will be supported on RAP elements, we recommend that the RAP elements for the foundations would be installed after the placement of the engineered fill. Based on this, the installation of the RAP elements would occur during the period of settlement monitoring.

4.2.5 Fill Materials

All fill materials should be inorganic soils free of vegetation, debris, and fragments larger than three inches in size. Pea gravel or other similar non-cementitious, poorly-graded materials should not be used as fill or backfill without the prior approval of the geotechnical engineer. The on-site soils are considered suitable for use as engineered fill for this project.

Approved on-site and imported materials may be used as fill material for the following:

general site grading

foundation backfill

- foundation areas
- interior floor slab areas

- pavement areas
- exterior slab areas

Imported soils for use as fill material within proposed building and structure areas should conform to low volume change materials as indicated below:

	Percent Finer by Weight
Gradation	<u>(ASTM C 136)</u>
3"	
No. 4 Sieve	
No. 200 Sieve	
Liquid Limit	30 (max)
Plasticity Index	15 (max)
 Maximum expansion index* 	20 (max)
*ASTM D 4829	

Engineered fill should be placed and compacted in horizontal lifts, using equipment and procedures that will produce recommended moisture contents and densities throughout the lift. Fill lifts should not exceed eight inches loose thickness.

4.2.6 Compaction Requirements

Recommended compaction and moisture content criteria for engineered fill materials are as follows:

	Per the Modified Proctor Test (ASTM D 1557)		
Material Type and Location	Minimum Compaction	Range of Moisture Contents for Compaction Above Optimum	
	Requirement (%)	Minimum	Maximum
On-site soils and low volume change imported fill:			
Beneath foundations:	95	0%	+3%
Beneath interior slabs:	95	0%	+3%
Fill greater than 5 feet in depth	95	0%	+3%
Miscellaneous backfill and behind retaining walls:	90	0%	+3%
Beneath pavements:	95	0%	+3%
Utility Trenches*:	90	0%	+3%
Bottom of native soil excavation receiving fill:	95	0%	+3%
Aggregate base (beneath pavements):	95	0%	+3%

* Upper 12 inches should be compacted to 95% within pavement and structural areas. Low-volume change imported soils should be used in structural areas.

4.2.7 Grading and Drainage

Positive drainage should be provided during construction and maintained throughout the life of the development. Infiltration of water into utility trenches or foundation excavations should be prevented during construction. Planters and other surface features which could retain water in areas adjacent to the building or pavements should be sealed or eliminated. In areas where sidewalks or paving do not immediately adjoin the structure, we recommend that protective slopes be provided with a minimum grade of approximately 5 percent for at least 10 feet from perimeter walls.

Backfill against footings, exterior walls, and in utility and sprinkler line trenches should be well compacted and free of all construction debris to reduce the possibility of moisture infiltration. We recommend a minimum horizontal setback distance of 10 feet from the perimeter of any building and the high-water elevation of the nearest storm-water retention basin.

Roof drainage should discharge into splash blocks or extensions when the ground surface beneath such features is not protected by exterior slabs or paving. Sprinkler systems and landscaped irrigation should not be installed within 5 feet of foundation walls.

4.2.8 Exterior Slab Design and Construction

Exterior slabs-on-grade, exterior architectural features, and utilities founded on, or in backfill may experience some movement due to the volume change of the backfill. To reduce the potential for damage caused by movement, we recommend:

- exterior slabs should be supported directly on subgrade fill with no, or very low expansion potential;
- strict moisture-density control during placement of subgrade fills;
- maintain proper subgrade moisture until placement of slabs;
- placement of effective control joints on relatively close centers and isolation joints between slabs and other structural elements;
- provision for adequate drainage in areas adjoining the slabs;
- using of designs which allow vertical movement between the exterior slabs and adjoining structural elements.

4.2.9 Utility Trenches

It is anticipated that the on-site soils and fill materials will provide suitable support for underground utilities and piping that may be installed. Any soft and/or unsuitable material encountered at the bottom of excavations should be removed and be replaced with an adequate bedding material. A non-expansive granular material with a sand equivalent greater than 30 should be used for bedding and shading of utilities, unless specified otherwise by the utility manufacturer.

On-site materials are considered suitable for backfill of utility and pipe trenches from one foot above the top of the pipe to the final ground surface, provided the material is free of organic matter and deleterious substances.

Trench backfill should be mechanically placed and compacted as discussed earlier in this report. Compaction of initial lifts should be accomplished with hand-operated tampers or other lightweight compactors. Where trenches are placed beneath slabs or footings, the backfill should satisfy the gradation and expansion index requirements of engineered fill discussed in this report. Flooding or jetting for placement and compaction of backfill is not recommended.

4.2.10 Construction Considerations

Upon completion of filling and grading, care should be taken to maintain the subgrade moisture content prior to construction of floor slabs and pavements. Construction traffic over the completed subgrade should be avoided to the extent practical. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. If the subgrade should become desiccated, saturated, or disturbed, the affected material should be removed or these materials should be scarified, moisture conditioned, and recompacted prior to floor slab and pavement construction.

Geotechnical Engineering Report

Proposed Project Bruin (Confidential) Oxnard, California March 20, 2020 Terracon Project No. 60205029

On-site clayey soils may pump and unstable subgrade conditions could develop during general construction operations, particularly if the soils are wetted and/or subjected to repetitive construction traffic. The use of light construction equipment would aid in reducing subgrade disturbance. The use of remotely operated equipment, such as a backhoe, would be beneficial to perform cuts and reduce subgrade disturbance. Should unstable subgrade conditions develop stabilization measures will need to be employed.

At the time of our study, moisture contents of the surface and near-surface native soils ranged from about 10 percent to 25 percent. Based on these moisture contents, some moisture conditioning will likely be needed for the project. The soils may need to be dried by aeration during dry weather conditions, or an additive, such as lime, cement, or kiln dust, may be needed to stabilize the soil.

Upon completion of filling and grading, care should be taken to maintain the subgrade moisture content prior to construction of floor slabs and pavements. Construction traffic over the completed subgrade should be avoided to the extent practical. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. If the subgrade should become desiccated, saturated, or disturbed, the affected material should be removed or these materials should be scarified, moisture conditioned, and recompacted prior to floor slab and pavement construction.

The geotechnical engineer should be retained during the construction phase of the project to observe earthwork and to perform necessary tests and observations during subgrade preparation, proof-rolling, placement and compaction of controlled compacted fills, backfilling of excavations to the completed subgrade.

We recommend that the earthwork portion of this project be completed during extended periods of dry weather if possible. If earthwork is completed during the wet season (typically November through April) it may be necessary to take extra precautionary measures to protect subgrade soils. Wet season earthwork operations may require additional mitigative measures beyond that which would be expected during the drier summer and fall months. This could include diversion of surface runoff around exposed soils and draining of ponded water on the site. Once subgrades are established, it may be necessary to protect the exposed subgrade soils from construction traffic.

Excavations into the on-site soils will possibly encounter groundwater, depending upon the final depth of excavation. The individual contractor(s) is responsible for designing and constructing stable, temporary excavations as required to maintain stability of both the excavation sides and bottom. Excavations should be sloped or shored in the interest of safety following local, and federal regulations, including current OSHA excavation and trench safety standards.

4.3 Foundations

Due to the anticipated seismic induced settlement, liquefaction potential, and presence of relatively high compressibility clay soils, we recommend that the upper subsurface soils be improved and densified by rammed aggregate piers (RAP) systems. The proposed building may be supported by shallow foundations bearing on the RAP improved soils. Shallow foundations bearing on engineered fill may be used to support minor on-site structures.

4.3.1 Rammed Aggregate Pier (RAP) Recommendations

Rammed Aggregate Pier elements may be installed for support of the main building. RAP elements provide increased bearing capacity, reduce liquefaction potential, and enhance settlement control by delivering a composite stiffened bearing materials to reduce the matrix soil compressibility.

New fills will be placed to raise the grade within the entire project site. Within the building footprint, up to 7 feet of new engineered fill is anticipated. Due to the anticipated settlement, we are recommending settlement monitoring to determine the settlement due to the new fill surcharge. Therefore, we recommend that the RAP elements be installed after the placement of the new fill during the periods of settlement monitoring. Based on this, the installation of the RAP elements and settlement monitoring would occur concurrently.

The construction process typically consists of utilizing pre-augered or displacement methods. The augered or displaced cavities are backfilled with aggregate that is compacted in place using static crowd pressure augmented with a high frequency, low amplitude, vibratory hammer. The impact hammer densifies aggregate vertically while the tamper foot forces aggregate laterally into cavity sidewalls resulting in stiff RAP elements and a stiffened matrix/soil. Constructed diameters may range from 20 to 30 inches depending on the method of installation.

In the event that RAP foundation systems are considered for the project, the proposed buildings can be supported on shallow foundations. RAP design is typically performed by a specialty design build ground improvement contractor who should be consulted to provide further analysis and recommendations. The specialty contractor shall make their own interpretation of strength parameters and soil characteristics from the boring logs, CPT soundings, and laboratory testing presented in Appendix A and B of this report.

4.3.2 Shallow Foundations with RAP Design Recommendations

DESCRIPTION	RECOMMENDATION	
Structures	Proposed Main Building	
Bearing Material	Improved subsurface soils comprised of a composite of RAP systems and engineered fill extending to a minimum of 9 feet below floor slabs.	
Allowable Bearing Pressure	To be provided by specialty contractor based on RAP design	
Minimum Width	Walls: 18 inches; Columns: 24 inches	
Minimum Embedment Depth Below Finished Grade	18 inches	
Estimated Static Settlement	1 inch (should be achieved by specialty contractor design)	
Estimated Differential Static Settlement	³ ⁄ ₄ inch in 40 feet. (should be achieved by specialty contractor design)	

4.3.3 Shallow Foundations Design Recommendations

DESCRIPTION	RECOMMENDATION
Structures	Minor structures with foundation width less than 5 feet such as trash enclosures, equipment pads, and low retaining walls.
Bearing Material	Engineered fill extending to a minimum of 4 feet below existing grades or 2 feet below the deepest foundation, whichever is greater.
Allowable Bearing Pressure	2,000 psf for footing widths up to 6 feet.
Maximum Width	6 feet
Minimum Width	Walls: 18 inches; Columns: 24 inches
Minimum Embedment Depth Below Finished Grade	18 inches
Estimated Static Settlement	1 inch**
Estimated Differential Static Settlement	¾ inch in 40 feet.

** Settlement value is based on structural loading of minor structures. Additional settlement may be caused by the fill materials placed onsite.

4.4 Floor Slab

DESCRIPTION	VALUE
Interior floor system	Slab-on-grade concrete.
Floor slab support	Engineered fill extending to a minimum of 9 feet below floor slab.
Sub-base/Capillary break	4-inches of Class II Aggregate Base materials
Modulus of subgrade reaction for a small loaded area (1 Sq. ft or less) such as for forklift loads	200 pounds per square inch per inch (psi/in) (The modulus was obtained based on engineered fill, aggregate sub- base, and estimates obtained from NAVFAC 7.1 design charts).
Modulus of subgrade reaction for racking posts with up to 45 kip loads	100 psi/in (The modulus was obtained based on engineered fill, aggregate sub-base)

Based on the proposed placement of engineered fill and overexcavation, the floor slab will be underlain by minimum of 9 feet of engineered fill within the entire footprint of the building. Based on the information provided structural designers, due to the dead and live loads of the floor slab, the uniform bearing pressure at the bottom of the floor slab will be approximately 500 psf. Based on the placement of new fill and anticipated bearing pressure underneath the floor slab, a total static settlement of 6 to 8 inches are anticipated. Anticipated differential settlement is on the order of 2 inches. Additionally, based on the liquefaction evaluations, a total liquefaction induced settlement of 2.5 to 2.75 inches are anticipated. Liquefaction induced differential settlements are expected to be range between 1.2 and 1.8 inches. Based on this, the total differential settlement is anticipated to be within the L/500 criteria for the proposed building.

In areas of exposed concrete, control joints should be saw cut into the slab after concrete placement in accordance with ACI Design Manual, Section 302.1R-37 8.3.12 (tooled control joints are not recommended). Additionally, dowels should be placed at the location of proposed construction joints. To control the width of cracking (should it occur) continuous slab reinforcement should be considered in exposed concrete slabs.

Positive separations and/or isolation joints should be provided between slabs and all foundations, columns or utility lines to allow independent movement. Interior trench backfill placed beneath slabs should be compacted in accordance with recommendations outlined in the Earthwork section of this report. Other design and construction considerations, as outlined in the ACI Design Manual, Section 302.1R are recommended.

The use of a vapor retarder or barrier should be considered beneath concrete slabs on grade that will be covered with moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture to prevent moisture migration. When conditions warrant the use of a vapor retarder, the slab designer and slab contractor should refer to ACI 302 and ACI 360 for procedures and cautions regarding the use and placement of a vapor retarder/barrier.

4.5 Lateral Earth Pressures

The lateral earth pressure recommendations herein are applicable to the design of rigid retaining walls subject to slight rotation, such as cantilever, or gravity type concrete walls. These recommendations are not applicable to the design of geogrid-reinforced-backfill walls. Recommendations covering these types of wall systems are beyond the scope of services for this assignment; however, we are available to develop recommendations for the design of such wall systems upon request.

For onsite soils used as engineered fill above any free water surface, recommended equivalent fluid pressures for foundation elements are:

ITEM	VALUE (Onsite Soils)
Active Case	37 psf/ft
Passive Case ¹	385 psf/ft
At-Rest Case	57 psf/ft
Surcharge Pressure	0.31*(Surcharge)
Coefficient of friction	0.35 ²
¹ Note: Ignore passive pressure in the upper	18 inches because of soil disturbance.
² Note: Reduce to 0.30 when used in conjunc	tion with passive pressure.

The lateral earth pressures herein do not include any factor of safety and are not applicable for submerged soils/hydrostatic loading. Additional recommendations may be necessary if such conditions are to be included in the design.

Surcharge pressure for uniform pressure acting at the back of the wall should be applied to the wall as a uniform pressure over the entire wall height and is added to the static earth pressures. Other surcharge loads should be considered where they are located within a horizontal distance behind the wall equal to 1.5 times the height of the wall. Surcharge stresses due to point loads, line loads, and those of limited extent, such as compaction equipment, should be evaluated using elastic theory.

Fill against foundation and retaining walls should be compacted to densities specified in the Earthwork section of this report. Compaction of each lift adjacent to walls should be accomplished with hand-operated tampers or other lightweight compactors.

Adequate drainage should be provided behind the walls to collect water from irrigation, landscaping, surface runoff, or other sources, to achieve a free-draining backfill condition. The wall back drain should consist of Class 2 permeable materials that are placed behind the entire wall height to within 18 inches of ground surface at the top of the wall. As a minimum, the width of Class 2 permeable materials behind the wall should be two feet. Water collected by the back drain should be directed to an appropriate outlet, such as weep holes or perforated pipes, for disposal.

4.6 Pavements

4.6.1 Design Recommendations

Total of four (4) samples of the near surface soils were obtained and tested to determine their Resistance Value (R-value). These tests all produced R-values above 50 in the sandy materials and R-value of 6 in clay materials. These samples were taken in the upper 24 inches of the surface. Given the cut and fills anticipated at the site, we recommend obtaining additional R-value samples once rough grading is near completion, within 1 foot. Some of the underlying soils have more fines and will eventually be mixed with the upper materials, likely resulting in lower R-values as indicated in the R-value test in clay materials.

At this time, a design R-value of 45 was used for the Asphalt Concrete (AC) and Portland Cement Concrete (PCC) pavement designs. The anticipated daily traffic of 200 semi-trailer trucks only corresponds to a traffic index (TI) of 10.0. The anticipated combines daily traffic including passenger cars, trucks and semi-trailer trucks corresponds to a traffic index (TI) of 11.0. Since the entire parking area will not receive this much semi-trailer truck traffic, we are also providing pavement sections for TI's of 6.0, 7.0, and 8.0 for use by the civil engineer in determining which pavement section to use for the parking areas. These TI's correspond to daily truck traffic volumes of 2, 10, and 30, respectively. We have also included a pavement section for automobile traffic using a TI of 5.0.

Assuming the pavement subgrades will be prepared as recommended within this report, the following pavement sections should be considered minimums for this project for the traffic indices assumed in the table below. As more specific traffic information becomes available, we should be contacted to reevaluate the pavement design recommendations.

Conventional Asphalt Concrete Design													
Layer	Thickness (inches)												
	TI=5.0	TI=6.0	TI=7.0	TI=8.0	TI= 10.0	TI = 11.0							
Asphalt Concrete	3.0	3.0	3.5	4.0	5.0	6.0							
Aggregate Base	4.0	6.0	7.0	9.0	12.0	12.0							

1. See **Project Description** for more specifics regarding traffic classifications.

2. All materials should meet the current California Department of Transportation (Caltrans) Standard Specifications, latest edition.

Geotechnical Engineering Report

Proposed Project Bruin (Confidential) Oxnard, California March 20, 2020 Terracon Project No. 60205029

Portland Cement Concrete Design ¹													
Layer	Thickness (inches)												
	TI=5.0	TI=10.0	TI=11.0	Dumpster Pad ²									
PCC	4	8" Jointed reinforced with dowels	10" Jointed reinforced with dowels	7									
		or	or										
		10" Plain Jointed	12" Plain Jointed										
Aggregate Base		4	4	4									

1. All materials should meet the current Caltrans Standard Specifications, latest edition.

2. In areas of anticipated heavy traffic, fire trucks, delivery trucks, or concentrated loads (e.g. dumpster pads), and areas with repeated turning or maneuvering of heavy vehicles.

These pavement sections are considered minimal sections based upon the expected traffic and the existing subgrade conditions. However, they are expected to function with periodic maintenance and overlays if good drainage is provided and maintained.

Subgrade soils beneath all pavements should be scarified, moisture conditioned, and compacted to a minimum depth of 10 inches. All materials should meet the CALTRANS Standard Specifications for Highway Construction. Aggregate base materials should meet the gradation and quality requirement of Class 2 Aggregate Base in Caltrans Standard Specifications, latest edition, Sections 25 through 29.

All concrete for rigid pavements should have a minimum flexural strength of 600 psi, and be placed with a maximum slump of four inches. Proper joint spacing will also be required to prevent excessive slab curling and shrinkage cracking. All joints should be sealed to prevent entry of foreign material and dowelled where necessary for load transfer.

It is our experience that asphalt pavement sections will suffer severe distress and shoving in tight turning radiuses areas. We recommend that portland cement concrete pavement should be used for such areas.

Asphalt concrete sections must be thickened to 8 inches at transitions with concrete, especially at the trash enclosure pad, loading zones, escape lane intersections, and any other transitions with concrete.

Preventative maintenance should be planned and provided for through an on-going pavement management program in order to enhance future pavement performance. Preventative maintenance activities are intended to slow the rate of pavement deterioration, and to preserve the pavement investment.

Preventative maintenance consists of both localized maintenance (e.g. crack sealing and patching) and global maintenance (e.g. surface sealing). Preventative maintenance is usually the

first priority when implementing a planned pavement maintenance program and provides the highest return on investment for pavements.

4.6.2 Pavement Construction Considerations

Materials and construction of pavements for the project should be in accordance with the requirements and specifications of the State of California Department of Transportation, or other approved local governing specifications.

Base course or pavement materials should not be placed when the surface is wet. Surface drainage should be provided away from the edge of paved areas to minimize lateral moisture transmission into the subgrade.

5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between explorations, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A

FIELD EXPLORATION

SITE LOCATION

Project Bruin
Oxnard, CA
March 18, 2020
Terracon Project No. 60205029

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES TOPOGRAPHIC MAP IMAGE COURTESY OF THE U.S. GEOLOGICAL SURVEY QUADRANGLES INCLUDE: OXNARD, CA (1/1/1967) and CAMARILLO, CA (1/1/1967).

Field Exploration Description

Field exploration program included the advancement of six (6) test borings during the current field explorations and thirty-seven (37) test borings and six (6) Cone Penetrometer Test (CPT) soundings that were previously conducted in 2018. All the borings and CPTs were advanced to approximate depths ranging between 5 to 58 feet below existing site grades. The field program was performed on February 27, 2020 and between the periods of April 3 and April 11, 2018.

The drilled test borings were advanced with a truck-mounted CME-85 drill rig utilizing 8-inch diameter hollow-stem augers and Mobil B-61 drill rig utilizing 6-inch diameter hollow-stem auger. CPT soundings were advanced with a 30-ton truck providing the reaction weight for pushing the cone assembly into the ground at a constant rate of 20-mm per second (approximately four feet per minute). The cone tip resistance and sleeve friction resistance were recorded every 2-cm (approximately ³/₄-inch) and stored in digital form.

The borings were located in the field by using the proposed site plan, an aerial photograph of the site, a hand-held GPS device, and measuring from existing site features and property lines. The accuracy of boring locations should only be assumed to the level implied by the method used. The location of the borings and CPT soundings is shown on the attached Boring Location Plan, Exhibit A-2.

Continuous lithologic logs of the borings were recorded by the field engineer during the drilling operations. At selected intervals, samples of the subsurface materials were taken by driving split-spoon or ring-barrel samplers. Bulk samples of subsurface materials were also obtained. Groundwater conditions were evaluated in the borings at the time of site exploration.

Penetration resistance measurements were obtained by driving the split-spoon and ring-barrel samplers into the subsurface materials with a 140-pound automatic hammer falling 30 inches. The penetration resistance value is a useful index in estimating the consistency or relative density of materials encountered.

An automatic hammer was used to advance the split-barrel sampler in the borings performed on this site. A significantly greater efficiency is achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. This higher efficiency has an appreciable effect on the SPT-N value. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report.

The samples were tagged for identification, sealed to reduce moisture loss, and taken to our laboratory for further examination, testing, and classification. Information provided on the boring logs attached to this report includes soil descriptions, consistency evaluations, boring depths, sampling intervals, and groundwater conditions. The borings were backfilled with auger cuttings prior to the drill crew leaving the site.

BORING LOG NO. BB-1 Page 1 of 2														
PR	PROJECT: Project Bruin					Seefri	ried Industrial Properties, Inc. egundo, CA							
SIT	E: Highway 101 and Del Norte Bo Oxnard, CA	ulevard				LI GE	gunuo,	UA						
go	LOCATION See Exploration Plan		ONS ONS	ЪЕ	E.e.		NDEX	STR	ENGTH	TEST	(%	ct) ,	ATTERBERG LIMITS	NES
GRAPHIC LOG	Latitude: 34.2146° Longitude: -119.1341°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS		EXPANSION INDEX	YPE	COMPRESSIVE STRENGTH (tsf)	1 (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pd)		PERCENT FINES
GRAF		DEP	NATE	SAMP	FIEL		PANS	TEST TYPE	MPRE STREN (tsf	STRAIN (%)	CONT	DRY	LL-PL-PI	ERCE
	DEPTH CLAYEY SAND (SC), brown		-0				Ä		8	0,				
			_				17						24-14-10	36
	loose		-		4-4-4						20	101		
	5.0													
	SANDY LEAN CLAY (CL), brown, medium sti	ff J	_		2-2-4						25	96		52
	7.5		1_											
	SILTY SAND (SM), light brown, loose		-		2-2-6 N=8									
	10.0	10-												
	POORLY GRADED SAND WITH SILT (SP), trace gravel, light brown, loose		_		11-10-5	5					21	102		
	15.0			Ν										
	LEAN CLAY WITH SAND (CL) light brown, medium stiff	15		\mathbf{X}	1-2-3 N=5									78
			-											
			-											
	gray	20-			3-4-4						31	90		
			_											
			-											
	brown, stiff	25-	-	\square	4-6-6									
			1		N=12									
	Stratification lines are approximate. In-situ, the transition ma	y be gradual.					Hamme	er Type	e: Autom	atic				
Advan	cement Method:						Notes:							
	ow Stem Auger	See Explorate description of used and ad	f field a ditional	d les and la data	sting Procedures aboratory proced a (If any).	tor a dures		observ	ed at 9 fl	bgs aft	er com	pletion.		
	onment Method:		ing Info	ormat	tion for explanati	ion of								
Borir	ng backfilled with auger cuttings upon completion.													
∇	WATER LEVEL OBSERVATIONS At completion of drilling	٦٢		-	aco		Boring St	arted:	02-27-20	20	Borir	ng Com	pleted: 02-27-2	2020
					JLU		Drill Rig:	CME 8	35		Drille	er: S&G		

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60205029 PROJECT BRUIN GPJ TERRACON_DATATEMPLATE.GDT 3/20/20

BORING LOG NO. BB-1 Page 2 of 2													
PR	OJECT: Project Bruin		CLIENT: See	LIENT: Seefried Industrial Properties, Inc. El Segundo, CA									
SIT	E: Highway 101 and Del Norte Bo Oxnard, CA	ulevard			EIS	egunao	, СА						
ő	LOCATION See Exploration Plan	(EL	PE	Т	JDEX	STF	RENGTH	TEST	(%	cf)	ATTERBERG LIMITS	LES
GRAPHIC LOG	Latitude: 34.2146° Longitude: -119.1341°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	ЪЕ	COMPRESSIVE STRENGTH (tsf)	(%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
RAPI		DEPT	ATER SER/	MPL	RESI	ANSIG	TEST TYPE	PRES (tsf)	STRAIN (%)	ONTE	DRY EIGF	LL-PL-PI	SCEN
	DEPTH		Зª	SA	ш	EXP,	Ë	COM ST	ST	Ŭ	\$		Ш Ц
	LEAN CLAY WITH SAND (CL) (continued)	_											
	30.0	20											
	SILTY SAND (SM), gray, medium dense	30-			22-27-30					20	104		
		-											
		-											
		-											
		-											
	35.0 <u>SILT (ML)</u> , trace sand, gray, stiff	35-	_		2-4-6								
		-		\land	N=10								
		-											
		-	-										
		-											
		40-	-										
	very stiff	-		X	6-9-17					28	93		
	gray, hard	45-		\square	6-13-22								
		-		\square	N=35								
		-											
		-	_										
		-	_										
	50.0 <u>SILTY SAND (SM)</u> , gray, very dense	50	-										
	51.5	-	_		15-25-50/6"					25	100		
	Boring Terminated at 51.5 Feet												
Stratification lines are approximate. In-situ, the transition may be gradual.				1	L	Hamme	er Typ	e: Autom	natic	I			L
Advor	cement Method	·		. –		Notes:							
Advancement Method: See E Hollow Stem Auger describe		See Explorate description of used and add	ion and f field a	and la	ting Procedures for a aboratory procedures	NOLES.							
used a		See Supporti	ng Info	rmati	ion for explanation of								
Abano Bor	lonment Method: ing backfilled with auger cuttings upon completion.	symbols and	abbrev	/iatio	ns.								
<u> </u>										-			
\Box	WATER LEVEL OBSERVATIONS At completion of drilling			-	acon	Boring St	arted:	02-27-20	20	Borir	ng Com	oleted: 02-27-2	2020
						Drill Rig:	CME	85		Drille	er: S&G		
		1			r Ave, Ste C ı, CA	Project N	o.: 60	205029					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60205029 PROJECT BRUIN.GPJ TERRACON_DATATEMPLATE.GDT 3/20/20

BORING LOG NO. BB-2 Page 1 of 2													
PR	PROJECT: Project Bruin					ried Ind	ustr	ial Pr	opert	ties, l		0	
SIT	E: Highway 101 and Del Norte Bo Oxnard, CA	ulevard			EISE	egundo,	, CA						
g	LOCATION See Exploration Plan		NS LI	Ш		DEX	STF	RENGTH	TEST	()	L)	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 34.2132° Longitude: -119.1341°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
///	DEPTH CLAYEY SAND (SC)		- 0	, .,		<u> </u>		8					<u> </u>
	stiff		_		4-6-6					18	108		
			_										
	5.0 <u>POORLY GRADED SAND (SP)</u> , trace silt, tan, loose		_		2-2-2 N=4								
	7.5 <u>CLAYEY SAND (SC)</u> , trace gravel, brown,				2-6-7								27
	loose		_		2-0-7								27
	10.0 <u>POORLY GRADED SAND (SP)</u> , tan, medium dense	10-			4-7-8 N=15								
			_										
	15.0 LEAN CLAY WITH SILT (CL), trace sand, gra soft	y, 15-			1-2-2					29	92		
		20-	_		1-1-1 N=2								
	25.0 SILTY CLAYEY SAND (SC-SM), gray, mediun	25-	-		,								
	dense				11-13-15					25	97		
	Stratification lines are approximate. In-situ, the transition ma	y be gradual.	1			Hamme	er Typ	e: Autom	atic				
Advan	cement Method:	Sao England	lor of	d T -	ting Droce dury of the	Notes:							
Advancement Method: See Exploration and Hollow Stem Auger description of field a used and additional			and la	aboratory procedures		observ	ved at 25	ft bgs a	fter con	npletion			
	onment Method: ng backfilled with auger cuttings upon completion.	See Support symbols and		tion for explanation of ns.									
	WATER LEVEL OBSERVATIONS			-		Boring St	arted:	02-27-20	20	Borir	ng Com	oleted: 02-27-2	2020
<u> </u>	At completion of drilling		26	1	JCON	Drill Rig:	CME 8	35		Drille	er: S&G		
			421 Eq	dinge Tustir	r Ave, Ste C	Project No.: 60205029							

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60205029 PROJECT BRUIN GPJ TERRACON_DATATEMPLATE.GDT 3/20/20

BORING LOG NO. BB-2 Page 2 of 2													
PR	OJECT: Project Bruin				CLIENT: Seefried Industrial Properties, Inc.								
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	levard			El Segundo, CA								
g	LOCATION See Exploration Plan		NS	Ш	F	DEX	STR	ENGTH	TEST	(%	f)	ATTERBERG LIMITS	LES
GRAPHIC LOG	Latitude: 34.2132° Longitude: -119.1341°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
	DEPTH SILTY CLAYEY SAND (SC-SM), gray, medium dense (continued)					<u> </u>		ō					
	30.0 <u>SILTY SAND (SM)</u> , brown, medium dense		-	X	6-7-11 N=18								
	35.0 LEAN CLAY (CL), gray, stiff	- - 	-			\langle							
	<u></u>	-			3-7-10					29	89		
	stiff to very stiff	40-		X	3-6-9 N=15								
	45.0 SANDY SILT (ML), gray, hard	- 45- - -	-		16-22-26					23	101		
	50.0 LEAN CLAY (CL), trace sand, gray, hard 51.5	50	-		5-12-26 N=38								
	Boring Terminated at 51.5 Feet												
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Hamme	er Type	e: Autom	atic				
Holl Aband	ـــــــــــــــــــــــــــــــــــــ	used and add	itional ng Info	data rmati	ion for explanation of	Notes:							
	WATER LEVEL OBSERVATIONS					Boring Of	orteal	00 07 00	20	Peri		alatadı 00.07 (2020
\square	At completion of drilling				DCON	Boring St			20			oleted: 02-27-2	2020
		14	121 Ed	inger	Ave, Ste C	Drill Rig:				Drille	er: S&G		
		ustin	, CA	Project N	o.: 602	205029		1					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60205029 PROJECT BRUIN.GPJ TERRACON_DATATEMPLATE.GDT 3/20/20

	B	ORIN	GΙ	_0	og no. Be	3-3					F	Page 1 of	1
PR	OJECT: Project Bruin				CLIENT: See	fried Ind egundo	lusti	rial Pr	oper	ties, I			
SI	FE: Highway 101 and Del Norte Bou Oxnard, CA	levard			LIS	egunuo	, 04						
LOG	LOCATION See Exploration Plan		ONS	ЪЕ	t a	NDEX	STF	RENGTH	TEST	(%		ATTERBERG LIMITS	NES
HICL	Latitude: 34.2139° Longitude: -119.1333°	DEPTH (Ft.)	2 LEV	Ξ	ULTS	NO	ΥPE	SSIVE	(%)	ENT (TINU TINU		
GRAPHIC		DEPI	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
			≤¤	ο Ο		EXE	Ë	°. CO	ν'	0			
	SILTY CLAYEY SAND, brown		_										
			_										
	loose		_		6-7-6					12	106		
			_		0-7-0	-				12	100		
		5-	_	_									
			_	X	1-2-3 N=5								
	7.5 POORLY GRADED SAND (SP), trace silt,		_		3-6-9					19	109		
	loose				3-0-9	_				19	109		
		10-	_			-							
			_	X	3-9-8 N=17								
						-							
			- \										
			_ `										
		15				-							
	LEAN CLAY (CL), trace sand, medium stiff				1-4-5					28	91		
			_			-							
			,										
			_										
	soft	20-	_			-							
	21.5		_	X	1-1-2 N=3								
	Boring Terminated at 21.5 Feet												
	Stratification lines are approximate. In-situ, the transition may	be gradual.	_1	1	1	Hammo	er Typ	e: Autom	natic	1		I	
	cement Method:	See Explora	tion and	d Tes	sting Procedures for a	Notes:							
Hol	low Stem Auger	lescription c used and ad	of field a	and la	aboratory procedures								
band		See Support symbols and			tion for explanation of ons.								
	ing backfilled with auger cuttings upon completion.												
	WATER LEVEL OBSERVATIONS		2			Boring St	arted:	02-27-20)20	Borir	ng Com	pleted: 02-27-	2020
	At completion of drilling		26	1	JCON	Drill Rig:					er: S&G	-	
		1	421 Ed T	linge ⁻ ustir	r Ave, Ste C n, CA	Project N	o.: 60	205029					

	B	ORIN	G L	.0	G NO. BE	8-4					F	Page 1 of 1	1
PR	OJECT: Project Bruin				CLIENT: Seef	ried Ind egundo,	ustr CA	ial Pro	opert	ies, I		0	
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	levard											
Ŋ	LOCATION See Exploration Plan		NS	Щ		DEX	STF	ENGTH	TEST	(9	L)	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 34.2148° Longitude: -119.1376°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	Щ	SIVE TH	(%	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
APH		EPT	TER	MPLE	SESU	NSIC	TEST TYPE	PRES tENG (tsf)	STRAIN (%)	WAT	EIGH	LL-PL-PI	CEN
	DEPTH		0BSB	SAI	<u>ш</u> –	EXPA	TES	COMPRESSIVE STRENGTH (tsf)	STF	ö	->		PER
	SANDY LEAN CLAY (CL), brown	- - - 5 - - - -			2-2-2 N=4								
<u>//////</u>	10.0 POORLY GRADED SAND (SP), trace silt, medium dense	10-	1	\bigtriangledown	4-6-10								
	11.5 Boring Terminated at 11.5 Feet			\square	N=16								
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Hamme	ər Typı	e: Autom	atic				
Advor	cement Method:			Notes									
Holl	ow Stem Auger d u onment Method: s ng backfilled with auger cuttings upon completion.	sed and add	litional	data mati	on for explanation of	Notes:							
	WATER LEVEL OBSERVATIONS Groundwater not encountered				acon	Boring St	arted:	02-27-20	20	Borin	ig Com	oleted: 02-27-2	2020
						Drill Rig:	CME 8	35		Drille	er: S&G		
		14	+∠i Ed T	inger ustin	Ave, Ste C , CA	Project N	o.: 602	205029					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60205029 PROJECT BRUIN.GPJ TERRACON_DATATEMPLATE.GDT 3/20/20

	В	ORIN	G L	.0	G NO. B	B-5					F	Page 1 of 1	1
PR	OJECT: Project Bruin				CLIENT: See	efried Ind Segundo,	ustr CA	ial Pro	opert	ies, I		0	
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	llevard				.							
g	LOCATION See Exploration Plan		NS	Щ	L	DEX	STR	ENGTH	TEST	(%)		ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 34.2125° Longitude: -119.1362°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	ЪЕ	COMPRESSIVE STRENGTH (tsf)	(%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
RAPH		DEPT	ATER SERV	MPL	RESU	ANSIG	TEST TYPE	IPRES RENG (tsf)	STRAIN (%)	-WA ONTE	DRY /EIGH	LL-PL-PI	RCEN
U	DEPTH		ЗB	SA	<u> </u>	EXP	TE	ST	ST	Ũ	5		BEI
	<u>SANDY LEAN CLAY (CL)</u> , brown	-	-										50
	medium stiff	5	-		3-3-2 N=5								
	10.0	-											
<u>/////</u>	POORLY GRADED SAND (SP), trace silt, medium dense	10-		\bigtriangledown	6-7-11								
	11.5 Boring Terminated at 11.5 Feet			\square	N=18								
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Hamme	er Type	e: Autom	atic				
A .1.													
Holl Aband		itional	data rmati	ting Procedures for a aboratory procedures (If any). ion for explanation of ns.									
	WATER LEVEL OBSERVATIONS					Boring Sta	arted	02-27-20	20	Rorin	na Com	oleted: 02-27-2	2020
\square	At completion of drilling	C			acon	Drill Rig:			20	_	er: S&G		2020
		14	121 Ed	inger ustin	Ave, Ste C	Project No				2,1110	500		

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60205029 PROJECT BRUIN.GPJ TERRACON_DATATEMPLATE.GDT 3/20/20

	В	GΙ	_0	G NO. BE	8-6					F	Page 1 of 1	1	
PR	OJECT: Project Bruin				CLIENT: Seef El Se	ried Ind	ustr	ial Pro	opert	ies, I			
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	levard			EI Se	egundo	CA						
Ю	LOCATION See Exploration Plan		NS	ЪЕ	F	IDEX	STR	ENGTH	TEST	(%	sf)	ATTERBERG LIMITS	LES
HIC L	Latitude: 34.2134° Longitude: -119.1376°	DEPTH (Ft.)	R LEV	ΕT	0 TES		ΥPE	SSIVE	(%)	ENT (UNIT HT (pe		AT FIN
GRAPHIC LOG		DEPI	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
	DEPTH SANDY LEAN CLAY (CL), brown		>0	S		EXI	-	S∾	S	0			đ
	medium stiff	5 -			3-2-3 N=5								
	10.0 POORLY GRADED SAND (SP), trace silt, tan,	10-	_										
	medium dense 11.5			X	5-7-9 N=16								
	Boring Terminated at 11.5 Feet	/ be gradual.				Hamme	er Type	e: Autom	atic				
-		3.03001.				-	, P						
Holl	onment Method: ng backfilled with auger cuttings upon completion.	used and add	ditional ng Info	data rmati	on for explanation of	Notes:							
	WATER LEVEL OBSERVATIONS Groundwater not encountered			-		Boring St	arted:	02-27-20	20	Borin	ng Comp	oleted: 02-27-2	2020
	Groundwaler not encountered					Drill Rig:	CME 8	35		Drille	er: S&G		
		1	421 Ed T	linger Fustin	Ave, Ste C , CA	Project N	o.: 602	205029					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60205029 PROJECT BRUIN.GPJ TERRACON_DATATEMPLATE.GDT 3/20/20

	ВО	G NO. B-	01					F	Page 1 of 3	3			
PR	OJECT: Project Bruin				CLIENT: Seef	ried Ind	ustr	ial Pr	opert	ies, I			
SIT	E: Highway 101 and Del Norte Boulev Oxnard, CA	/ard			EI Se	egundo,	CA						
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.2144° Longitude: -119.1328°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH DD (tsf) H	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	DEPTH CLAYEY SAND (SC), dark brown, very loose	-				<u> </u>		0				25-16-9	41
	4.0	-	-		2-2-2					25	96		
	<u>SANDY LEAN CLAY (CL)</u> , dark brown, very soft	5 -			0-0-1 N=1								
	7.5 <u>POORLY GRADED SAND WITH SILT</u> (SP-SM), trace clay, brown, loose	- -	-		1-5-11					22	100		
	medium dense	10-		X	4-7-7 N=14								10
	14.5												
	LEAN CLAY WITH SAND (CL), dark grayish brown stiff	15- - -	-		7-6-6					21	105		
	very soft	20-	-		0-0-0 N=0							37-25-12	72
		- - 25-	-										
	Stratification lines are approximate. In-situ, the transition may be	gradual.	1	1	ı I	Hamme	er Type	e: Autom	atic				
Holl	low Stem Auger desc used Jonment Method: ing backfilled with Auger Cuttings and/or Bentonite	ription of l and add Supportin cols and a	field a litional ng Info abbrev	and la data rmati viatio	sting Procedures for a aboratory procedures ((If any). ion for explanation of ins. m Google Earth.	Notes:							
∇	WATER LEVEL OBSERVATIONS					Boring St	arted:	04-06-20	18	Borin	ng Com	oleted: 04-06-2	2018
$\overline{\mathbb{V}}$	While drilling At completion of drilling		421 Ed	linge	DCON r Ave, Ste C	Drill Rig:	LAR			Drille	er: 2R D	rilling	
					n, CA	Project N	o.: 602	205029		1			

	E	BORIN	IG I	_0	G NO. B-	01					F	Page 2 of 3	3
PR	OJECT: Project Bruin				CLIENT: Seef El Se	ried Ind egundo,	ustr CA	ial Pr	oper	ties, I	nc.		
SI	TE: Highway 101 and Del Norte Bo Oxnard, CA	ulevard				-							
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.2144° Longitude: -119.1328°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH D (tsf) H	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI	PERCENT FINES
	LEAN CLAY WITH SAND (CL), dark grayish brown (continued) stiff		_		4-5-5					32	92		
	28.0 <u>POORLY GRADED SAND WITH SILT</u> (SP-SM), grayish brown, medium dense	30	-	X	3-7-5 N=12							NP	11
	33.5 SANDY LEAN CLAY (CL), dark grayish brown very stiff	35-			5-10-31					21	104		
	39.5 FAT CLAY (CH) , dark grayish brown, medium stiff 43.3	40-		X	2-2-5 N=7							54-27-27	97
	<u>SANDY LEAN CLAY (CL)</u> , dark grayish browr very stiff	^{1,} 45 ⁻	_		6-15-10					41	85		
	47.3 CLAYEY SAND (SC), dark grayish brown		_										
	50.0 Stratification lines are approximate. In-situ, the transition ma	-			Hamme	er Typ	e: Autom	atic					
Hol	icement Method: low Stem Auger donment Method: ing backfilled with Auger Cuttings and/or Bentonite	description of used and ad	of field a ditional ing Info	and la data rmati	on for explanation of	Notes:							
Rou Bou	WATER LEVEL OBSERVATIONS While drilling At completion of drilling	٦٢	21 421 Ed	1	n Google Earth.	Boring Sta Drill Rig:	LAR		118		ng Comj er: 2R D	oleted: 04-06- rilling	2018

	В	ORIN	GL	_0	G NO. B-	01					F	Page 3 of 3	3
PF	ROJECT: Project Bruin				CLIENT: Seef	ried Ind	lusti	rial Pro	oper	ties, I		-	
Sľ	TE: Highway 101 and Del Norte Bou Oxnard, CA	ulevard			EI SE	egundo	, СА	<u> </u>					
LOG	LOCATION See Exploration Plan		NS NS	ЪЕ	t a	NDEX	STF	RENGTH	TEST	(%	cf)	ATTERBERG LIMITS	NES
HICL	Latitude: 34.2144° Longitude: -119.1328°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	YPE	COMPRESSIVE STRENGTH (tsf)	۱ (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pd)		PERCENT FINES
GRAPHIC		DEP	VATE BSER	AMP	FIEL	PANS	TEST TYPE	MPRE TREN (tsf	STRAIN (%)	CONT	DRY	LL-PL-PI	ERCE
<i></i>	DEPTH SANDY LEAN CLAY (CL), dark grayish brown		20	0		Ĕ		800	0				
	very stiff 51.5	,	-	X	8-10-11 N=21								52
	Boring Terminated at 51.5 Feet			Í									
2													
Ś													
<u>P</u>													
200													
2-00													
-													
	Stratification lines are approximate. In-situ, the transition may	/ be gradual.	_	_		Hamme	er Typ	e: Autom	natic	_	_	_	_
Adva	ncement Method:	See Explorat	ion and	l Tes	ting Procedures for a	Notes:							
- HO	now Stem Auger	description o used and add	f field a	and la	aboratory procedures								
Aban		See Supporti symbols and			ion for explanation of ns.								
Boi	ring backfilled with Auger Cuttings and/or Bentonite	-			n Google Earth.								
	WATER LEVEL OBSERVATIONS			-		Boring St	arted:	04-06-20)18	Borii	ng Com	pleted: 04-06-	-2018
	While drilling At completion of drilling		2	1	DCON	Drill Rig:					er: 2R D		-
\mathbb{Z}			421 Ed								-	-	

	E	BORING L	.0	G NO. B-	02					F	Page 1 of 3	3
PF	ROJECT: Project Bruin			CLIENT: Seef	ried Ind egundo	lustr	ial Pro	oper	ties, I	nc.		
Sľ	TE: Highway 101 and Del Norte Bo Oxnard, CA	oulevard			gunuo	, 04						
LOG	LOCATION See Exploration Plan	(EL	ЪЕ	E.	NDEX	STF	ENGTH	TEST	(%	- cf)	ATTERBERG LIMITS	NES
HICL	Latitude: 34.2143° Longitude: -119.1292°	DEPTH (Ft.) WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	ΥPE	COMPRESSIVE STRENGTH (tsf)	(%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
GRAPHIC		DEPT	MPL	RES	ANSI	TEST TYPE	APRE: RENC (tsf)	STRAIN (%)	ONTE	DRY	LL-PL-PI	RCE
0	ДЕРТН		S,		EXP	Ë	CON ST	ST	Ő	>		ШЧ
	CLAYEY SAND (SC), dark brown, very loose											
					15						24-16-8	37
			Х	0-2-1 N=3								
			/ \									
	5.0 POORLY GRADED SAND WITH CLAY (SP),	5										
	brown, medium dense		X	5-9-12					21	106		
		_										
			\bigvee	4-7-3								
			\triangle	N=10								
		10-										
	very loose			1-1-1					20			
5												
ā /												
	15.5	15-	$\overline{\langle}$	2-2-1								
	SANDY LEAN CLAY (CL), dark brown, soft	-	\wedge	N=3								
	19.5	_										
	LEAN CLAY WITH SAND (CL), brown, stiff	20-										
			X	5-9-7					24	101		
ĵ		_										
	25.0											
		25			Homm		Autom	otio				
5 T	Stratification lines are approximate. In-situ, the transition ma	ay be gradual.				ытур	e: Autom	aut				
	ncement Method: llow Stem Auger	See Exploration and description of field an used and additional d	nd lal	boratory procedures	Notes:							
Abor	donment Method:	See Supporting Inform	matio	on for explanation of								
Bo	ing backfilled with Auger Cuttings and/or Bentonite	symbols and abbrevia Elevations estimated										
	WATER LEVEL OBSERVATIONS				Boring St	arted	04-05-20	18	Rorie	na Com	oleted: 04-05-	2018
	While drilling	ller	-	acon	Drill Rig:		0-4-00-20	10		er: 2R D		2010
	At completion of drilling	1421 Edir	nger	Ave, Ste C			05020			21. ZN U	y	
-		Tu Tu	ustin,	, CA	Project N	0.: 602	205029					

	BC	RIN	GΙ	_0	G NO. B-	02					F	Page 2 of 3	3
PR	OJECT: Project Bruin				CLIENT: Seef				opert	ties, I			
SIT	E: Highway 101 and Del Norte Boule Oxnard, CA	vard			EI Se	egundo	, CA						
g	LOCATION See Exploration Plan	<u>.</u>	NS NS	ЪË	t.	NDEX	STF	RENGTH	TEST	(%	- cf)	ATTERBERG LIMITS	NES
GRAPHIC LOG	Latitude: 34.2143° Longitude: -119.1292°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pď)	LL-PL-PI	PERCENT FINES
	DEPTH CLAYEY SAND (SC), brown, medium dense			\bigtriangledown	4-7-5	Ш		0					
	28.5		-		N=12								
0'0	POORLY GRADED SAND WITH GRAVEL (SP), tan, medium dense	30-											
000		-	_	X	8-10-35					17			
0 00 00 00		-	-										
	35.0 SANDY LEAN CLAY (CL), dark grayish brown, stiff	- 35-		X	4-6-7 N=13								
	39.3 LEAN CLAY WITH SAND (CL), dark gray		-										
	stiff	40-			4-7-8					45	78		
		-	-										
	very stiff	45	-	X	2-7-12 N=19								
			-										
	Stratification lines are approximate. In-situ, the transition may be		<u> </u>	<u> </u>		Hamme	l er Typ	e: Autom	atic				
	cement Method: See	Explorati	on and	l Tes	ting Procedures for a	Notes:							
Hol	ow Stem Auger des use	cription of d and add	field a itional	ind la data	aboratory procedures (If any).								
	onment Method: syn ng backfilled with Auger Cuttings and/or Bentonite	bols and a	abbrev	riatio	ion for explanation of ns. m Google Earth.								
$\overline{\nabla}$	WATER LEVEL OBSERVATIONS			-		Boring St	arted:	04-05-20	18	Borir	ng Com	oleted: 04-05-2	2018
$\overline{\mathbb{V}}$	While drilling At completion of drilling		2	10	JCON	Drill Rig:	LAR			Drille	er: 2R D	rilling	
<u> </u>		14			r Ave, Ste C n, CA	Project N	o.: 602	205029		1			

	B	ORIN	GL	_0	G NO. B-	02					F	Page 3 of 3	3
PR	OJECT: Project Bruin				CLIENT: Seef El Se	fried Ind equndo.	ustr CA	ial Pro	opert	ies, I			
SI	TE: Highway 101 and Del Norte Bou Oxnard, CA	levard											
g	LOCATION See Exploration Plan		NSE	ш		DEX	STR	ENGTH	TEST	()	(J	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 34.2143° Longitude: -119.1292°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	Ш	COMPRESSIVE STRENGTH (tsf)	(%	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
APH		ĒPT	TER	MPLE	SESU	NSIC	TEST TYPE	PRES RENG (tsf)	STRAIN (%)	WAT	DRY (LL-PL-PI	CEN
ß	DEPTH		N N N	SAI	Ē	EXPA	Ë	STF	STF	8 S	N.		PER
	LEAN CLAY WITH SAND (CL), dark gray (continued)	-			10-21-23					22	103		
/////	51.5 hard Boring Terminated at 51.5 Feet	-											
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Hamme	er Type	a: Autom	atic				
Advar	ncement Method:			1.7	tion Data data for a	Notes:							
	llow Stem Auger	See Explorat lescription o ised and add	f field a	and la	ting Procedures for a aboratory procedures (If any)	Notes.							
		See Support	ing Info	rmati	ion for explanation of								
	donment Method: s ring backfilled with Auger Cuttings and/or Bentonite	symbols and	abbrev	viatior	ns. n Google Earth.								
	WATER LEVEL OBSERVATIONS				J	Boring St	artadi	04-05-00	18	Pori		plated: 04 05	2010
\Box	While drilling				acon			04-00-20	10			villing	2010
	At completion of drilling	1	421 Ed		Ave, Ste C	Drill Rig: Proiect N		205020		Drille	er: 2R D	riiling	

٦

	В	ORIN	G	LC	og no. B	8-03					F	Page 1 of 3	3
PR	OJECT: Project Bruin				CLIENT: Se	efried Inc	lustr	rial Pro	opert	ties, I		0	
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	levard			EI	Segundo	, СА						
ő	LOCATION See Exploration Plan		NS	ЫШ	L	DEX	STF	RENGTH	TEST	(%)	f)	ATTERBERG LIMITS	IES
IIC LO	Latitude: 34.2131° Longitude: -119.1328°	H (Ft.	ATIC	ET	JLTS		ЪЕ	SIVE	(%)	TER INT (9	UNIT HT (po		IT FIN
GRAPHIC LOG		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
	DEPTH SILTY CLAYEY SAND (SC-SM), dark brown,		- 0					8					_₽_
	very loose		_			12						24-17-7	45
			_	\square	0-2-1								
			_	\square	N=3								
	4.8 SANDY LEAN CLAY (CL), dark brown, mediun	n 5-											
	stiff				0-3-2					22	104		
	7.3		∇			-							
	POORLY GRADED SAND WITH CLAY (SP),				0.05	-							
	brown, loose				0-0-5 N=5								
	9.8					-							
	CLAYEY SAND (SC), dark brown, medium dense	10-			11-14-9					22	103		
											100		
			-										
	loose	15-			1-3-2								
	16.0 SANDY LEAN CLAY (CL), dark grayish brown,	-	_	X	N=5								
	medium stiff												
	19.5		_										
	LEAN CLAY WITH SAND (CL), dark grayish		_			_							
	brown medium stiff			X	3-4-5					30	96		
		05											
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Hamm	er Type	e: Autom	atic				
	ow Stem Auger	description o	f field a	and la	sting Procedures for aboratory procedures	a Notes: s							
		used and ad See <mark>Support</mark>	ing Info	ormati	ion for explanation c	of							
	onment Method: ng backfilled with Auger Cuttings and/or Bentonite	symbols and	abbre	viatio	ns. m Google Earth.								
	WATER LEVEL OBSERVATIONS		sundle			D and a second	4 m m41	04.00.00	40	D =			0040
\square	While drilling			"	ЭСОГ	Boring Si Drill Rig:		04-06-20	ιð			rilling	2018
\square	At completion of drilling	1	421 E		r Ave, Ste C	Project N		205029		Dille	er: 2R D	milly	

		BORING	GLC	OG NO. B-	-03				F	age 2 of 3	3
PR	ROJECT: Project Bruin			CLIENT: See	fried Indu Segundo,	ustrial Pr	operti	ies, I	nc.		
SI	TE: Highway 101 and Del Norte B Oxnard, CA	oulevard			<u> </u>	<u>v</u>					
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.2131° Longitude: -119.1328°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE STRENGTH (tsf) (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI	PERCENT FINES
	DEPTH LEAN CLAY WITH SAND (CL), dark grayish brown (continued) stiff	۱ – –		3-4-5 N=9	_						
N_DATATEMPLATE.GDT 3/20/20	29.0 CLAYEY SAND, dark grayish brown, mediu dense	m 30- - - -		11-19-11			-	17	111		
00185017 BORING LOGS GPJ TERRACON_DATATEMPLATE.GDT	40.3	35		4-4-4 N=8							
	LEAN CLAY (CL), trace sand, dark grayish brown, stiff 42.0	40		5-7-10	-			38	82		
O SMART LOG-NO	CLAYEY SAND (SC), dark grayish brown	45-									
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL ORDED PLAPP	LEAN CLAY (CL), trace sand, dark grayish brown, very stiff			6-10-9 N=19				33	92		
PARATED	Stratification lines are approximate. In-situ, the transition r				Hamme	r Type: Auton	natic				
Advar Hol LON Abanc Bor S	ncement Method: llow Stem Auger donment Method: ring backfilled with Auger Cuttings and/or Bentonite	description of f used and addit See Supporting symbols and a	ield and l ional data g Informa bbreviatio	tion for explanation of	Notes:						
	WATER LEVEL OBSERVATIONS				Boring Sta	rted: 04-06-20)18	Borin	ıg Com	oleted: 04-06-2	2018
	While drilling At completion of drilling			acon	Drill Rig: L	AR		Drille	er: 2R D	rilling	
		- 142		er Ave, Ste C n, CA	Project No	.: 60205029					

		В	ORIN	IG L	_C)G NO. B-()3					F	Page 3 of 3	3
	PR	OJECT: Project Bruin				CLIENT: Seef	ried Ind gundo,	ustr	ial Pro	oper	ties, I			
	SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	levard			EISE	gunuo,	CA						
	g	LOCATION See Exploration Plan		EL	ЪЕ	F	IDEX	STR	ENGTH	TEST	(%	ر ا .	ATTERBERG LIMITS	LES
	GRAPHIC LOG	Latitude: 34.2131° Longitude: -119.1328°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	ΡE	COMPRESSIVE STRENGTH (tsf)	(%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
	RAPI		DEPT	ATEF SER\	MPL	RESI	ANSIG	TEST TYPE	IPRES RENG (tsf)	STRAIN (%)	WA.	DRY Figh	LL-PL-PI	SCEN
	U	DEPTH		ŠВ	SA	ш. 	EXP	Ξ	COM ST	ST	ŏ	5		L L L L L
		LEAN CLAY (CL), trace sand, dark grayish brown, very stiff (continued)			\mathbf{X}	8-15-12					26	98		
		51.5 black Boring Terminated at 51.5 Feet												
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 80185017 BORING LOGS GPJ TERRACON_DATATEMPLATE.GDT 3/20/20	Holl Aband	Stratification lines are approximate. In-situ, the transition may	See Exploratescription clused and ad	of field a ditional ing Infor	nd la data rmati	ion for explanation of	Hamme	er Type	e: Autom	atic				
LOG I.		WATER LEVEL OBSERVATIONS	Lievations e	stimated	a froi	m Google Earth.			o	10				00.15
RING	∇	While drilling				JCON	Boring St		04-06-20	18	_	-	pleted: 04-06-2	2018
IS BO	$\mathbf{\nabla}$	At completion of drilling		421 Ed	inge	r Ave, Ste C	Drill Rig:				Drille	er: 2R D	rilling	
Ī						n, CA	Project N	o.: 602	205029					

	E	BORIN	G١	_C	G NO. B-	04					F	Page 1 of	3
PR	ROJECT: Project Bruin				CLIENT: Seef	iried Inc egundo	lusti	rial Pro	oper	ties, I			
SI	TE: Highway 101 and Del Norte Bo Oxnard, CA	oulevard				egunuo	, СА						
90-	LOCATION See Exploration Plan	t.)	VEL	ΥΡΕ	S ST	NDEX	STF	RENGTH	TEST	(%)	T ocf)	ATTERBERG LIMITS	INES
GRAPHIC LOG	Latitude: 34.2131° Longitude: -119.1292°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
	DEPTH CLAYEY SAND (SC), dark brown, very loose	•	-0	0		EX		0,0	05				
		-	-										
		-	-										
		-			2-2-4					20	104		
	4.5 POORLY GRADED SAND WITH CLAY (SP),		-										
	brown, medium dense	5 -		\bigtriangledown	3-5-5								
		-		\square	N=10								
	loose, sample not recovered												
			∇		15-9-5								
		10-											
	11.0			X	0-0-1 N=1								
	LEAN CLAY WITH SAND (CL), dark brown, very soft			\vdash									
	dark grayish brown, medium stiff	15-	-		0-3-3					32	89		
	brown, stiff	20-	-	X	4-6-6 N=12								
	24.0 SANDY LEAN CLAY (CL), dark brown, hard	25-	-										
	Stratification lines are approximate. In-situ, the transition mathematication mathematication mathematication mathematication mathematication and the strategies of the strate	ay be gradual.				Hamm	er Typ	e: Autom	atic				
	ncement Method: Ilow Stem Auger	See Explorate description oused and add	f field a	and la	sting Procedures for a aboratory procedures a (If any).	Notes:							
	donment Method: ring backfilled with Auger Cuttings and/or Bentonite	symbols and	abbrev	viatio	ion for explanation of ns. m Google Earth.								
$\overline{}$				-		Boring St	tarted:	04-05-20	18	Borir	ng Com	pleted: 04-05-	2018
$\overline{\mathbb{V}}$	While drilling At completion of drilling		2		DCON	Drill Rig:	LAR			Drille	er: 2R D	Prilling	
		1 1			r Ave, Ste C n, CA	Project N	lo.: 60	205029					

	E	BORIN	GΙ	LC	G NO. B-	04					F	Page 2 of 3	3
PR	OJECT: Project Bruin				CLIENT: Seef	ried Ind egundo,	usti	rial Pro	opert	ties, I		0	
SIT	E: Highway 101 and Del Norte Boo Oxnard, CA	ulevard				sgunuo,	, 0,	l l					
OG	LOCATION See Exploration Plan	(EL	ΡE	ь	JDEX	STF	RENGTH	TEST	(%	cf)	ATTERBERG LIMITS	NES
HC L	Latitude: 34.2131° Longitude: -119.1292°	H (Ft	& LEV	ΕT	ULTS		ЪЕ	SSIVE	(%)	ENT (UNIT HT (pe		
GRAPHIC LOG		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
0	DEPTH		≥®	/S	_	EXP	۳ 	SICO	S	0	>		Ë
	<u>SANDY LEAN CLAY (CL)</u> , dark brown, hard (continued)				5-20-36					20	108		
		-											
	stiff	30-	-	\square	3-6-9								
			-	X	N=15								
			-										
			-										
		35-											
	very stiff			N	8-12-14					32	91		
		-											
	39.0 LEAN CLAY WITH SAND (CL), dark grayish												
	brown, stiff	40-			3-7-4								
			-	X	N=11								
			-										
	43.0 SANDY LEAN CLAY (CL), dark brown, very		-										
	stiff												
		45-											
					5-6-15								
<i>[/////</i> ///////////////////////////////		50-					-						
	Stratification lines are approximate. In-situ, the transition ma	y be gradual.				Hamme	∍riyp	e: Autom	IduC				
	cement Method: ow Stem Auger	See Explorat	ion and	d Tes	sting Procedures for a a aboratory procedures	Notes:							
1101		used and add	litional	data	a (If any).								
	onment Method:	See Supporti symbols and			tion for explanation of ons.								
Bori	ng backfilled with Auger Cuttings and/or Bentonite	Elevations es	stimate	d fro	m Google Earth.								
$\overline{}$	WATER LEVEL OBSERVATIONS		-	-		Boring St	arted:	04-05-20	18	Borir	ng Com	oleted: 04-05-	2018
∇	While drilling At completion of drilling		2		JCON	Drill Rig:	LAR			Drille	er: 2R D	rilling	
<u> </u>		1			er Ave, Ste C n, CA	Project N	o.: 60	205029		1			

		В	ORIN	IG I	_C)G NO. B-()4					F	Page 3 of 3	3
	PR	OJECT: Project Bruin				CLIENT: Seefr	ried Ind gundo,	ustr	ial Pro	opert	ties, I		_	
	SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	llevard			EISe	gunuo,	, 04						
	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.2131° Longitude: -119.1292°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH DD (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI	PERCENT FINES
		DEPTH SANDY LEAN CLAY (CL), dark brown, very stiff (continued)				3-5-11 N=16	<u> </u>		ō					
		51.5 Boring Terminated at 51.5 Feet	_											
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60185017 BORING LOGS.GPJ TERRACON_DATATEMPLATE.GDT 3/20/20		ow Stem Auger	See Explora	of field a	and la	ting Procedures for a aboratory procedures ((if any)	Hamme	er Type	e: Autom	atic				
IS NOT VALIE		ionment Method:	used and ad See Support symbols and	ditional <mark>ing Info</mark> abbrev	data rmat viatio	(If any).								
IG LOG		WATER LEVEL OBSERVATIONS				_	Boring St	arted:	04-05-20	18	Borir	ng Com	pleted: 04-05-2	2018
BORIN	∇ $\overline{\nabla}$	While drilling At completion of drilling		2	1	JCON	Drill Rig:		-		_	er: 2R D	-	
THISI	<u></u>		1			r Ave, Ste C n, CA	Project N	o.: 602	205029					

	В	ORIN	GI	_C)g no. B	8-05					F	Page 1 of :	3
PR	OJECT: Project Bruin				CLIENT: Se	efried Ind Segundo,	usti	ial Pro	oper	ties, I			
SI	TE: Highway 101 and Del Norte Bou Oxnard, CA	llevard			EI	Segundo,	CA						
Ő	LOCATION See Exploration Plan	<u> </u>	NS NS	Ц	⊢	NDEX	STF	RENGTH	TEST	(%	cf)	ATTERBERG LIMITS	ZES
GRAPHIC LOG	Latitude: 34.2138° Longitude: -119.131°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
	DEPTH SILTY CLAYEY SAND (SC-SM), dark brown,							8					ш
	very loose	-										24-17-7	46
	brown	-			0-0-1 N=1								
	medium dense 6.0	5 -	_		3-6-6 N=12							NP	18
	SILTY SAND (SM), brown, medium dense	-	_										
		-			5-14-9 N=23								
		10-											
	10.5 LEAN CLAY (CL), trace sand, dark grayish brown, soft			X	2-1-1 N=2								
	13.0 SILTY CLAYEY SAND (SC-SM), dark brown,												
	very loose	- 15-			,								
				X	2-1-1 N=2							23-18-5	46
			_										
	loose	20-	_		0-2-3 N=5	_							
		-	_										
		-	_										
	25.0												
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Hamme	er Typ	e: Autom	atic				
	low Stem Auger	See Explorat description o used and add	f field a	and la	sting Procedures for aboratory procedures a (If any).	a Notes:							
	Ionment Method: ing backfilled with Auger Cuttings and/or Bentonite	symbols and	abbrev	viatio	tion for explanation cons. m Google Earth.	of							
_	WATER LEVEL OBSERVATIONS			- 70		Boring St	arted:	04-06-20	18	Borir	ng Com	pleted: 04-06-	2018
$\overline{\nabla}$	While drilling At completion of drilling		2		JCOL	Drill Rig:				_	er: 2R D	-	
		1			r Ave, Ste C n, CA	Project N	o.: 60	205029					

			E	BORIN	G١	LC	og no.	B-05	5					F	Page 2 of 3	3
	PR	OJECT: P	Project Bruin				CLIENT:	Seefrie El Segi	ed Indi	ustr	ial Pr	oper	ties, l	Inc.		
	SIT		lighway 101 and Del Norte Bo Ixnard, CA	ulevard				LI Segi	unuo,	UA						
	go	LOCATION	See Exploration Plan		NS NS	ЪЕ	۲.		NDEX	STR	RENGTH	TEST	(%	c[)	ATTERBERG LIMITS	LES
	GRAPHIC LOG	Latitude: 34.21	38° Longitude: -119.131°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS		EXPANSION INDEX	ΥΡΕ	COMPRESSIVE STRENGTH (tsf)	(%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
	ŝRAP			DEPT	SER	AMPL	FIELD		ANSI	TEST TYPE	APRE (tsf)	STRAIN (%)	MAN	VEIGI	LL-PL-PI	RCEI
	<u>.</u>	DEPTH			≤¤	ŝ			EXE	Ë	νĞ	<u>م</u>	0			L L
		brown, i	CLAY WITH SAND (CL), dark grayish medium stiff			X	2-3-4 N=7								43-24-19	75
						\vdash										
3/20/20				-												
		stiff 31.0		30-		∇	7-4-5									
TE.GD			Y SAND, dark brown, loose			\square	N=9									
MPLA				-	1											
TATE				-	1											
N D4				-	-											
RACC		35.0 SILT (M	<u>L)</u> , dark grayish brown, stiff	35-	-	\square	5-7-6									
J TEF				-		X	N=13								36-25-11	98
GS.GP					- \											
G LOG				-	-											
SORIN					_											
60185017 BORING LOGS.GPJ TERRACON_DATATEMPLATE.GDT		40.0		40-												
6018		brown, s	CLAY (CL), trace sand, dark grayish stiff			TX	2-3-6 N=9									
WELL						\vdash										
ON-0																
RT LO																
SMAF																
. GEO				45-		\mathbf{N}	2-4-5								40-24-16	87
PORT				-		\square	N=9									
AL RE				-												
RIGIN				-												
O MO				-	-											
ED FF	/////			50-												
ARAT		Stratification I	ines are approximate. In-situ, the transition ma	ay be gradual.					Hamme	r Гуре	e: Autom	natic				
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO		cement Method: low Stem Auger	:	See Explorat	ion and	d Tes	sting Procedures		Notes:							
ALID I		ow otom Auger		description o used and add			aboratory proced a (If any).	uures								
VOT V		Ionment Method		See Supporti symbols and			<mark>ion</mark> for explanati ns.	ion of								
I SI DO	Bori	ing backfilled wi	th Auger Cuttings and/or Bentonite	Elevations es	stimate	d fro	m Google Earth									
NG LC	\bigtriangledown				-	-		В	Boring Sta	arted:	04-06-20)18	Borii	ng Com	pleted: 04-06-2	2018
BOR	$\overline{\mathbb{V}}$	While drillin At completion	-		2		900		Drill Rig: L	.AR			Drill	er: 2R D	Drilling	
THIS			· •	1	421 Eo	dinge Fustir	r Ave, Ste C n, CA	Р	Project No	o.: 602	205029					

	В	ORIN	GI	_C	G NO. B-	05					F	Page 3 of 3	3
PR	OJECT: Project Bruin				CLIENT: Seef El Se	fried Ind	lustr	rial Pro	opert	ies, I			-
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	llevard				egundo	, 01						
g	LOCATION See Exploration Plan		NS ^{LI}	Щ		DEX	STF	RENGTH	TEST	(9	(J	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 34.2138° Longitude: -119.131°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	N N	щ	Ш Н	(%	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
APH		EPT	ERV/	1PLE	ELD .	VSIO	TEST TYPE	ENG ⁻ (tsf)	STRAIN (%)	WAT	RY L ≣GH	LL-PL-PI	CEN
В В В	DEDTU	Ē	WA	SAN	ĒĽ	EXPANSION INDEX	TES	COMPRESSIVE STRENGTH (tsf)	STR	8	AB V		PER
	DEPTH LEAN CLAY (CL), trace sand, dark grayish				5-5-7	Ш		0					
	brown, stiff <i>(continued)</i>		_	X	N=12								
	Boring Terminated at 51.5 Feet												
	Stratification lines are approximate. In-situ, the transition may	be gradual				Hamm		e: Autom	atic				
	Catamoaton mes are approximate. In-Situ, the transition may	ve gradual.				ndiiiii	стур	c. Autom	auc				
	cement Method:	See Explorat	ion and	d Tes	ting Procedures for a	Notes:							
Holl	ow Stem Auger	description o used and ad	f field a	and la	aboratory procedures								
Abard	opmont Mothod:	See Support	ing Info	rmat	ion for explanation of								
	ng backfilled with Auger Cuttings and/or Bentonite	symbols and			ns. m Google Earth.								
			sunate							<u> </u>			
∇	WATER LEVEL OBSERVATIONS While drilling			-	acon	Boring St	arted:	04-06-20	18	Borir	ng Com	oleted: 04-06-2	2018
$\overline{\mathbf{V}}$	At completion of drilling					Drill Rig:	LAR			Drille	er: 2R D	rilling	
		1	421 Ed	linge Tustir	r Ave, Ste C	Project N	o · 60′	205020					

	E	BORI	NG) L	0	G NO. B-	-06					F	Page 1 of	1
PR	OJECT: Project Bruin					CLIENT: See	fried Ind	lustr	rial Pr	oper	ties, I			
SI	E: Highway 101 and Del Norte Bo Oxnard, CA	ulevard				EI S	egundo	, CA	٠ 					
90	LOCATION See Exploration Plan	t.)	. !	/EL	ЪЕ Н	L. C	NDEX	STF	RENGTH	TEST	(%)	T ocf)	ATTERBERG LIMITS	NES
GRAPHIC LOG	Latitude: 34.2141° Longitude: -119.1299°	DEPTH (Ft.)		WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	ГҮРЕ	COMPRESSIVE STRENGTH (tsf)	(%) N	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
GRAF		DEP		WATE DBSEF	SAMP	FIEL	PANS	TEST TYPE	STREN (tsl	STRAIN (%)	CON	WEIG	LL-PL-PI	ERCE
	DEPTH CLAYEY SAND (SC), dark brown, very loose			- 0	T		<u> </u>		8	0,				
			-											
			_											
			-		$\overline{\langle}$	2-1-2	-							
			_	Z		N=3								
	loose	5	-	∇		/								
	10000		-		X	2-3-5					10	81		
	7.3		_	∇										
	POORLY GRADED SAND WITH CLAY (SP), brown, medium dense		_		\bigvee	2-5-9								
			_	4	\wedge	N=14	-							
		10	5				-							
	LEAN CLAY WITH SAND (CL), dark grayish brown, soft				X	0-1-2					39	81		
							-							
	13.5 <u>POORLY GRADED SAND WITH CLAY</u> ,			ľ										
	grayish brown, very loose	15	5				_							
	15.5 LEAN CLAY WITH SAND (CL), dark grayish		_		\langle	0-1-2 N=3								
	brown, soft			Ľ		11-5	-							
	very stiff	20				8-15-20					28	99		
	21.5 Boring Terminated at 21.5 Feet		-											
	Stratification lines are approximate. In-situ, the transition ma	av be gradua	1				Hamm	er Typ	e: Autom	atic				
		, _ , _ ,												
	cement Method: low Stem Auger	description	of fi	eld and	d la	ting Procedures for a aboratory procedures	Notes:							
		used and a See Suppo				(If any).								
	lonment Method: ing backfilled with Auger Cuttings and/or Bentonite	symbols ar	nd ab	obrevia	tior	ns.								
	WATER LEVEL OBSERVATIONS	Elevations	estir	nated	ror	m Google Earth.								
\bigtriangledown	While drilling			rr		acon	Boring St)18		-	pleted: 04-09-	2018
∇	At completion of drilling		142	1 Edin	ger	r Ave, Ste C	Drill Rig:				Drille	er: S/G	Drilling	
		1				n, CA	Project N	lo.: 602	205029					

			BOR	INC	Gι	.0	G NO. B-	07					F	Page 1 of	1
PR	OJECT: Project Br	uin					CLIENT: See	fried Ind	lusti	rial Pr	oper	ties, I		-	
SIT	TE: Highway 1 Oxnard, CA	01 and Del Norte B	oulevar	rd			EIS	egundo	, са	L.					
GRAPHIC LOG	LOCATION See Exploratio Latitude: 34.2134° Longitude:			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH D (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
в 1	DEPTH	<u>)</u> , dark brown, very loos	e	ō	WA OBS	SAN		EXPA	TES	COMF	STR	8	^D B		PER
				_											
				_	∇	X	0-1-2					24	98		
	loose			5		X	2-2-3 N=5								
	7.5 POORLY GRADED brown, medium den	SAND WITH CLAY (SP)	L,	_	\bigtriangledown		9-16-26					16	108		
	brown, mediam den	56		_ 10-			9-10-20						100		
	very loose		-	2	X	0-0-0 N=0									
	brown, very soft														
	14.8 CLAYEY SAND (SC dense), grayish brown, mediu	m	15			3-10-13					21	103		
				-											
	20.8 loose 21.5 LEAN CLAY WITH S	SAND (CL), dark grayish		20- -		X	2-3-5 N=8								
	Boring Terminated														
	Stratification lines are appro	ximate. In-situ, the transition r	may be grac	dual.				 Hammo	er Typ	e: Autom	natic				
	icement Method: Iow Stem Auger		descripti used and	ion of f d addit	field a tional (nd la data	ting Procedures for a aboratory procedures (If any).	Notes:							
	lonment Method: ing backfilled with Auger Cuttin	gs and/or Bentonite	symbols	and a	bbrev	iatio	ion for explanation of ns. m Google Earth.								
∇		ERVATIONS						Boring St	arted:	04-09-20)18	Borir	ng Com	pleted: 04-09-	2018
$\overline{\mathbb{V}}$	While drilling At completion of drilling					(DCON	Drill Rig:	CME	75		Drille	er: S/G	Drilling	
	,	WATER LEVEL OBSERVATIONS Thile drilling the completion of drilling					r Ave, Ste C n, CA	Project N	o.: 60	205029					

	E	BORIN	G L	.C	G NO. B-	08					F	Page 1 of	1
PR	OJECT: Project Bruin				CLIENT: See	fried Ind egundo	ust	rial Pr	oper	ties,		<u> </u>	
SIT	E: Highway 101 and Del Norte Bo Oxnard, CA	oulevard			EIS	egundo	, СА	L					
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.2141° Longitude: -119.1304°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH D (tsf) H	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI	PERCENT FINES
	DEPTH CLAYEY SAND (SC), dark brown, very loose		_		1-1-1	<u> </u>		8					
	4.5 POORLY GRADED SAND WITH CLAY (SP), brown, loose 6.5 CLAYEY SAND (SC), dark brown	5-			N=2					20	101		
	7.5 POORLY GRADED SAND WITH CLAY (SP), brown, dense			X	17-23-23 N=46								
	LEAN CLAY WITH SAND (CL), dark grayish brown, very stiff	- 10-			22-22-12					38	87		
	soft	15- - -		X	0-1-1 N=2								
	very stiff 21.5	20-	-	X	4-11-13					24	101		
	Boring Terminated at 21.5 Feet												
	Stratification lines are approximate. In-situ, the transition ma	ay be gradual.			<u> </u>	Hamme	l er Typ	e: Autom	natic	<u> </u>	I	<u> </u>	<u> </u>
Holl Aband	cement Method: low Stem Auger lonment Method: ing backfilled with Auger Cuttings and/or Bentonite	description of used and add See Supporti symbols and	f field ar litional o ng Infor abbrevi	nd la lata mati atio	ion for explanation of	Notes:							
	WATER LEVEL OBSERVATIONS			-		Boring St	arted:	04-03-20)18	Borii	ng Com	pleted: 04-03-	2018
∇	While drilling		26		DCON	Drill Rig:					er: CalP	-	-
<u> </u>	At completion of drilling	- 1	421 Edii	ngei	r Ave, Ste C n, CA	Project N		205029					

	В	ORIN	GL	.0	G NO. B-	09					F	Page 1 of	1
PR	OJECT: Project Bruin				CLIENT: Seef	iried Ind egundo,	ustr	rial Pro	oper	ties, I	Inc.		
SI	TE: Highway 101 and Del Norte Bou Oxnard, CA	llevard				egunuo,	, 04						
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.2134° Longitude: -119.1304°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE M STRENGTH D (tsf) H	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI	PERCENT FINES
	DEPTH CLAYEY SAND (SC), dark brown, very loose		-0		2-3-3	EX		8		25	99		<u> </u>
LATE.GDT 3/20/20	medium dense	5			4-7-10 N=17								
ON_DATATEMP	POORLY GRADED SAND WITH CLAY (SP), brown, medium dense	-	V		10-23-27					19	108		
60185017 BORING LOGS GPJ TERRACON_DATATEMPLATE.GDT	LEAN CLAY WITH SAND (CL), dark grayish brown, very soft	10		X	0-0-1 N=1								
60185017 BORING	13.5 CLAYEY SAND (SC), dark brown, loose	- 15-			4-8-7					21	102		
EO SMART LOG-NO WELL	17.0 SANDY LEAN CLAY (CL), dark grayish brown, very soft												
	21.0 21.5 <u>CLAYEY SAND (SC)</u> , dark brown, very loose Boring Terminated at 21.5 Feet			X	0-0-1 N=1								
D FROM ORIGINAL RE	Bonny reminated at 21.5 Feet												
PARATE	Stratification lines are approximate. In-situ, the transition may	/ be gradual.				Hamme	er Typ	e: Autom	natic				
Hol Hol Hol Hol Hol Hol Hol Hol	low Stem Auger	description of used and addi See <mark>Supportin</mark> symbols and a	field an tional o <mark>g Infor</mark> abbrevi	nd la data <mark>mati</mark> iatio	ion for explanation of	Notes:							
	WATER LEVEL OBSERVATIONS					Boring St	arted:	04-03-20)18	Borir	ng Com	pleted: 04-03-	2018
	While drilling At completion of drilling		21 Edi		DCON r Ave, Ste C	Drill Rig:	LAR			Drille	er: CalP	ac	
E					n, CA	Project N	o.: 602	205029					

			I	BOF	RIN	GΙ	_0	G NO. B-	11					F	Page 1 of	1
F	PR	OJECT: Project Brui	in					CLIENT: See	fried Ind egundo	lustr	ial Pr	oper	ties, I	Inc.		
ę	SIT	TE: Highway 10 [°] Oxnard, CA	1 and Del Norte Bo	ouleva	rd				egunuo	, 04						
	פראדחוט בטפ	LOCATION See Exploration Latitude: 34.2146° Longitude: -1			DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE M STRENGTH D (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
120		4.5	dark brown, very loose		-			2-2-4	<u> </u>		8		19	106		
WELL 60185017 BORING LOGS GPJ TERRACON_DATATEMPLATE.GDT 3/20/20		dark brown, medium	<u>AND WITH CLAY (SP)</u> , dense		5 — 			2-4-6 N=10 16-21-24					20	110		
ING LOGS.GPJ TERRACOM		10.8 very loose LEAN CLAY WITH SA brown, soft		10— — —	1	X	1-1-1 N=2									
		POORLY GRADED S dark brown, medium sample not recovered			- 15- - -			19-18-16								
ORT. GEO SMART		21.5	(CL) , dark brown, stiff		- 20- -			0-4-7 N=11								
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO		Boring Terminated a	t 21.5 Feet													
PARATE		Stratification lines are approxir	mate. In-situ, the transition m	nay be gra	adual.	•		•	Hammo	er Typ	e: Autom	natic				
G IS NOT VALID IF SEF	Holl	cement Method: low Stem Auger donment Method: ing backfilled with Auger Cuttings	s and/or Bentonite	descrip used a See <mark>Su</mark> symbol	otion of nd addi upportin Is and a	field a tional g Info abbrev	ind la data <mark>rmati</mark> riatior	ting Procedures for a aboratory procedures (If any). ion for explanation of ns. m Google Earth.	Notes:							
	7	WATER LEVEL OBSE	RVATIONS		-				Boring St	arted:	04-04-20)18	Borir	ng Com	oleted: 04-04-	2018
	_	While drilling At completion of drilling		╡╹	14		inger	DCON r Ave, Ste C	Drill Rig:		205005		Drille	er: CalP	ac	
É						Т	ustin	n, CA	Project N	o.: 602	205029					

	В	ORIN	GI	LC	OG NO. B-	12					F	Page 1 of	1
PR	OJECT: Project Bruin				CLIENT: See	fried Ind egundo	lust	rial Pro	oper	ties,		-	
SI	E: Highway 101 and Del Norte Bou Oxnard, CA	llevard			EIS	egunuo	, СА						
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.214° Longitude: -119.1323°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	DEPTH CLAYEY SAND (SC), dark brown, very loose		 B 	S N		EXE	T	N CO	ώ'	0			H
		-			4-3-3					23	102		
	6.0 POORLY GRADED SAND WITH CLAY (SP) , brown, medium dense	5-			3-5-7 N=12								
		-			13-23-33					21	107		
	10.8 LEAN CLAY WITH SAND (CL) , dark grayish brown, soft				2-1-1 N=2								
	medium stiff	15-			3-2-5					35	89		
	medium stiff to stiff 21.5	20-	_		2-4-4 N=8								
	Boring Terminated at 21.5 Feet												
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Hamm	 er Typ	e: Autom	natic				
Hol	ow Stem Auger	description o used and ado See <mark>Support</mark> i	f field a ditional ing Info	and la I data ormat	tion for explanation of	Notes:							
	ing backfilled with Auger Cuttings and/or Bentonite	symbols and Elevations e			ons. m Google Earth.								
∇	WATER LEVEL OBSERVATIONS While drilling	٦Г	26	C :	acon	Boring St		04-10-20)18		-	pleted: 04-10-	2018
\square	At completion of drilling	1		dinge	er Ave, Ste C n, CA	Drill Rig: Project N		205029		Drill	er: 2R D	Drilling	

	В	ORIN	GL	.0	G NO. B- [^]	13					F	Page 1 of 1	1
PR	OJECT: Project Bruin				CLIENT: Seef	ried Ind gundo,	ustr CA	ial Pro	opert	ies, I			
SIT	E: Highway 101 and Del Norte Boul Oxnard, CA	evard				.gu,							
g	LOCATION See Exploration Plan	(EL NS	PE	F	IDEX	STF	RENGTH	TEST	(%	f)	ATTERBERG LIMITS	IES
GRAPHIC LOG	Latitude: 34.2134° Longitude: -119.1316°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	H	SIVE	(%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
RAPH		EPT	TER SERV	MPL	JELD	NSIG	TEST TYPE	CENG (tsf)	STRAIN (%)	-MA	EIGF	LL-PL-PI	CEN
ច	DEPTH		N OB	SA	ш —	EXP#	TES	COMPRESSIVE STRENGTH (tsf)	ST	ö	->		ЪЕН
	CLAYEY SAND (SC), dark brown, very loose												
		-	-										
		-	-	X	1-1-1 N=2								
	brown 5.0	5-		, 									
	CLAYEY SAND (SC), brown, medium dense			X	2-6-12					19	111		
	6.8 <u>POORLY GRADED SAND WITH CLAY (SP)</u> ,												
	brown, medium dense			$\overline{)}$	0.05								
				Х	6-6-5 N=11								
		-	1 1	,									
	very loose	10-											
	11.0 LEAN CLAY WITH SAND (CL), dark grayish			Å	3-1-2					31	89		
	brown, soft	-	- 1										
		-											
		15-		$\overline{\langle}$	1-1-1								
		-	+	Å	N=2								
		_	- [
) .											
	stiff	20-			2-4-9					25	99		
	21.5				2-4-9					25	99		
	Boring Terminated at 21.5 Feet												
	Stratification lines are approximate. In-situ, the transition may I	pe gradual.				Hamme	er Type	e: Autom	atic				
	cement Method: S ow Stem Auger dd	ee Explorat	ion and f field ar	Tes nd la	ting Procedures for a aboratory procedures	Notes:							
	us	sed and add	ditional d	lata	(If any).								
	onment Method: sy	ee Supporti /mbols and			ion for explanation of ns.								
Bori	ing backfilled with Auger Cuttings and/or Bentonite	levations es	stimated	fror	m Google Earth.								
	WATER LEVEL OBSERVATIONS					Boring St	arted:	04-10-20	18	Borir	ng Com	oleted: 04-10-2	2018
$\overline{\mathbb{V}}$	While drilling At completion of drilling		26	(JCON	Drill Rig:	LAR			Drille	er: 2R D	rilling	
<u></u>		1			r Ave, Ste C a, CA	Project N		205029		1			

		E	BORIN	GI	LO	G NO. B-	14					F	Page 1 of [·]	1
	PR	OJECT: Project Bruin				CLIENT: Seef				oper	ties, I		0	
-	SIT	E: Highway 101 and Del Norte Bo Oxnard, CA	ulevard			EIS	egundo	, са						
	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.214° Longitude: -119.1323°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE M STRENGTH D (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	°	DEPTH CLAYEY SAND (SC), dark brown, very loose		N [®] ≪	SA		EXP	Ш	ST	ST	Ō	~		BEI
3DT 3/20/20		brown, loose	5-			1-1-1 N=2 3-4-8					19	111		
60185017 BORING LOGS.GPJ TERRACON_DATATEMPLATE.GDT		6.5 POORLY GRADED SAND WITH CLAY (SP), brown, medium dense trace gravel		-		5-7-7 N=14								
-OGS.GPJ TERRACO		no gravel	10-			8-17-7					17	112		
WELL		13.3 LEAN CLAY WITH SAND (CL), dark grayish brown, soft	15-	-	X	2-1-1 N=2								
ORT. GEO SMART		very stiff 21.5	20-	_		7-13-15					25	99		
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO		Boring Terminated at 21.5 Feet												
PARATE.		Stratification lines are approximate. In-situ, the transition ma	y be gradual.	.1	-	1	Hamme	er Typ	e: Autom	natic	1	1		
IS NOT VALID IF SEF	Holl Aband	cement Method: ow Stem Auger onment Method: ng backfilled with Auger Cuttings and/or Bentonite	description o used and add See <u>Supporti</u> symbols and	f field a ditional ing Info abbrev	and la data ormati /iatio	ion for explanation of	Notes:							
G LOG		WATER LEVEL OBSERVATIONS					Boring St	arted [.]	04-10-20)18	Borir	na Comi	oleted: 04-10-2	2018
ORIN		While drilling		2	1	acon	Drill Rig:				_	er: 2R D		
THIS B	∇	At completion of drilling	1		linger Tustin	r Ave, Ste C , CA	Project N		205029				5	

	B	ORIN	G	LC	OG NO. B-	15					F	Page 1 of	1
PR	OJECT: Project Bruin				CLIENT: See	fried Ind egundo	lusti	ial Pr	oper	ties, I			
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	ulevard			EIS	egunao	, СА						
LOG	LOCATION See Exploration Plan		/EL	Ъ.	t. c	NDEX	STF	RENGTH	TEST	(%)	ر)	ATTERBERG LIMITS	NES
HICL	Latitude: 34.2135° Longitude: -119.1323°	DEPTH (Ft.)	WATER LEVEL	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	ΥPE	COMPRESSIVE STRENGTH (tsf)	۱ (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pd)		PERCENT FINES
GRAPHIC		DEP.	VATE	AMPI	REG	SNAC	TEST TYPE	MPRE TREN (tsf	STRAIN (%)	CONT W	DRY	LL-PL-PI	ERCE
<u> </u>	DEPTH CLAYEY SAND (SC), dark brown, very loose		5 <	5 0		Ĕ	-	0°S	S				
	CLATET SAND (SC), dark brown, very loose		_										
						-							
	brown				2-1-2					21	102		
			\neg	,									
	5.8 loose	5-			1-5-4								
	POORLY GRADED SAND WITH CLAY (SP), brown, loose		$\neg \nabla$	<u> </u>	N=9								
			-										
	medium dense		-		19-24-24					19	107		
			_			-							
		10-				-							
	very loose 11.0			X	1-2-1 N=3								
	LEAN CLAY WITH SAND (CL), dark grayish brown, soft			\mathbf{F}		-							
	14.0												
	POORLY GRADED SAND WITH CLAY (SP),												
	grayish brown, loose sample not recovered	15-											
			-		3-5-5								
			_										
			_										
	20.3	20-											
	LEAN CLAY WITH SAND (CL), dark grayish brown, medium stiff to stiff	20		\mathbb{N}	2-4-4 N=8								
	Boring Terminated at 21.5 Feet		-	+	N-0								
	Stratification lines are approximate. In-situ, the transition may	y be gradual.				Hamm	er Typ	e: Autom	atic				
	cement Method:	See Explorat	tion an	nd Tes	sting Procedures for a	Notes:							
Holl	ow Stem Auger	description o used and ad	of field	and la	aboratory procedures								
Aband	onment Method:	See Support symbols and			tion for explanation of ons.								
	ng backfilled with Auger Cuttings and/or Bentonite				m Google Earth.								
	WATER LEVEL OBSERVATIONS					Boring St	arted.	04-10-20	18	Borir	ng Com	pleted: 04-10-	2018
	While drilling		2	1	acon	Drill Rig:			-	_	er: 2R D		
∇	At completion of drilling	1		dinge Tustir	er Ave, Ste C	Project N		205020		-		5	
				i ustir	I, CA	FIDJECLIN	J. 00	200029		1			

	В	ORIN	GL	_C)G NO. P-2	21					F	Page 1 of 1	1
PR	OJECT: Project Bruin				CLIENT: Seef	ried Ind gundo	lustr CA	ial Pro	oper	ties, I		0	
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	levard			2100	gunuo	, 0/ (
OG	LOCATION See Exploration Plan	(EL	ΡE	F	JDEX	STF	RENGTH	TEST	(%	cf)	ATTERBERG LIMITS	NES
GRAPHIC LOG	Latitude: 34.215° Longitude: -119.1272°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	ЪЕ	COMPRESSIVE STRENGTH (tsf)	(%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
RAPI		EPT	SER	MPL	RESI	ANSI	TEST TYPE	RENC (tsf)	STRAIN (%)	MA	DRY EIG	LL-PL-PI	SCEN
	DEPTH		₿Ś	SA	ш	EXP/	Ĕ	SHCOM	LS	Ŭ	3		ШЧ
	CLAYEY SAND (SC), dark brown												
			-										
			\neg										
			$\overline{\nabla}$										
	5.0												
	Boring Terminated at 5 Feet	- 5-											
					7								
	Stratification lines are approximate. In-situ, the transition may	be gradual.	-		· ·								
Advan						Neter							
	d Auger	lescription o	f field a	ind la	sting Procedures for a aboratory procedures	Notes:							
		used and add			i (If any). ion for explanation of								
	onment Method: ng backfilled with Auger Cuttings and/or Bentonite	symbols and	abbrev	riatio	ns.								
DOU	ng baokinieu with Auger Cultings and/or Bentonite	Elevations es	stimate	d froi	m Google Earth.								
	WATER LEVEL OBSERVATIONS					Boring St	arted:	04-04-20	18	Borir	ng Com	oleted: 04-04-2	2018
∇	At completion of drilling		2		DCON	Drill Rig:	Hand	Auger		Drille	er: Hand	l Auger	
	at 10 Minutes	1	421 Ed T	inger ustin	r Ave, Ste C n, CA	Project N				+		-	

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60185017 BORING LOGS GPJ TERRACON_DATATEMPLATE.GDT 3/20/20

	В	ORIN	IG I	LC)G NO. P-2	22					F	Page 1 of [·]	1
PR	OJECT: Project Bruin				CLIENT: Seefr	ried Ind gundo	ustr . CA	ial Pro	opert	ties, I			
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	llevard					,						
g	LOCATION See Exploration Plan		N LI	ш		OEX	STF	ENGTH	TEST			ATTERBERG LIMITS	S
GRAPHIC LOG	Latitude: 34.2149° Longitude: -119.1299°	(Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	ш	COMPRESSIVE STRENGTH (tsf)	()	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
APHI		DEPTH (Ft.)	ER I	PLE	E SUI	ISIO	TEST TYPE	ENGT tsf)	STRAIN (%)	NATI	RY U IGHI	LL-PL-PI	CENT
GR		l H	WAT	SAN	문문	XPAN	TES ⁻	STRE ()	STR/	CO CO	ME		PER(
	DEPTH POORLY GRADED SAND (SP), dark brown					Ш		0					
			-										
			_										
	brown											21-18-3	2
			-										
	5.0 Boring Terminated at 5 Feet	- 5											
	g												
				T									
	Stratification lines are approximate in situ the transition	he gradual											
	Stratification lines are approximate. In-situ, the transition may	be gradual											
	cement Method:	See Explora	tion and	d Tes	sting Procedures for a	Notes:							
Han	a Auger	description oused and ac	of field a	and la	aboratory procedures								
Ak'		See Suppor	ting Infc	ormat	ion for explanation of								
	ng backfilled with Auger Cuttings and/or Bentonite	symbols and Elevations e			ns. m Google Earth.								
	WATER LEVEL OBSERVATIONS		Sundle	a nu	m Googie Laiul.	<u> </u>				—			
\Box	At completion of drilling			C ;	acon	Boring St			18		-	pleted: 04-04-2	2018
\mathbb{V}	at 10 Minutes		1421 Ec		r Ave, Ste C	Drill Rig:	Hand	Auger		Drille	er: Hand	d Auger	
				Fustir	n, CA	Project N	o.: 602	205029					

	E	BORII	NG	L	.0	G NO. P-2	23					F	Page 1 of 1	1
PR	OJECT: Project Bruin					CLIENT: Seef El Se	ried Ind egundo,	ustr CA	ial Pro	opert	ties, I			
SIT	E: Highway 101 and Del Norte Boo Oxnard, CA	ulevard												
g	LOCATION See Exploration Plan			SN	щ		DEX	STR	ENGTH	TEST	(9		ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 34.2149° Longitude: -119.1336°	DEPTH (Ft.)	, LEVE	OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	щ	COMPRESSIVE STRENGTH (tsf)	(%	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
APHI		PTH	TER	ERV	IPLE	- ESU	VSIO	TEST TYPE	RESS ENG1 (tsf)	STRAIN (%)	WAT	RY L IGH	LL-PL-PI	CEN
GR			-MA	OBSI	SAN	표~	XPAN	TES'	STRI STRI	STR/	CO	QM		PER(
	DEPTH CLAYEY SAND (SC), dark brown			-			Ш		0					
			-											
			-											
	5.0 Boring Terminated at 5 Feet	- 5	-											
	bonng reminated at or eet													
	Stratification lines are approving to be site the tage stilling						Unances		A. 4.	otio				
	Stratification lines are approximate. In-situ, the transition ma	y de gradua	11.				Hamme	er i ype	e: Autom	auc				
	cement Method:	See Exploi	ation a	and [·]	Test	ing Procedures for a	Notes:							
Holl	ow Stem Auger	description used and a	of fiel	ld an nal d	nd Ial lata	ing Procedures for a boratory procedures (If any).								
A1	and Mathed	See Suppo	orting l	nforr	matio	on for explanation of								
	onment Method: ng backfilled with Auger Cuttings and/or Bentonite	symbols a												
		∟ievations	estima	ated	Iron	n Google Earth.								
∇	WATER LEVEL OBSERVATIONS At completion of drilling			-			Boring St	arted:	04-11-20	18	Borir	ng Com	oleted: 04-11-2	2018
$\overline{\mathbb{V}}$	at 10 Minutes		4			DCON	Drill Rig:	CME 7	75		Drille	er: 2R D	rilling	
			1421	Edir Tu	nger Istin,	Ave, Ste C , CA	Project N	o.: 602	205029					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60185017 BORING LOGS GPJ TERRACON_DATATEMPLATE.GDT 3/20/20

	BO	ORIN	GΙ	_C)G NO. P-2	24					F	Page 1 of [·]	1
PF	OJECT: Project Bruin				CLIENT: Seefr	ried Indu gundo,	ustr	ial Pro	opert	ties, l		-	
Sľ	TE: Highway 101 and Del Norte Boul Oxnard, CA	evard				gunuo,	UA						
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 34.2138° Longitude: -119.1336°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE T STRENGTH D (tsf) H	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-PI	PERCENT FINES
3/20/20	A.0 POORLY GRADED SAND WITH CLAY (SP), brown					û	-	8				22-18-4	27
EPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60185017 BORING LOGS.GPJ TERRACON_DATATEMPLATE.GDT	Boring Terminated at 5 Feet	_			ting Procedures for a	Hammen	r Type	: Autom	atic				
LON Aban	donment Method: sy ring backfilled with Auger Cuttings and/or Bentonite	ed and add ee Supporti mbols and	litional <mark>ng Info</mark> abbrev	data rmati viatio	ion for explanation of ns.								
	WATER LEVEL OBSERVATIONS	evations es	stimate	d froi	m Google Earth.					—			
	At completion of drilling				acon	Boring Sta			18			oleted: 04-11-2	2018
	at 10 Minutes	1		linge	r Ave, Ste C n, CA	Drill Rig: C Project No				Drille	er: 2R D	rilling	

	B	ORIN	IG I)G NO. P-2	25					F	Page 1 of [·]	1
PF	OJECT: Project Bruin				CLIENT: Seefr	ried Inde gundo,	ustr	ial Pro	opert	ies, I			
SI	TE: Highway 101 and Del Norte Bou Oxnard, CA	llevard			EISe	gunuo,	CA						
LOG	LOCATION See Exploration Plan		NS NS	Щ		DEX	STR	RENGTH	TEST	(%)	f)	ATTERBERG LIMITS	ES
IIC FO	Latitude: 34.2135° Longitude: -119.1272°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	Ы	COMPRESSIVE STRENGTH (tsf)	(%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
GRAPHIC		EPTI	VTER SERV	MPLE	SESU	NSIG	TEST TYPE	PRES RENG (tsf)	STRAIN (%)	WAT	EIGH	LL-PL-PI	CEN
5	DEPTH		N N N	SAI	<u> </u>	EXP₽	TEG	STF	STF	8	->		PER
	CLAYEY SAND (SC), dark brown			Π									
	brown		_										
			_										
	dada karan												
3/20/20	dark brown 5.0	5-											
	Boring Terminated at 5 Feet												
Щ													
MPLA													
IATEI													
ACO													
TERR													
GD													
0. 0 0 0 0 0 0													
UG LC													
BORI													
5017													
6018													
VELL													
> O Y													
D L O G													
MART													
O SN													
L.G													
EPOR													
IAL R													
RIGIN													
0 WC													
DFR													
RATE	Stratification lines are approximate. In-situ, the transition may	be gradual.		-	1			1	1		1		
	ncement Method:					Notosi							
⇒ Auvar ≝ Hai ⊇	nd Auger	description c	f field a	and la	aboratory procedures	Notes:							
		used and ad See <u>Support</u>			i (It any). ion for explanation of								
Abano		symbols and											
S 00		Elevations e	stimate	d fro	m Google Earth.								
	WATER LEVEL OBSERVATIONS Not encountered			-		Boring Sta	arted:	04-04-20	18	Borir	ng Com	oleted: 04-04-2	2018
BORI	Not encountered				JCON	Drill Rig: H	Hand /	Auger		Drille	er: Hand	l Auger	
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60185017 BORING LOGS.GPJ TERRACON_DATATEMPLATE.GDT		1	421 Ed T	linge ⁻ ustir	r Ave, Ste C n, CA	Project No	o.: 602	205029		1			

	BC	RIN	GΙ	_C)G NO. P-2	26					F	Page 1 of ²	1
Р	ROJECT: Project Bruin				CLIENT: Seefr	ied Indu gundo,	ustr	ial Pro	opert	ies, I			
S	ITE: Highway 101 and Del Norte Boule Oxnard, CA	vard			EI Se	gunao,	CA						
g	LOCATION See Exploration Plan		-LS SS	щ		DEX	STR	ENGTH	TEST	(9		ATTERBERG LIMITS	S
C LOG	Latitude: 34.2127° Longitude: -119.1334°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	щ	COMPRESSIVE STRENGTH (tsf)	(%	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
GRAPHIC			TER ERV	1PLE	ELD .	VSIO	TEST TYPE	ENG ⁻	STRAIN (%)	WAT	RY L	LL-PL-PI	
GR B		l	WA ⁻	SAN	E R	XPAI	TES'	STRI STRI	STR	CO	ME		PER(
7	DEPTH CLAYEY SAND (SC), dark brown	+				Ш		0					_
	brown	-	-										
		-											
		-	-										
3/20/20	Boring Terminated at 5 Feet	- 5 -	∇										
	Bornig reminated at 5 Feet												
ATE: O													
MPLZ													
IATE													
ACON													
ERR													
L L													
3S.G													
0 CO													
NINC													
17 BC													
1850													
09													
MEL													
ON-													
Ŭ IJ													
IART													
0.SN													
POR													
L RE													
GINA													
A OR													
FRO													
	Stratification lines are approximate. In-situ, the transition may be	Internet											
PARA		gradual.											
M Adv					ting Procedures for a	Notes:							
		cription of d and add			aboratory procedures (If any).								
	See	e Supporti	ng Info	rmat	ion for explanation of								
O Aba v B	oring backfilled with Auger Cuttings and/or Bentonite	bols and											
000	Ele	vations es	stimate	d froi	m Google Earth.					_			
	WATER LEVEL OBSERVATIONS					Boring Sta	rted:	04-04-20	18	Borir	ng Comp	oleted: 04-04-2	2018
	At completion of drilling at 10 Minutes		2		JCON	Drill Rig: H	land /	Auger		Drille	er: Hand	l Auger	
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60185017 BORING LOGS.GPJ TERRACON_DATATEMPLATE.GDT		1	421 Ed T	ingei ustin	r Ave, Ste C n, CA	Project No	.: 602	205029		1			

	E	BORIN	IG I	LC)G NO. P-2	27					F	Page 1 of 1	1
PR	OJECT: Project Bruin				CLIENT: Seefr	ried Ind gundo,	ustr CA	ial Pro	opert	ties, I			
SIT	E: Highway 101 and Del Norte Bo Oxnard, CA	ulevard				0							
g	LOCATION See Exploration Plan		NS NS	щ		OEX	STR	ENGTH	TEST	(9	(ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 34.2132° Longitude: -119.1347°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	щ	COMPRESSIVE STRENGTH (tsf)	(%	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
APHI		PTH	ER	LE LE	ESU -	VSIO	TEST TYPE	RESS ENG1 tsf)	STRAIN (%)	VAT	RY L IGH	LL-PL-PI	CEN
GR			WA ⁻ OBSI	SAN	E C	XPAN	TES'	STRI ()	STR	CO	QM		PER(
	DEPTH CLAYEY SAND (SC), dark brown					Ш		0					
			_										
			-										
	4.0 <u>LEAN CLAY WITH SAND</u> , dark brown		-										
	5.0	5-	_										
	Boring Terminated at 5 Feet												
					r								
									- 45				
	Stratification lines are approximate. In-situ, the transition ma	iy be gradual.				Hamme	er Type	e: Autom	atic				
	cement Method:	See Explore	tion and	Ter	ting Procedures for a	Notes:							
Holl	low Stem Auger	description of used and ad	of field a	and la	aboratory procedures								
		See Support	ing Info	rmati	ion for explanation of								
	onment Method: ing backfilled with Auger Cuttings and/or Bentonite	symbols and	abbrev	/iatio	ns.								
		Elevations e	stimate	d froi	m Google Earth.								
	WATER LEVEL OBSERVATIONS			-		Boring St	arted:	04-11-20	18	Borir	ng Com	oleted: 04-11-2	2018
	Not encountered		26		JCON	Drill Rig:	CME 7	75		Drille	er: 2R D	rilling	
		1	421 Ed T	linger ustin	r Ave, Ste C n. CA	Project N	o.: 602	205029					

	B	ORIN	GL	_C)G NO. P-2	28					F	Page 1 of 1	1
PR	OJECT: Project Bruin				CLIENT: Seefr El Se	ried Ind	lustr CA	rial Pro	opert	ies, I		0	
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	ulevard				.g	,						
ŋ	LOCATION See Exploration Plan		S	щ		DEX	STF	RENGTH	TEST		(ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 34.2126° Longitude: -119.13°	DEPTH (Ft.)	TION	ΤT	FIELD TEST RESULTS	NI Z	ш	≝ ≥ H	(%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		L FIN
APHI		PTH	ER I	PLE	ESUI 1	ISIO	TYF	RESS ENGT (151)	STRAIN (%)	VATI	RY U IGHI	LL-PL-PI	ENT
GR/			WATER LEVEL OBSERVATIONS	SAMPLE TYPE	문운	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STR/		ME		PERCENT FINES
	DEPTH CLAYEY SAND (SC), dark brown					Û		ŏ					<u> </u>
	,	-	_										
	brown	-											
		-	-										
	5.0 	5 -											
	Boring Terminated at 5 Feet												
					r								
	Ctratification lines are encryption to be alter the tradition	(bo graduat											
	Stratification lines are approximate. In-situ, the transition may	y be gradual.											
	cement Method:	See Explorat	ion and	Tes	sting Procedures for a	Notes:							
Han	d Auger	description of used and add	f field a litional	nd la data	sting Procedures for a aboratory procedures a (If any).								
		See Supporti	ng Infoi	rmat	tion for explanation of								
	onment Method: ng backfilled with Auger Cuttings and/or Bentonite	symbols and	abbrev	iatio	ons.								
		Elevations es	stimated	d fro	m Google Earth.								
	WATER LEVEL OBSERVATIONS Not encountered					Boring St	arted:	04-04-20	18	Borir	ng Com	pleted: 04-04-2	2018
					JCON	Drill Rig:	Hand	Auger		Drille	er: Hand	l Auger	
		14	421 Edi T	inge ustir	r Ave, Ste C n, CA	Project N	lo.: 602	205029					

	В	ORINO	GL	00	G NO. Per	'с-1					F	Page 1 of	1
PR	OJECT: Project Bruin				CLIENT: Seef	iried Ind egundo,	ustr	ial Pro	oper	ties, I	nc.		
SIT	TE: Highway 101 and Del Norte Bou Oxnard, CA	ulevard				cgunuo,							
LOG	LOCATION See Exploration Plan	t.)	/EL	ſΡΕ	D. C.	NDEX	STF	ENGTH	TEST	(%)	r cf)	ATTERBERG LIMITS	NES
GRAPHIC L	Latitude: 34.2121° Longitude: -119.1329°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pď)	LL-PL-PI	PERCENT FINES
	DEPTH CLAYEY SAND (SC), dark brown, loose		-			<u> </u>		ō					
	5.0	5-	_	X	1-3-5					18	102		
Advan Hol Abanc Bor	Boring Terminated at 5 Feet												
	Stratification lines are approximate. In-situ, the transition may	y be gradual.				Hamme	er Type	e: Autom	atic				
Advan Hol	low Stem Auger lonment Method: ing backfilled with Auger Cuttings and/or Bentonite	description o used and ad See <u>Support</u> symbols and	f field a ditional ing Info abbrev	and la data rmati /iatior	ion for explanation of	Notes:							
	WATER LEVEL OBSERVATIONS		-	_		Boring St	arted:	04-09-20	18	Borir	ng Com	pleted: 04-10-	2018
	Not encountered		_		DCON	Drill Rig:	CME 7	'5		Drille	er: S/G I	Drilling	
		1	421 Ed T	linger ⁻ ustin	r Ave, Ste C I, CA	Project N	o.: 602	205029					

	BO	RIN	GL	00	G NO. Per	·c-2					F	Page 1 of	1
PR	OJECT: Project Bruin				CLIENT: See	fried Ind egundo,	ustr	ial Pr	oper	ties, I	nc.		
SIT	FE: Highway 101 and Del Norte Boul Oxnard, CA	evard			LIU	egundo,	, 01						
LOG	LOCATION See Exploration Plan	(;)	/EL	/PE	ST ST	NDEX	STF	RENGTH	TEST	(%)	r cf)	ATTERBERG LIMITS	NES
GRAPHIC L	Latitude: 34.2121° Longitude: -119.1292°	DEPTH (Ft.)	WATER LEVEL	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
	DEPTH CLAYEY SAND (SC), dark brown, very loose		-					8					
	5.0	— 5·	_		0-2-4					24	101		
Advan Hol Abanc Bor	Boring Terminated at 5 Feet												
	Stratification lines are approximate. In-situ, the transition may b	e gradual.				Hamme	er Type	e: Autom	atic				
Advan Hol	low Stem Auger de us Ionment Method: ing backfilled with Auger Cuttings and/or Bentonite	escription of sed and ad see Support mbols and	of field ditiona ting Info l abbre	and la I data ormati viatior	ion for explanation of	Notes:							
	WATER LEVEL OBSERVATIONS					Boring St	arted:	04-09-20	18	Borir	ng Com	pleted: 04-10-	2018
5	Not encountered		26	-	JCON	Drill Rig:	CME 7	75		Drille	er: S/G I	Drilling	
			1421 E	dinger Tustin	r Ave, Ste C I, CA	Project N	o.: 602	205029					

В	ORING	GL	.0	G NO. Per	'с-3					F	Page 1 of 1	1
PROJECT: Project Bruin				CLIENT: See	fried Ind	ustr	ial Pro	opert	ies, I		0	
SITE: Highway 101 and Del Norte Bo Oxnard, CA	oulevard			EI 5	egundo,	, CA						
B LOCATION See Exploration Plan C Latitude: 34.2121° Longitude: -119.1345° DEPTH DEPTH	DEPTH (Ft.)	WATER LEVEL	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE S	COMPRESSIVE D STRENGTH D (tsf) H	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits LL-PL-Pi	PERCENT FINES
6.0 SANDY LEAN CLAY (CL), dark brown, very loose	5-			1-1-4	3		0		16	82		
Boring Terminated at 7 Feet Boring Terminated at 7 Feet Stratification lines are approximate. In-situ, the transition mathematication mathematication for the second sec	 -				Hamme	er Type	a: Autom	atic				
Abandonment Method: Boring backfilled with Auger Cuttings and/or Bentonite	description of used and ad See Support symbols and	of field ditiona ing Info abbre	and la I data ormateviatio	tion for explanation of								
WATER LEVEL OBSERVATIONS			-		Boring St	arted:	04-09-20	18	Borin	g Comp	bleted: 04-10-2	2018
Not encountered		2	1	acon	Drill Rig:	CME 7	'5		Drille	er: S/G [Drilling	
	1	421 E	dinge Tustir	r Ave, Ste C n, CA	Project N							

	BC	ORING	G L(00	G NO. Per	с-4					F	Page 1 of 1	1
PR	OJECT: Project Bruin				CLIENT: Seef	ried Ind	ustr	ial Pro	opert	ies, I	nc.		
SIT	FE: Highway 101 and Del Norte Bou Oxnard, CA	Ilevard				egundo,	CA						
g	LOCATION See Exploration Plan		NS	PE	L	DEX	STR	ENGTH	TEST	%)	f)	ATTERBERG LIMITS	IES
GRAPHIC LOG	Latitude: 34.212° Longitude: -119.131°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pd)	LL-PL-PI	PERCENT FINES
	<u>CLAYEY SAND (SC)</u> , dark brown, very loose					ш		0					
	6.0 <u>SANDY LEAN CLAY (CL)</u> , dark brown 7.0	- - - 5- -	-		2-1-1					13			
<u>///////</u>	Boring Terminated at 7 Feet												
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Hamme	er Type	e: Autom	atic				
Hol Aband	Iow Stem Auger Ionment Method: ing backfilled with Auger Cuttings and/or Bentonite	description of used and add See <mark>Supportin</mark> symbols and	field a itional ng Info abbrev	ind la data rmatio riatior	on for explanation of	Notes:							
	WATER LEVEL OBSERVATIONS					Boring St	arted:	04-09-20	18	Borin	ig Com	oleted: 04-10-2	2018
	Not encountered		2	C	econ	Drill Rig:	CME 7	'5		Drille	er: S/G I	Drilling	
		14	121 Ed T	inger ustin	Ave, Ste C	Project N	o.: 602	205029					

			BORIN	G	LC)(G NO. Per	с-5					F	Page 1 of	1
PF	ROJECT	Project Bruin					CLIENT: Seef	iried Ind egundo,	ustr	ial Pr	oper	ties, I	nc.		
SI	TE:	Highway 101 and Del Norte Oxnard, CA	Boulevard					cgunuo,							
ő	LOCATIC	N See Exploration Plan	t)	, EI	ONS	ŕΡΕ	ST ST	NDEX	STF	RENGTH	TEST	(%)		ATTERBERG LIMITS	NES
GRAPHIC LOG		4.2121° Longitude: -119.1275°	DEPTH (Ft.)		OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
: GDT 3/20/20	DEPTH CLA	<u>YEY SAND (SC)</u> , dark brown, very loc	ose 5	-			1-2-4	Û				23	99		
PORT. GEO SMART LOG-NO WELL 60185017 BORING LOGS GPJ TERRACON_DATATEMPLATE.GDT	37.0 Bori														
Ho Ho AVID LO Abar	ncement Met blow Stem Au ndonment Met rring backfiller	description used and a See Suppo symbols a	ration of fie additio orting nd abb	eld an onal d Inforn brevia	d lai ata (nation	on for explanation of	Notes:		e: Autor						
		ER LEVEL OBSERVATIONS		P	٢٢	-	acon	Boring St Drill Rig:			18			oleted: 04-10-	2018
THIS B(1421	1 Edin		Ave, Ste C	Project N				Unite	er: S/G [guining	

	BC	RINO	G L	00	G NO. Per	с-6					F	Page 1 of 1	1
PR	OJECT: Project Bruin				CLIENT: Seef	ried Ind egundo,	ustr CA	ial Pro	opert	ies, I		0	
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	levard											
g	LOCATION See Exploration Plan		NS N	щ		DEX	STF	RENGTH	TEST	(9	6	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 34.2125° Longitude: -119.1347°	DEPTH (Ft.)	TION	SAMPLE TYPE	FIELD TEST RESULTS	N INC	ш	⊔ ≥ H	(%	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		L IN
APHI		PTH	ER I	PLE	ESUI 1	ISIO	TEST TYPE	RESS ENGT (sf)	STRAIN (%)	VATI	RY U IGH1	LL-PL-PI	ENT
GR		l H	WATER LEVEL OBSERVATIONS	SAM	븝꼰	EXPANSION INDEX	TES ⁻	COMPRESSIVE STRENGTH (tsf)	STR/	CO	MBD		PERCENT FINES
	DEPTH CLAYEY SAND (SC), dark brown		-			Ш		0					
			_										
			_										
	3.0												
	Boring Terminated at 3 Feet												
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Hamme	 er Type	e: Autom	atic				
	cement Method: ow Stem Auger	See Explorat	tion and	d Tes	ting Procedures for a aboratory procedures	Notes:							
	L. L	used and add	ditional	data	(If any).								
	onment Method:	See <mark>Support</mark> symbols and			ion for explanation of ns.								
	ng backfilled with Auger Cuttings and/or Bentonite				m Google Earth.								
	WATER LEVEL OBSERVATIONS					Boring St	arted	04-00-20	18	Borin	na Com	oleted: 04-10-2	2018
	Not encountered			-	acon				10	_	-		2010
		1	421 Ed	linger	r Ave, Ste C	Drill Rig:				Drille	er: S/G I	Inning	
			Т	ustin	L CA	Project N	o.: 602	205029		1			

	В	ORIN	GΙ	_0	G NO. R-	01					F	Page 1 of 1	1
PR	OJECT: Project Bruin				CLIENT: Seef	ried Ind egundo,	ustr CA	ial Pro	opert	ies, I		5	
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	llevard				-							
g	LOCATION See Exploration Plan		EL	РЕ	L	DEX	STR	ENGTH	TEST	(%	f)	ATTERBERG LIMITS	LES
GRAPHIC LOG	Latitude: 34.2153° Longitude: -119.1272°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	Щ	COMPRESSIVE STRENGTH (tsf)	(%	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
RAPH		EPT	TER ERV	APLE	ELD	NSIC	TEST TYPE	(tsf)	STRAIN (%)	WAT	IGH	LL-PL-PI	CEN
ЧĞ	DEPTH		WA	SAN	Ē	XPA	TES	STR	STR	8	Δ₩ M		PER
	CLAYEY SAND (SC), dark brown		1	Т		ш		0					
		-	-										
			_										
		-											
		-	-										
		5-	-										
	brown		∇										
	2.0	-											
		-	-										
		-	-										
	10.0												
	Boring Terminated at 10 Feet												
	· · · · · · · · · · · · · · · · · · ·												
	Stratification lines are approximate. In-situ, the transition may	be gradual.			· · · ·	Hamme	er Type	e: Autom	atic				
Advan	cement Method:				tions Data and the	Notes:							
	low Stem Auger	description o	f field a	nd la	ting Procedures for a aboratory procedures	110165.							
		used and add See Supporti			(If any). ion for explanation of								
Aband Bori	lonment Method: ing backfilled with Auger Cuttings and/or Bentonite	symbols and											
DOI		Elevations es	stimated	d fror	m Google Earth.								
	WATER LEVEL OBSERVATIONS			_		Boring St	arted:	04-09-20	18	Borir	ng Com	oleted: 04-09-2	2018
∇	At completion of drilling		26		DCON	Drill Rig:	CME 7	75		Drille	er: S/G I	Drilling	
<u> </u>	at 10 Minutes	1	421 Ed T	inger ustin	r Ave, Ste C n, CA	Project N				1			

	В	ORIN	GL	.0	G NO. R-(02					F	Page 1 of 1	1
PR	OJECT: Project Bruin				CLIENT: Seef El Se	ried Ind eaundo.	ustr CA	ial Pro	opert	ies, I		0	
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	llevard											
90	LOCATION See Exploration Plan		EL NS	ЫШ	F	JDEX	STR	ENGTH	TEST	(%		ATTERBERG LIMITS	AES
HICL	Latitude: 34.2153° Longitude: -119.1299°	DEPTH (Ft.)	R LEV	ΕTΥ	0 TES		ΥPE	SSIVE	(%)	ENT (UNIT HT (pe		
GRAPHIC LOG		DEPI	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
	DEPTH POORLY GRADED SAND (SP), dark brown		< 8	ы N		EXE	F	N CO	ώ	0			B
		- - - 5 -										22-17-5	2
	brown	-	-										
	10.0 Boring Terminated at 10 Feet	10-											
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Hamme	r Type	a: Autom	atic				
							78						
Holl Aband	onment Method: ng backfilled with Auger Cuttings and/or Bentonite	used and add See <mark>Supporti</mark> symbols and	litional (ng Infor abbrevi	data mati iatior	ion for explanation of	Notes:							
\bigtriangledown	WATER LEVEL OBSERVATIONS					Boring St	arted:	04-09-20	18	Borin	ıg Com	oleted: 04-09-2	2018
$\frac{\nabla}{\nabla}$	At completion of drilling at 10 Minutes		26		JCON	Drill Rig:	CME 7	75		Drille	er: S/G I	Drilling	
<u> </u>		1	421 Edi Ti	inger ustin	r Ave, Ste C I, CA	Project N	o.: 602	205029		1			

	В	ORIN	GL	_C)G NO. R-(03					F	Page 1 of 1	1
PR	OJECT: Project Bruin				CLIENT: Seef	ried Ind aundo.	ustr CA	ial Pro	opert	ies, I		0	
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	llevard				.g,							
ŋ	LOCATION See Exploration Plan		AS II	Щ		OEX	STF	ENGTH	TEST	(9	(ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 34.2153° Longitude: -119.1309°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	щ	COMPRESSIVE STRENGTH (tsf)	(%	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
APHI		PTH	ERI	PLE	ESUI 1	ISIO	TEST TYPE	RESS ENGT (sf)	STRAIN (%)	VATI	ראס ופאז	LL-PL-PI	ENT
GR/		B	WAT	SAM	문문	(PAN	TEST	STRE	STR/	COV			ERC
	DEPTH CLAYEY SAND (SC), dark brown		- 0			۵.		8					<u>п</u>
		-	-										
	5.0	5											
	5.8 POORLY GRADED SAND WITH CLAY (SP),	- 5-	$\mathbf{\nabla}$										
	Boring Terminated at 5.75 Feet												
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Hamme	er Type	e: Autom	atic				
	··· · · · · ·												
	cement Method: ow Stem Auger	See Explorati	on and	Tes	sting Procedures for a	Notes:							
. 101	-	used and add			aboratory procedures a (If any).								
	onment Method: ng backfilled with Auger Cuttings and/or Bentonite	symbols and	abbrev	riatio	ion for explanation of ns. m Google Earth.								
	WATER LEVEL OBSERVATIONS					Boring St	artodi	04-11 20	18	Borin	na Com	pleted: 04-11-2	2018
\Box	At completion of drilling	llc			acon				.0		-		2010
\square	at 10 Minutes	14	421 Edi	inge	r Ave, Ste C	Drill Rig:				Drille	er: 2R D	rilling	
			Т	ustin	n, CA	Project N	o.: 602	205029					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60185017 BORING LOGS GPJ TERRACON_DATATEMPLATE.GDT 3/20/20

		B	BORIN	GI	LC)G NO. R-0)4					F	Page 1 of	1
	PR	OJECT: Project Bruin				CLIENT: Seefr	ried Ind gundo,	ustr	ial Pro	opert	ties, I		~	
	SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	ulevard			El Se	gunuo,	, 04						
	ő	LOCATION See Exploration Plan		NS	Ц	L .	DEX	STF	RENGTH	TEST	(%)	f)	ATTERBERG LIMITS	IES
	GRAPHIC LOG	Latitude: 34.2153° Longitude: -119.1336°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	NI NO	붠	SIVE	(%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
	RAPH		EPT	ERV TER	APLE	SESU	NSIC	TEST TYPE	PRES (tsf)	STRAIN (%)	WAT	SRY I	LL-PL-PI	CEN
	5	DEPTH		VA OBS	SAI	E C	EXPANSION INDEX	E E	COMPRESSIVE STRENGTH (tsf)	STF	8	18		PER
		CLAYEY SAND (SC), dark brown												
				-										
				_										
3/20/20				∇										
T 3/2		5.3 <u>POORLY GRADED SAND WITH CLAY (SP)</u> ,	5 -											
Ē.GD		brown												
				_										
TEMF														
DATA														
NOS		10.0												
RRAC		Boring Terminated at 10 Feet	10-											
л ТЕІ														
S.GP														
LOG														
RING														
7 BO														
8501						7								
L 601														
WELI														
ON-5														
T LOO														
MAR ⁻														
EOS														
RT. G														
EPO														
IAL R														
RIGIN														
IO MC														
D FR(
RATEI		Stratification lines are approximate. In-situ, the transition mag	y be gradual.		1	<u> </u>	Hamme	er Type	e: Autom	atic	L	I		I
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 80185017 BORING LOGS GPJ TERRACON_DATATEMPLATE GDT	A .						1							
OIFS		cement Method: ow Stem Auger	description of	f field a	and la	sting Procedures for a aboratory procedures	Notes:							
VALIE			used and ad	ditional	data	(If any).								
NOT		onment Method:	See Support symbols and			ion for explanation of ns.								
G IS I	Bori	ing backfilled with Auger Cuttings and/or Bentonite	Elevations e	stimate	d fro	m Google Earth.								
G LO		WATER LEVEL OBSERVATIONS			1.000		Boring Sta	arted:	04-11-20	18	Borir	ng Comi	oleted: 04-11-	2018
ORIN	∇	At completion of drilling		26	[acon	Drill Rig:					er: 2R D		
HIS B	\square	at 10 Minutes	1	421 Ec	linge	r Ave, Ste C	-							
⊨				٦	ı ustir	n, CA	Project No	o.: 602	205029		1			

	В	ORIN	GL	_0)G NO. R-()5					F	Page 1 of [·]	1
PR	OJECT: Project Bruin				CLIENT: Seef	ried Ind gundo,	ustr CA	ial Pro	opert	ies, I		0	
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	levard				.g,	,						
g	LOCATION See Exploration Plan		NS	Щ		DEX	STF	ENGTH	TEST	(9	IJ)	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 34.2153° Longitude: -119.1352°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	Z Z	щ	IH E	(%	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
APH		ET	TER ERV	APLE	ELD .	NSIC	TEST TYPE	ENG (tsf)	STRAIN (%)	WAT	IGH.	LL-PL-PI	CEN
ц	DEPTH		WA	SAN	Ē	EXPANSION INDEX	TES	COMPRESSIVE STRENGTH (tsf)	STR	8	۳.		PER
	CLAYEY SAND (SC), dark brown					ш		0					
	3.5 LEAN CLAY WITH SAND (CL), dark brown		-										
	6.3 <u>POORLY GRADED SAND WITH CLAY (SP)</u> , brown	5 -				\langle							
	10.0 Boring Terminated at 10 Feet	- 10-											
	Stratification lines are approximate. In-situ, the transition may	be gradual.				Hamme	er Type	e: Autom	atic				
Holl Aband	ow Stem Auger Cutings and/or Bentonite	lescription of ised and add See <u>Supporti</u> symbols and	f field a litional ng Infor abbrev	nd la data rmati iatio	ion for explanation of	Notes:							
	WATER LEVEL OBSERVATIONS				-	Denim - Ci	ort- 1	04 44 00	10	D	~ ^ ~ ~	plotod: 0.1.1.1	204.0
\square	At completion of drilling				DCON	Boring St			ıŏ	_	-	pleted: 04-11-2	2018
\mathbb{V}	at 10 Minutes	1.			r Ave, Ste C	Drill Rig:	CME 7	75		Drille	er: 2R D	Prilling	
		14			n, CA	Project N	o.: 602	205029		1			

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60185017 BORING LOGS GPJ TERRACON_DATATEMPLATE.GDT 3/20/20

		В	ORIN	GΙ	_C	G NO. R-	06					F	Page 1 of	1
	PR	OJECT: Project Bruin				CLIENT: Seef	ried Ind egundo,	ustr	ial Pro	opert	ies, I	nc.		
	SIT	E: Highway 101 and Del Norte Bou Oxnard, CA	ulevard			EISE	egunao,	CA						
	g	LOCATION See Exploration Plan		NS NS	ЪП	۲.	NDEX .	STF	RENGTH	TEST	(%	cf)	ATTERBERG LIMITS	VES
	HICL	Latitude: 34.2154° Longitude: -119.1369°	DEPTH (Ft.)	R LEV	ΞŢ	FIELD TEST RESULTS		YPE	SSIVE GTH	(%)	ENT (, UNIT HT (p		
	GRAPHIC LOG		DEP	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
		DEPTH CLAYEY SAND (SC), dark brown		>0	s s		EX	-	8°	S				₫
				-										
			-	-										
		2.8 LEAN CLAY WITH SAND (CL), dark brown		_										
-				_										
3/20/20			5 -	_										
3DT 3														
LATE.(7.0												
TEMPI		POORLY GRADED SAND WITH CLAY (SP), brown												
DATA														
CON		10.0	10-											
'ERRA		Boring Terminated at 10 Feet												
GPJ T														
OGS.														
RING L														
17 BOF														
18501						,								
ELL 6(
NO WE														
LOG-1														
MART														
EO SI														
RT. G														
REPO														
GINAL														
M ORI														
FRO														
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60185017 BORING LOGS GPU TERRACON DATATEMPLATE. GDT		Stratification lines are approximate. In-situ, the transition may	y be gradual.	1			Hamme	er Type	e: Autom	atic				I
SEPA	Advan	cement Method:	See Exploret	ion and	Tes	ting Procedures for a	Notes:							
LID IF		ow Stem Auger		f field a	and la	aboratory procedures								
DT VA	Ahand	onment Method:		ng Info	rmat	ion for explanation of								
3 IS NC		ing backfilled with Auger Cuttings and/or Bentonite	-			m Google Earth.								
G LOG		WATER LEVEL OBSERVATIONS			500		Boring Sta	arted:	04-11-20	18	Borir	ng Comi	oleted: 04-11-	2018
ORIN		Not encountered		2	1	acon	Drill Rig:				_	er: 2R D		-
THIS E			1	421 Ed	linge	r Ave, Ste C n, CA	Project No				1			

BORING LOG NO. R-07 Page 1 of 1													
PR	OJECT: Project Bruin		CLIENT: Seef	ried Ind egundo,	ustr CA	ial Pro	opert	ies, I		0			
SIT	E: Highway 101 and Del Norte Bould Oxnard, CA	evard				·g,							
g	LOCATION See Exploration Plan	(EL NS	ЪЕ	L	DEX	STR	ENGTH	TEST	%)	f)	ATTERBERG LIMITS	IES
IC L(Latitude: 34.2154° Longitude: -119.1384°	H (Ft.	LEVI ATIO	ШТ	ILTS-	NIN	Щ	SIVE	(%	'ER NT (%	TINL DC		T FIN
GRAPHIC LOG		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	EXPANSION INDEX	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	PERCENT FINES
ц	DEPTH		OBS	SA	Ē	EXPA	TES	STF	STF	CC	٦Ž		PER
	CLAYEY SAND (SC), dark brown												
	<u>3.0</u> LEAN CLAY WITH SAND (CL), dark brown		-										
	6.0												
	POORLY GRADED SAND WITH CLAY (SP), brown		-										
	9.0 <u>CLAYEY SAND (SC)</u> , dark brown		-										
	Boring Terminated at 10 Feet	- 10-											
	Stratification lines are approximate In-situ the transition may be					Hamma		a. Autom	atic				
	Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic												
Advancement Method: See Exploration and Ter Hollow Stem Auger description of field and I used and additional data See Supporting Informa Abandonment Method: symbols and abbreviation Boring backfilled with Auger Cuttings and/or Bentonite Elevations estimated from			nd la data <mark>mati</mark> iatior	aboratory procedures (If any). ion for explanation of ns.	Notes:								
	WATER LEVEL OBSERVATIONS					Boring St	arted:	04-11-20	18	Borin	ig Com	pleted: 04-11-2	2018
	Not encountered		2		DCON	Drill Rig:	CME 7	75		Drille	er: 2R D	Prilling	
					r Ave, Ste C a, CA	Project No.: 60205029							

BORING LOG NO. R-08 Page 1 of 1													
PR	OJECT: Project Bruin		CLIENT: Seef El Se	ried Ind egundo	ustr CA	ial Pro	opert	ies, I		-			
SIT	E: Highway 101 and Del Norte Boul Oxnard, CA	evard				0	,						
g	LOCATION See Exploration Plan		NS II	Щ		DEX	STF	RENGTH	TEST	(9	L)	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 34.215° Longitude: -119.1395°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	NI N	Щ	SIVE TH	(%	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
APH		EPT	TER N	APLE	(EED)	NSIC	TEST TYPE	ENG (tsf)	STRAIN (%)	WAT	IGH.	LL-PL-PI	CEN.
В	DEPTH		WA	SAN	ĒĽ	EXPANSION INDEX	TES	COMPRESSIVE STRENGTH (tsf)	STR	S	^U		PER
	CLAYEY SAND (SC), dark brown			T		ш		0					
			_										
			_										
	2.5 LEAN CLAY WITH SAND (CL), dark brown	-											
	5.5	5-											
	<u>SANDY LEAN CLAY (CL)</u> , brown		_										
	8.0												
	CLAYEY SAND (SC), brown												
/ /. /	Boring Terminated at 10 Feet	- 10-		┿┸									
	-												
					Υ								
Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic													
Advancement Method: See Exploration and Tes Hollow Stem Auger description of field and la			d Tes and la	ting Procedures for a aboratory procedures	Notes:								
used ar			ditional	data	(If any).								
Abandonment Method: See Supporting Informa symbols and abbreviation			rmati viatio	ion for explanation of ns.									
Boring backfilled with Auger Cuttings and/or Bentonite			stimate	d fror	m Google Earth.								
	WATER LEVEL OBSERVATIONS					Boring St	arted:	04-11-20	18	Borin	ng Com	pleted: 04-11-2	2018
	Not encountered		26		DCON				-	_	-	-	
		1	1421 Edinger Ave, Ste C Tustin, CA				Drill Rig: CME 75 Driller: 2R Drilling						
			T	ustin	I, CA	Project No.: 60205029							

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 60185017 BORING LOGS GPJ TERRACON_DATATEMPLATE.GDT 3/20/20

BORING LOG NO. R-09 Page 1 of 1													
PROJECT: Project Bruin					CLIENT: Seef El Se	ried Ind	ustr CA	ial Pro	opert	ies, I		0	
SIT	E: Highway 101 and Del Norte Bou Oxnard, CA			egunuo,									
g	LOCATION See Exploration Plan		NS	Щ		DEX	STF	RENGTH	TEST	(9)	f)	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 34.2146° Longitude: -119.1415°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	NI N	щ	NH NH NH	(%	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)		PERCENT FINES
RAPH		EPTI	ERV	APLE	ELD	NSIC	TEST TYPE	RES (tsf)	STRAIN (%)	WAT	IGH	LL-PL-PI	CEN
В	DEPTH		WA OBS	SAN	Ē	EXPANSION INDEX	TES	COMPRESSIVE STRENGTH (tsf)	STR	8	۳.		PER
	CLAYEY SAND (SC), dark brown			T		ш		0					
	6.0 POORLY GRADED SAND WITH CLAY (SP), brown	5 -											
		-	-										
	Boring Terminated at 10 Feet	- 10-											
	Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic												
Advancement Method: Hollow Stem Auger Abandonment Method: Boring backfilled with Auger Cuttings and/or Bentonite			nd la data <mark>mati</mark> atioi	aboratory procedures ((If any). ion for explanation of ns.	Notes:								
	WATER LEVEL OBSERVATIONS					Boring Started: 04-11-2018 Boring Completed: 04				oleted: 04-11-	2018		
	Not encountered		llerracon			Drill Rig: CME 75 Driller: 2R Drilling							
		1421 Edinger Ave, Ste C Tustin, CA				Project No.: 60205029				-			

Project: Terracon Consultants, Inc. Location: N. Del Norte Blvd Oxnard, CA

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 5/7/2018, 10:51:19 AM Project file: C:\TerraconOxnard5-18\Plot Data\Plots.cpt

Project: Terracon Consultants, Inc. Location: N. Del Norte Blvd Oxnard, CA

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 5/7/2018, 10:51:49 AM Project file: C:\TerraconOxnard5-18\Plot Data\Plots.cpt

CPT-17 Total depth: 26.38 ft, Date: 5/4/2018 Cone Type: Vertek

Project: Terracon Consultants, Inc. Location: N. Del Norte Blvd Oxnard, CA

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 5/7/2018, 10:52:06 AM Project file: C:\TerraconOxnard5-18\Plot Data\Plots.cpt

CPT-17B Total depth: 24.43 ft, Date: 5/4/2018 Cone Type: Vertek

Project: Terracon Consultants, Inc. Location: N. Del Norte Blvd Oxnard, CA

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 5/7/2018, 10:52:21 AM Project file: C:\TerraconOxnard5-18\Plot Data\Plots.cpt

Project: Terracon Consultants, Inc. Location: N. Del Norte Blvd Oxnard, CA

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 5/7/2018, 10:52:36 AM Project file: C:\TerraconOxnard5-18\Plot Data\Plots.cpt

Project: Terracon Consultants, Inc. Location: N. Del Norte Blvd Oxnard, CA

50.

Depth (ft)

CPeT-IT v.2.0.1.55 - CPTU data presentation & interpretation software - Report created on: 5/7/2018, 10:52:50 AM Project file: C:\TerraconOxnard5-18\Plot Data\Plots.cpt

CPT-20 Total depth: 45.02 ft, Date: 5/3/2018 Cone Type: Vertek

June 26, 2018 Project No. 118323

Mr. Josh Morgan, P.E. Terracon, Inc. 1421 Edinger Avenue, Suite C Tustin, CA 92780

Subject: Geophysical Evaluation Project Bruin Oxnard, California

Dear Mr. Morgan:

In accordance with your authorization, we have performed geophysical survey services pertaining to the subject project located in Oxnard, California (Figure 1). The purpose of our evaluation was to develop Shear-wave velocity profiles to be used in the design and construction of site improvements. Our services were performed on June 21, 2018. This report presents the survey methodology, equipment used, analysis, and findings from our study.

Our scope of services included the performance of three refraction microtremor (ReMi) profiles (RL-1 through RL-3) at preselected areas of the project site (see Figures 2 and 3). The ReMi technique uses recorded surface waves (specifically Rayleigh waves) that are contained in background noise to develop a Shear-wave velocity profile of the study area down to a depth, in this case, of approximately 100 feet. The depth of exploration is dependent on the length of the line and the frequency content of the background noise. The results of the ReMi method are displayed as a one-dimensional sounding which represents the average condition across the length of the line. The ReMi method does not require an increase of material velocity with depth; therefore, low velocity zones (velocity inversions) are detectable with ReMi.

Our ReMi survey included the use of a 24-channel Geometrics Geode seismograph and 24 4.5-Hz vertical component geophones. The geophones were spaced 10 feet apart for a total line length of 230 feet. Fifteen records, each 32 seconds long, were recorded and then downloaded to a computer. The data were later processed using SeisOpt® ReMi[™] software (© Optim LLC, 2005), which uses the refraction microtremor method (Louie, 2001). The program generates phase-velocity dispersion curves for each record and provides an interactive dispersion modeling tool where the users determine the best fitting model. The result is a one-dimensional shear-wave velocity model of the site with roughly 85 to 95 percent accuracy. Figure 3 depicts the general site conditions in the survey area.

Figure 4a through 4c and Table 1 present the results from our survey. Based on our analysis of the collected data, the average characteristic site Shear-wave velocities down to a depth of 100 feet are 769, 770 and 734 feet per second for RL-1 through RL-3, respectively (CBC, 2016). These values correspond to site classifications of **D**. It should be noted that the ReMi results represent the average condition across the length of the line.

	LE 1 Results	
Line No.	Depth (feet)	Shear Wave Velocity (feet/second)
	0-11	470
	11-19	595
	19-28	528
DI 1	28-40	641
RL-1	40-54	877
	54-70	955
	70-90	1,177
	90-100	1,268
RL-2	0-11	394
	11-19	593
	19-28	568
	28-40	657
	40-54	924
	54-70	1,095
	70-90	1,190
	90-100	1,251
	0-11	443
	11-19	496
	19-28	546
RL-3	28-40	657
	40-54	813
	54-70	976
	70-90	1,090
	90-100	1,145

The field evaluation and geophysical analyses presented in this report have been conducted in general accordance with current practice and the standard of care exercised by consultants performing similar tasks in the project area. No warranty, express or implied, is made regarding the conclusions and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be present. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface surveying will be performed upon request.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Southwest Geophysics, Inc. should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document. This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

We appreciate the opportunity to be of service on this project. Should you have any questions related to this report, please contact the undersigned at your convenience.

Sincerely, SOUTHWEST GEOPHYSICS, INC.

Ham Van de Ving

Hans van de Vrugt, C.E.G., P.Gp. Principal Geologist/Geophysicist

HV/hv

Attachments:	Figure 1	_	Site Location Map
	Figure 2	_	Line Location Map
	Figure 3	_	Site Photographs
	Figure 4a	_	ReMi Results, RL-1
	Figure 4b	_	ReMi Results, RL-2
	Figure 4c	_	ReMi Results, RL-3

Distribution: Addressee (electronic)

APPENDIX B

LABORATORY TESTING

Laboratory Testing

Samples retrieved during the field exploration were taken to the laboratory for further observation by the project geotechnical engineer and were classified in accordance with the Unified Soil Classification System (USCS) described in Appendix A. At that time, the field descriptions were confirmed or modified as necessary and an applicable laboratory testing program was formulated to determine engineering properties of the subsurface materials.

Laboratory tests were conducted on selected soil samples and the test results are presented in this appendix. The laboratory test results were used for the geotechnical engineering analyses, and the development of foundation and earthwork recommendations. Laboratory tests were performed in general accordance with the applicable ASTM, local or other accepted standards.

Selected soil samples obtained from the site were tested for the following engineering properties:

- In-situ Dry Density
- Soluble Chlorides
- pH
- Percent Passing #200 Sieve
- Atterberg Limits
- Direst Shear

- In-situ Water Content
- Soluble Sulfates
- Minimum Resistivity
- Consolidation/Collapse Potential
- Expansion Index
- R-Value

El Segundo, CA

GRAIN SIZE DISTRIBUTION

SWELL CONSOLIDATION TEST **ASTM D2435**

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. TC_CONSOL_STRAIN-USCS 60206029 PROJECT BRUIN.GPJ TERRACON DATATEMPLATE.GDT 3/20/20 AXIAL STRAIN, %

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. TC_CONSOL_STRAIN-USCS 60206029 PROJECT BRUIN.GPJ TERRACON DATATEMPLATE.GDT 3/20/20 AXIAL STRAIN, %

SWELL CONSOLIDATION TEST **ASTM D2435**

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. TC_CONSOL_STRAIN-USCS 60185017 BORING LOGS GPJ TERRACON_DATATEMPLATE.GDT 3/20/20 AXIAL STRAIN, %

SWELL CONSOLIDATION TEST ASTM D2435

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. TC_CONSOL_STRAIN-USCS 60185017 BORING LOGS GPJ TERRACON_DATATEMPLATE.GDT 3/20/20

SWELL CONSOLIDATION TEST ASTM D2435

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. TC_CONSOL_STRAIN-USCS 60185017 BORING LOGS GPJ TERRACON_DATATEMPLATE.GDT 3/20/20 AXIAL STRAIN, %

MOISTURE-DENSITY RELATIONSHIP

ASTM D698/D1557

CHEMICAL LABORATORY TEST REPORT

 Project Number:
 60295029

 Service Date:
 03/11/20

 Report Date:
 03/20/20

 Task:
 03/20/20

Client

Project

Project Bruin

Sample Submitted By: Terracon (60)

Date Received: 3/5/2020

Lab No.: 20-0258

Sample Number		
Sample Location	BB-2	
Sample Depth (ft.)	0.0-5.0	
pH Analysis, AWWA 4500 H	8.43	
Water Soluble Sulfate (SO4), AWWA 4500 E (percent %)	0.04	
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	
Chlorides, ASTM D 512, (mg/kg)	170	
Red-Ox, AWWA 2580, (mV)	+685	
Total Salts, AWWA 2540, (mg/kg)	1949	
Resistivity, ASTM G 57, (ohm-cm)	1164	

Results of Corrosion Analysis

Analyzed By: Trisha Campo

Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CHEMICAL LABORATORY TEST REPORT

Seefried Industrial Properties, Inc.

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Project

Seefried: Industrial Warehouse; Oxnard

Sample Submitted By: Terracon (60)

Date Received: 4/27/2018

Lab No.: 18-0481

Sample Number		
Sample Location	B-1	B-5
Sample Depth (ft.)	Bulk	Bulk
pH Analysis, AWWA 4500 H	8.19	7.97
Water Soluble Sulfate (SO4), AWWA 4500 E (percent %)	0.15	0.37
Sulfides, AWWA 4500-S D, (mg/kg)	Nil	Nil
Chlorides, ASTM D 512, (mg/kg)	95	145
Red-Ox, AWWA 2580, (mV)	+661	+662
Total Salts, AWWA 2540, (mg/kg)	3786	8260
Resistivity, ASTM G 57, (ohm-cm)	970	669

Results of Corrosion Analysis

Analyzed By: Trisha Campo

Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

LABORATORY RECORD OF TESTS MADE ON SUBGRADES

CLIENT:	
PROJECT	Bruin-Oxnard
LOCATION:	0-2'
R-VALUE # :	BB-5
Т.І. :	

COMPACTOR AIR PRESSURE P.S.I. INITIAL MOISTURE % WATER ADDED, ML WATER ADDED % MOISTURE AT COMPACTION % HEIGHT OF BRIQUETTE WET WEIGHT OF BRIQUETTE DENSITY LB. PER CU.FT. STABILOMETER PH AT 1000 LBS. 2000 LBS. DISPLACEMENT R-VALUE EXUDATION PRESSURE THICK. INDICATED BY STAB. EXPANSION PRESSURE

THICK. INDICATED BY E.P.

A	В	С	D
50	75	100	
11.6	11.6	11.6	
40	30	20	
4.1	3.1	2.0	
15.7	14.7	13.6	
2.52	2.49	2.48	
1097	1097	1101	
114.0	116.4	118.4	
62	58	54	
144	138	130	
5.40	5.00	4.50	
5	7	11	
200	320	440	
0.00	0.00	0.00	
0	0	5	
0.00	0.00	0.17	

R-Value:

Client: Terracon

Date: 5/4/18 By:

LD

Client's Job No.:

Sample No.: P-22 / Bulk

GLA Reference: 2011-0104

Soil Type: Brown, Clayey Sand

TEST SPECIMEN		А	В	С	D
Compactor Air Pressure	psi	200	350	300	
Initial Moisture Content	%	10.4	10.4	10.4	
Water Added	ml	20	10	15	
Moisture at Compaction	%	12.3	11.4	11.8	
Sample & Mold Weight	gms	3173	3208	3196	
Mold Weight	gms	2098	2102	2104	
Net Sample Weight	gms	1075	1106	1092	
Sample Height	in.	2.44	2.49	2.48	
Dry Density	pcf	118.9	120.9	119.3	
Pressure	lbs	1905	6715	3650	
Exudation Pressure	psi	152	535	291	
Expansion Dial	x 0.0001	2	18	11	
Expansion Pressure	psf	9	78	48	
Ph at 1000lbs	psi	26	15	20	
Ph at 2000lbs	psi	44	26	33	
Displacement	turns	3.98	3.81	3.93	
R' Value		62	77	71	
Corrected 'R' Value		62	77	71	

	FINAL 'R' VALUE				
By Exudation Pressure (@ 300 psi): 72					
By Epansion I	By Epansion Pressure :				
TI =	5				

Client: Terracon

Date: 5/4/18 By:

LD

Client's Job No.:

Sample No.: P-24 / Bulk

GLA Reference: 2011-0104

Soil Type: Brown, Clayey Sand

TEST SPECIMEN		А	В	С	D
Compactor Air Pressure	psi	250	350	300	
Initial Moisture Content	%	8.2	8.2	8.2	
Water Added	ml	40	30	35	
Moisture at Compaction	%	11.8	10.9	11.3	
Sample & Mold Weight	gms	3172	3198	3168	
Mold Weight	gms	2105	2101	2096	
Net Sample Weight	gms	1067	1097	1072	
Sample Height	in.	2.48	2.472	2.466	
Dry Density	pcf	116.6	121.3	118.3	
Pressure	lbs	2270	6795	4050	
Exudation Pressure	psi	181	541	322	
Expansion Dial	x 0.0001	3	20	12	
Expansion Pressure	psf	13	87	52	
Ph at 1000lbs	psi	22	15	18	
Ph at 2000lbs	psi	41	29	34	
Displacement	turns	3.95	3.9	3.92	
R' Value		65	74	70	
Corrected 'R' Value		65	74	70	

FINAL 'R' VALUE					
By Exudation	: 69				
By Epansion	By Epansion Pressure :				
TI =	5				

Client: Terracon

Date: 5/4/18 By:

LD

Client's Job No.:

Sample No.: R-2 / Bulk

GLA Reference: 2011-0104

1

Soil Type: Brown, Clayey Sand

TEST SPECIMEN		А	В	С	D
Compactor Air Pressure	psi	250	350	300	
Initial Moisture Content	%	8.9	8.9	8.9	
Water Added	ml	30	20	25	
Moisture at Compaction	%	11.6	10.7	11.2	
Sample & Mold Weight	gms	3173	3179	3169	
Mold Weight	gms	2102	2104	2099	
Net Sample Weight	gms	1071	1075	1070	
Sample Height	in.	2.462	2.435	2.448	
Dry Density	pcf	118.1	120.8	119.2	
Pressure	lbs	2860	7855	4120	
Exudation Pressure	psi	228	625	328	
Expansion Dial	x 0.0001	2	14	7	
Expansion Pressure	psf	9	61	30	
Ph at 1000lbs	psi	21	15	18	
Ph at 2000lbs	psi	40	25	33	
Displacement	turns	3.95	3.61	3.88	
R' Value		66	79	71	
Corrected 'R' Value		66	79	71	

FINAL 'R' VALUE						
By Exudation	70					
By Epansion	By Epansion Pressure :					
TI =	5					

APPENDIX C

SUPPORTING DOCUMENTS

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	RELATIVE DENSITY OF COARSE-GRAINED SOILS (More than 50% retained on No. 200 sieve.) Density determined by Standard Penetration Resistance Includes gravels and sands.		CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance Includes silts and clays.				
RMS	Descriptive Term (Density) Standard Penetration or N-Value Blows/Ft. Ring Sampler Blows/Ft.			Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, psf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.
H	Very Loose	0 - 3	0 - 6	Very Soft	less than 500	0 - 1	< 3
NGT	Loose	4 - 9	7 - 18	Soft	500 to 1,000	2 - 4	3 - 4
STREN	Medium Dense	10 - 29	19 - 58	Medium-Stiff	1,000 to 2,000	4 - 8	5 - 9
ິ ເ	Dense	30 - 50	59 - 98	Stiff	2,000 to 4,000	8 - 15	10 - 18
	Very Dense	> 50	<u>></u> 99	Very Stiff	4,000 to 8,000	15 - 30	19 - 42
				Hard	> 8,000	> 30	> 42

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents

Trace With

Modifier

Percent of Dry Weight < 15 15 - 29 > 30

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents Trace With Modifier Percent of Dry Weight < 5 5 - 12 > 12

GRAIN SIZE TERMINOLOGY

Major Component of Sample Boulders Cobbles Gravel Sand Silt or Clay

Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

Particle Size

PLASTICITY DESCRIPTION

<u>Term</u> Non-plastic Low Medium High 0 1 - 10 11 - 30 > 30

UNIFIED SOIL CLASSIFICATION SYSTEM

					Soil Classification	
Criteria for Assigr	ning Group Symbols	and Group Names	s Using Laboratory Tests ^A	Group Symbol	Group Name ^B	
	Gravels:	Clean Gravels:	$Cu \ge 4$ and $1 \le Cc \le 3^{E}$	GW	Well-graded gravel ^F	
More than coarse fra	More than 50% of	Less than 5% fines ^c	$Cu < 4$ and/or $1 > Cc > 3^{E}$	GP	Poorly graded gravel F	
	coarse fraction retained	Gravels with Fines:	Fines classify as ML or MH	GM	Silty gravel F,G,H	
	on No. 4 sieve	More than 12% fines ^C	Fines classify as CL or CH	GC	Clayey gravel F,G,H	
on No. 200 sieve		Clean Sands:	$Cu \ge 6$ and $1 \le Cc \le 3^{E}$	SW	Well-graded sand	
50% or more of coars fraction passes No. 4	50% or more of coarse	Less than 5% fines ^D	$Cu < 6$ and/or $1 > Cc > 3^{E}$	SP	Poorly graded sand	
	· ·	Sands with Fines:	Fines classify as ML or MH	SM	Silty sand ^{G, H,I}	
	sieve	More than 12% fines ^D	Fines classify as CL or CH	SC	Clayey sand G,H,I	
		Inorganic:	PI > 7 and plots on or above "A" line ^J	CL	Lean clay ^{K,L,M}	
	Silts and Clays:	morganic.	PI < 4 or plots below "A" line ^J	ML	Silt ^{K,L,M}	
	Liquid limit less than 50	Organia	Liquid limit - oven dried < 0.75	OL	Organic clay K,L,M,N	
Fine-Grained Soils:		Organic:	Liquid limit - not dried		Organic silt K,L,M,O	
50% or more passes the No. 200 sieve		Inorgania	PI plots on or above "A" line	СН	Fat clay ^{K,L,M}	
	Silts and Clays:	Inorganic:	PI plots below "A" line	MH	Elastic Silt K,L,M	
	Liquid limit 50 or more	Organic:	Liquid limit - oven dried < 0.75	он	Organic clay K,L,M,P	
	Organ	Organic.	Liquid limit - not dried		Organic silt K,L,M,Q	
Highly organic soils:	Primarily	organic matter, dark in c	color, and organic odor	PT	Peat	

^A Based on the material passing the 3-inch (75-mm) sieve

- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt. GP-GC poorly graded gravel with clay.
- graded gravel with silt, GP-GC poorly graded gravel with clay. ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

^E Cu = D₆₀/D₁₀ Cc =
$$\frac{(D_{30})^2}{D_{10} \times D_{60}}$$

 $^{\sf F}$ If soil contains \geq 15% sand, add "with sand" to group name. $^{\sf G}$ If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- If soil contains \geq 15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- ^L If soil contains \ge 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^M If soil contains \geq 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N $PI \ge 4$ and plots on or above "A" line.
- $^{\circ}$ PI < 4 or plots below "A" line.
- ^P PI plots on or above "A" line.
- ^Q PI plots below "A" line.

llerracon

APPENDIX D

LIQUEFACTION ANALYSIS

* * * * * * * * * * * * * * * * * * * LIQUEFACTION ANALYSIS SUMMARY Copyright by CivilTech Software www.civiltechsoftware.com * * * * * * * * * * * Font: Courier New, Regular, Size 8 is recommended for this report. 3/19/2020 6:20:13 PM Licensed to , Input File Name: N: \Projects\2020\60205029\Working Files\Calculations-Analyses\CPT-16.liq Title: Project Bruin Subtitle: 60205029 Surface Elev. = Hole No. = CPT-16 Depth of Hole= 50.00 ft Water Table during Earthquake= 3.00 ft Water Table during In-Situ Testing= 3.00 ft Max. Acceleration= 0.69 g Earthquake Magnitude= 7.10 Input Data: Surface Elev. = Hole No. = CPT-16 Depth of Hole=50.00 ft Water Table during Earthquake= 3.00 ft Water Table during In-Situ Testing= 3.00 ft Max. Acceleration=0.69 g Earthquake Magni tude=7.10 No-Liquefiable Soils: Based on Analysis 1. CPT Calculation Method: Modify Robertson* 2. Settlement Analysis Method: Tokimatsu, M-correction 3. Fines Correction for Liquefaction: Modify Stark/Olson 4. Fine Correction for Settlement: During Liquefaction* 5. Settlement Calculation in: All zones* 9. User request factor of safety (apply to CSR), User= 1.3 Plot two CSR (fs1=User, fs2=1) 10. Use Curve Smoothing: Yes* * Recommended Options In-Situ Test Data: Depth D50 fs Rf gamma Fines qc ft atm atm pcf % mm

| 0. 16
1. 15
2. 13
3. 12
4. 10
5. 09
6. 07
7. 05 | 2.60
6.80
11.00
17.10
32.80
61.20
65.20
96.50 | 0. 03
0. 07
0. 22
0. 22
0. 39
0. 25
0. 29
0. 68 | 1. 15
1. 03
2. 00
1. 29
1. 19
0. 41
0. 44
0. 70 | 120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50 |
|--|--|--|--|--|---|--|
| 8.04
9.02
10.00
10.99
11.97
12.95 | 138.60
105.10
5.80
20.00
7.10
23.90 | 0. 41
0. 67
0. 22
0. 41
0. 09
0. 31 | 0.30
0.64
3.79
2.05
1.27
1.30 | 120.00
120.00
120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.50
0.50
0.50
0.50
0.50
0.50
0.50 |
| 13. 94
14. 92
15. 91
16. 89 | 45.20
54.60
6.80
6.40 | 0. 33
0. 46
0. 13
0. 11 | 0. 73
0. 84
1. 91
1. 72 | 120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00 | 0.50
0.50
0.50
0.50 |
| 17.88
18.86
19.84
20.83
21.81 | 6.80
11.30
22.30
46.50
23.10 | 0. 10
0. 22
0. 88
1. 42
0. 69 | 1.47
1.95
3.95
3.05
2.99 | 120.00
120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00
0.00 | 0.50
0.50
0.50
0.50
0.50
0.50 |
| 22.80
23.78
24.77
25.75 | 20. 90
19. 10
14. 20
75. 20 | 0. 67
0. 65
0. 31
2. 06 | 3. 21
3. 40
2. 18
2. 74 | 120.00
120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00
0.00 | 0.50
0.50
0.50
0.50
0.50 |
| 26.73
27.72
28.70
29.69
30.67 | 254.20
273.10
159.10
14.10
31.00 | 2.12
2.21
1.46
0.43
0.63 | 0. 83
0. 81
0. 92
3. 05
2. 03 | 120.00
120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00
0.00 | 0.50
0.50
0.50
0.50
0.50
0.50 |
| 31.66
32.64
33.62
34.61 | 21.80
51.20
92.90
98.70 | 0.78
1.79
1.79
1.29 | 3.58
3.50
1.93
1.31 | 120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00 | 0.50
0.50
0.50
0.50 |
| 35.59
36.58
37.56
38.54
39.53 | 64.50
46.60
14.60
13.30
14.50 | 1.56
0.88
0.42
0.37
0.41 | 2. 42
1. 89
2. 88
2. 78
2. 83 | 120.00
120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00
0.00 | 0.50
0.50
0.50
0.50
0.50 |
| 40.51
41.50
42.48
43.47
44.45 | 35.50
116.70
53.00
16.20
68.90 | 0.55
1.10
1.07
0.50
1.32 | 1.55
0.94
2.02
3.09
1.92 | 120.00
120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00
0.00 | 0.50
0.50
0.50
0.50
0.50
0.50 |
| 45.43
46.42
47.40
48.39
49.37 | 138.60
203.80
17.90
51.70
63.20 | 1.53
1.89
0.91
1.54
1.12 | 1. 10
0. 93
5. 08
2. 98
1. 77 | 120.00
120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.50
0.50
0.50
0.50
0.50
0.50 |

Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.

Output Results:

Settlement of Saturated Sands=2.72 in. Settlement of Unsaturated Sands=0.03 in. Total Settlement of Saturated and Unsaturated Sands=2.75 in. Differential Settlement=1.376 to 1.817 in.

| Depth
ft | CRRm | CSRfs | F. S. | S_sat.
in. | S_dry
in. | S_all
in. |
|--|---|--|---|---|---|---|
| ft
0. 16
1. 16
2. 16
3. 16
4. 16
5. 16
6. 16
7. 16
8. 16
9. 16
10. 16
11. 16
12. 16
13. 16
14. 16
15. 16
16. 16
17. 16
18. 16 | $\begin{array}{c} 0. \ 12 \\ 0. \ 20 \\ 0. \ 20 \\ 0. \ 14 \\ 0. \ 19 \\ 0. \ 33 \\ 0. \ 40 \\ 0. \ 77 \\ 1. \ 72 \\ 0. \ 56 \\ 2. \ 00 \\ 0. \ 34 \\ 0. \ 26 \\ 0. \ 13 \\ 0. \ 18 \\ 0. \ 16 \\ 2. \ 00 \\ 2. \ 00 \\ 2. \ 00 \\ 2. \ 00 \end{array}$ | $\begin{array}{c} 0.58\\ 0.58\\ 0.58\\ 0.59\\ 0.67\\ 0.74\\ 0.78\\ 0.82\\ 0.85\\ 0.88\\ 0.90\\ 0.92\\ 0.93\\ 0.92\\ 0.93\\ 0.94\\ 0.95\\ 0.96\\ 0.97\\ 0.98\\ 0.99\\ \end{array}$ | 5.00
5.00
5.00
0.23^*
0.28^*
0.44^*
0.52^*
0.94^*
2.02
0.64^*
5.00
0.37^*
0.28^*
0.13^*
0.16^*
5.00
5.00
5.00
5.00
5.00 | i n.
2. 72
2. 72
2. 72
2. 69
2. 51
2. 34
2. 12
2. 11
2. 10
2. 02
1. 97
1. 96
1. 84
1. 62
1. 44
1. 42
1. 42
1. 42
1. 42 | i n.
0. 03
0. 03
0. 02
0. 00
0. | in.
2.75
2.75
2.74
2.69
2.51
2.34
2.12
2.11
2.10
2.02
1.97
1.96
1.84
1.62
1.44
1.42
1.42
1.42
1.42 |
| 19. 16 $20. 16$ $21. 16$ $22. 16$ $23. 16$ $24. 16$ $25. 16$ $26. 16$ $27. 16$ $28. 16$ $29. 16$ $30. 16$ $31. 16$ $32. 16$ $32. 16$ $33. 16$ $34. 16$ $35. 16$ $36. 16$ $37. 16$ | 2.00
0.68
0.24
2.00
2.00
0.16
0.24
0.71
1.84
2.21
2.00
2.00
2.00
2.00
2.00
2.00
0.39
2.00
0.30
0.48
2.00 | 0. 99
1. 00
1. 00
1. 01
1. 01
1. 01
1. 01
1. 01
1. 02
1. 02
1. 02
1. 02
1. 02
1. 02
1. 02
1. 02
1. 02
1. 01
1. 01
1. 00
0. 99
0. 99
0. 98
0. 97 | 5.00
0.68*
0.24*
5.00
5.00
0.15*
0.23*
0.70*
1.81
2.17
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00 | 1. 42
1. 42
1. 39
1. 29
1. 28
1. 23
1. 20
1. 14
1. 14
1. 14
1. 14
1. 11
1. 06
1. 05
0. 99
0. 92
0. 82
0. 76
0. 64 | $\begin{array}{c} 0. \ 00\\ 0. \ 0. \$ | 1. 42
1. 42
1. 39
1. 29
1. 28
1. 23
1. 20
1. 14
1. 14
1. 14
1. 14
1. 11
1. 06
1. 05
0. 99
0. 92
0. 82
0. 76
0. 64 |

38.16 2.00 0.97 5.00 0.64 0.00 0.64 39.16 2.00 0.96 5.00 0.64 0.00 0.64 5.00 40.16 2.00 0.95 0.64 0.00 0.64 41.16 0.22 0.94 0.23* 0.58 0.00 0.58 42.16 0.29 0.94 0.31* 0.44 0.00 0.44 43.16 2.00 0.93 5.00 0.38 0.00 0.38 44.16 2.00 0.92 5.00 0.38 0.00 0.38 45.16 0.50 0.91 0.54* 0.29 0.00 0.29 46.16 0.83 0.91 0.91* 0.22 0.00 0.22 47.16 2.00 0.90 5.00 0.15 0.00 0.15 48.16 0.25 0.89 0.28* 0.08 0.00 0.08 49.16 0.37 0.42* 0.88 0.05 0.00 0.05

* F.S.<1, Liquefaction Potential Zone (F.S. is limited to 5, CRR is limited to 2, CSR is limited to 2)

Units: Unit: qc, fs, Stress or Pressure = atm (1.0581tsf); Unit Weight = pcf; Depth = ft; Settlement = in.

| 1 atm | (atmosphere) = 1 tsf (ton/ft2) |
|---------------|--|
| CRRm | Cyclic resistance ratio from soils |
| CSRsf | Cyclic stress ratio induced by a given earthquake (with user |
| request facto | r of safety) |
| F. S. | Factor of Safety against liquefaction, F.S.=CRRm/CSRsf |
| S_sat | Settlement from saturated sands |
| S_dry | Settlement from Unsaturated Sands |
| S_al Ĭ | Total Settlement from Saturated and Unsaturated Sands |
| NoLiq | No-Liquefy Soils |
| | |

* * * * * * * * * * * * * * * * * * * LIQUEFACTION ANALYSIS SUMMARY Copyright by CivilTech Software www.civiltechsoftware.com * * * * * * * * * * * Font: Courier New, Regular, Size 8 is recommended for this report. 3/19/2020 6:22:44 PM Licensed to , Input File Name: N: \Projects\2020\60205029\Working Files\Calculations-Analyses\CPT-18.liq Title: Project Bruin Subtitle: 60205029 Surface Elev. = Hole No. = CPT-18 Depth of Hole= 50.00 ft Water Table during Earthquake= 3.00 ft Water Table during In-Situ Testing= 3.00 ft Max. Acceleration= 0.69 g Earthquake Magnitude= 7.10 Input Data: Surface Elev. = Hole No. = CPT-18 Depth of Hole=50.00 ft Water Table during Earthquake= 3.00 ft Water Table during In-Situ Testing= 3.00 ft Max. Acceleration=0.69 g Earthquake Magni tude=7.10 No-Liquefiable Soils: Based on Analysis 1. CPT Calculation Method: Modify Robertson* 2. Settlement Analysis Method: Tokimatsu, M-correction 3. Fines Correction for Liquefaction: Modify Stark/Olson 4. Fine Correction for Settlement: During Liquefaction* 5. Settlement Calculation in: All zones* 9. User request factor of safety (apply to CSR), User= 1.3 Plot two CSR (fs1=User, fs2=1) 10. Use Curve Smoothing: Yes* * Recommended Options In-Situ Test Data: Depth D50 fs Rf gamma Fines qc ft atm atm pcf % mm

| 0. 16
1. 15
2. 13
3. 12
4. 10
5. 09
6. 07
7. 05
8. 04
9. 02 | 2.00
11.50
12.10
9.10
45.60
76.40
85.90
83.90
167.50
166.50 | 0. 02
0. 10
0. 39
0. 12
0. 58
1. 01
0. 30
0. 25
0. 60
0. 42 | 1.00
0.87
3.22
1.32
1.27
1.32
0.35
0.30
0.36
0.25 | 120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50 |
|--|--|--|--|--|---|--|
| 10.00 | 5.90 | 0. 11 | 1.86 | 120.00 | 0.00 | 0.50 |
| 10.99 | 6.30 | 0. 08 | 1.27 | 120.00 | 0.00 | 0.50 |
| 11.97 | 7.70 | 0. 14 | 1.82 | 120.00 | 0.00 | 0.50 |
| 12.95 | 63.40 | 0. 44 | 0.69 | 120.00 | 0.00 | 0.50 |
| 13.94 | 25.80 | 0. 62 | 2.40 | 120.00 | 0.00 | 0.50 |
| 14.92 | 72.30 | 0. 30 | 0.41 | 120.00 | 0.00 | 0.50 |
| 15.91 | 8.70 | 0. 15 | 1.72 | 120.00 | 0.00 | 0.50 |
| 16.89 | 9.30 | 0. 22 | 2.37 | 120.00 | 0.0 | 0.50 |
| 17.88
18.86
19.84
20.83
21.81
22.80
23.78 | 9.30
12.90
15.50
68.60
100.40
76.30
24.50 | 0. 19
0. 24
0. 33
2. 21
1. 59
2. 39
0. 94 | 2.04
1.86
2.13
3.22
1.58
3.13
3.84 | 120.00
120.00
120.00
120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.50
0.50
0.50
0.50
0.50
0.50
0.50 |
| 24.77 | 36. 80 | 1. 24 | 3. 37 | 120.00 | 0.00 | 0.50 |
| 25.75 | 125. 10 | 1. 45 | 1. 16 | 120.00 | 0.00 | 0.50 |
| 26.73 | 190. 30 | 2. 06 | 1. 08 | 120.00 | 0.00 | 0.50 |
| 27.72 | 165. 20 | 1. 57 | 0. 95 | 120.00 | 0.00 | 0.50 |
| 28.70 | 145. 10 | 1. 31 | 0. 90 | 120.00 | 0.00 | 0.50 |
| 29.69 | 17. 10 | 0. 64 | 3. 74 | 120.00 | 0.00 | 0.50 |
| 30.67 | 18. 40 | 0. 70 | 3. 80 | 120.00 | 0.00 | 0.50 |
| 31.66 | 21. 60 | 0. 85 | 3. 94 | 120.00 | 0.0 | 0.50 |
| 32. 64 | 67.60 | 1.91 | 2.83 | 120.00 | 0.00 | 0.50 |
| 33. 62 | 32.10 | 1.34 | 4.17 | 120.00 | 0.00 | 0.50 |
| 34. 61 | 39.60 | 0.91 | 2.30 | 120.00 | 0.00 | 0.50 |
| 35. 59 | 38.60 | 0.91 | 2.36 | 120.00 | 0.00 | 0.50 |
| 36. 58 | 52.60 | 1.05 | 2.00 | 120.00 | 0.00 | 0.50 |
| 37. 56 | 50.60 | 1.00 | 1.98 | 120.00 | 0.00 | 0.50 |
| 38. 54 | 13.60 | 0.41 | 3.01 | 120.00 | 0.00 | 0.50 |
| 39. 53 40. 51 41. 50 42. 48 43. 47 44. 45 45. 43 46. 42 | 12. 10 | 0. 34 | 2.81 | 120.00 | 0.00 | 0.50 |
| | 13. 60 | 0. 43 | 3.16 | 120.00 | 0.00 | 0.50 |
| | 42. 60 | 0. 56 | 1.31 | 120.00 | 0.00 | 0.50 |
| | 43. 80 | 1. 47 | 3.36 | 120.00 | 0.00 | 0.50 |
| | 14. 50 | 0. 40 | 2.76 | 120.00 | 0.00 | 0.50 |
| | 14. 10 | 0. 30 | 2.13 | 120.00 | 0.00 | 0.50 |
| | 259. 90 | 2. 38 | 0.92 | 120.00 | 0.00 | 0.50 |
| | 216. 00 | 2. 08 | 0.96 | 120.00 | 0.0 | 0.50 |
| 47. 40 | 31. 40 | 1. 33 | 4. 24 | 120.00 | 0.00 | 0. 50 |
| 48. 39 | 16. 80 | 0. 55 | 3. 27 | 120.00 | 0.00 | 0. 50 |
| 49. 37 | 36. 80 | 0. 99 | 2. 69 | 120.00 | 0.00 | 0. 50 |

Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.

Output Results:

Settlement of Saturated Sands=2.31 in. Settlement of Unsaturated Sands=0.09 in. Total Settlement of Saturated and Unsaturated Sands=2.41 in. Differential Settlement=1.204 to 1.589 in.

| Depth
ft | CRRm | CSRfs | F. S. | S_sat.
in. | S_dry
in. | S_all
in. |
|-------------------------|-------------------------|-------------------------|----------------------|-------------------------|----------------------|-------------------------|
| 0. 16
1. 16
2. 16 | 0. 12
0. 13
0. 42 | 0. 58
0. 58
0. 58 | 5.00
5.00
5.00 | 2. 31
2. 31
2. 31 | 0.09
0.09
0.08 | 2. 41
2. 40
2. 40 |
| 3.16 | 0.13 | 0.59 | 0. 22* | 2.29 | 0.00 | 2.29 |
| 4. 16
5. 16 | 0. 34
0. 74 | 0. 67
0. 74 | 0. 51*
1. 01 | 2. 11
2. 07 | 0.00
0.00 | 2. 11
2. 07 |
| 6.16 | 0.56 | 0. 78 | 0.72* | 2.02 | 0.00 | 2.02 |
| 7.16 | 0.61 | 0.82 | 0.74* | 1.89 | 0.00 | 1.89 |
| 8. 16
9. 16 | 2. 39
1. 26 | 0. 85
0. 88 | 2. 81
1. 44 | 1. 87
1. 87 | 0.00
0.00 | 1. 87
1. 87 |
| 10. 16 | 2.00 | 0.90 | 5.00 | 1.78 | 0.00 | 1.78 |
| 11.16 | 2.00 | 0.92 | 5.00 | 1.78 | 0.00 | 1.78 |
| 12. 16
13. 16 | 0. 26
0. 17 | 0. 93
0. 94 | 0. 27*
0. 17* | 1. 76
1. 61 | 0.00
0.00 | 1. 76
1. 61 |
| 14.16 | 0.30 | 0.95 | 0.32* | 1.44 | 0.00 | 1.44 |
| 15.16 | 0.18 | 0.96 | 0.19* | 1.28 | 0.00 | 1.28 |
| 16. 16
17. 16 | 2.00
2.00 | 0. 97
0. 98 | 5.00
5.00 | 1. 21
1. 21 | 0.00
0.00 | 1. 21
1. 21 |
| 18.16 | 2.00 | 0. 90 | 5.00 | 1.21 | 0.00 | 1.21 |
| 19.16 | 2.00 | 0. 99 | 5.00 | 1. 21 | 0.00 | 1.21 |
| 20.16 | 2.00 | 1.00 | 5.00 | 1.21 | 0.00 | 1.21 |
| 21. 16
22. 16 | 0. 48
0. 53 | 1.00
1.00 | 0. 48*
0. 52* | 1. 20
1. 15 | 0. 00
0. 00 | 1. 20
1. 15 |
| 23.16 | 2.00 | 1.00 | 5.00 | 1.15 | 0.00 | 1. 15 |
| 24.16 | 2.00 | 1.01 | 5.00 | 1.15 | 0.00 | 1.15 |
| 25.16 | 0.26 | 1.01 | 0.26* | 1.12 | 0.00 | 1.12 |
| 26. 16
27. 16 | 0. 59
1. 05 | 1. 01
1. 02 | 0. 58*
1. 03 | 1. 03
1. 02 | 0. 00
0. 00 | 1. 03
1. 02 |
| 28.16 | 0.64 | 1.02 | 0.63* | 1.02 | 0.00 | 1.02 |
| 29.16 | 0.37 | 1.02 | 0.37* | 0.91 | 0.00 | 0. 91 |
| 30.16 | 2.00 | 1.02 | 5.00 | 0.89 | 0.00 | 0.89 |
| 31. 16
32. 16 | 0. 19
0. 27 | 1. 01
1. 01 | 0. 19*
0. 26* | 0. 88
0. 77 | 0. 00
0. 00 | 0. 88
0. 77 |
| 33.16 | 0.40 | 1.00 | 0.40* | 0.71 | 0.00 | 0.71 |
| 34.16 | 2.00 | 0.99 | 5.00 | 0.71 | 0.00 | 0.71 |
| 35.16
36.16 | 2.00
0.22 | 0. 99
0. 98 | 5.00
0.22* | 0. 69
0. 56 | 0. 00
0. 00 | 0. 69
0. 56 |
| 30. 10
37. 16 | 0.22 | 0.98 | 0.22
0.17* | 0. 30 | 0.00 | 0. 45 |

38.16 2.00 0.97 5.00 0.38 0.00 0.38 39.16 2.00 0.96 5.00 0.38 0.00 0.38 40.16 2.00 0.95 5.00 0.38 0.00 0.38 41.16 0.38 2.00 0.94 5.00 0.38 0.00 42.16 0.30 0.94 0.33* 0.26 0.00 0.26 43.16 2.00 0.93 5.00 0.18 0.00 0.18 44.16 2.00 0.92 5.00 0.18 0.00 0.18 45.16 0.86 0.91 0.95* 0.17 0.00 0.17 46.16 1.09 0.91 1.20 0.17 0.00 0.17 47.16 0.13 2.00 0.90 5.00 0.13 0.00 48.16 2.00 0.89 5.00 0.03 0.00 0.03 49.16 0.16 0.18* 0.88 0.03 0.00 0.03

* F.S.<1, Liquefaction Potential Zone (F.S. is limited to 5, CRR is limited to 2, CSR is limited to 2)

Units: Unit: qc, fs, Stress or Pressure = atm (1.0581tsf); Unit Weight = pcf; Depth = ft; Settlement = in.

| 1 atm | (atmosphere) = 1 tsf (ton/ft2) |
|----------------|--|
| CRRm | Cyclic resistance ratio from soils |
| CSRsf | Cyclic stress ratio induced by a given earthquake (with user |
| request factor | of safety) |
| F. S. | Factor of Safety against liquefaction, F.S. = CRRm/CSRsf |
| S_sat | Settlement from saturated sands |
| S_dry | Settlement from Unsaturated Sands |
| S_al Ì | Total Settlement from Saturated and Unsaturated Sands |
| NoLiq | No-Liquefy Soils |
| | |

* * * * * * * * * * * * * * * * * * * LIQUEFACTION ANALYSIS SUMMARY Copyright by CivilTech Software www.civiltechsoftware.com ******* Font: Courier New, Regular, Size 8 is recommended for this report. 3/19/2020 6:24:55 PM Licensed to , Input File Name: N: \Projects\2020\60205029\Working Files\Calculations-Analyses\CPT-19.liq Title: Project Bruin Subtitle: 60205029 Surface Elev. = Hole No. = CPT-19 Depth of Hole= 49.50 ft Water Table during Earthquake= 3.00 ft Water Table during In-Situ Testing= 3.00 ft Max. Acceleration= 0.69 g Earthquake Magnitude= 7.10 Input Data: Surface Elev. = Hole No. = CPT-19 Depth of Hole=49.50 ft Water Table during Earthquake= 3.00 ft Water Table during In-Situ Testing= 3.00 ft Max. Acceleration=0.69 g Earthquake Magni tude=7.10 No-Liquefiable Soils: Based on Analysis 1. CPT Calculation Method: Modify Robertson* 2. Settlement Analysis Method: Tokimatsu, M-correction 3. Fines Correction for Liquefaction: Modify Stark/Olson 4. Fine Correction for Settlement: During Liquefaction* 5. Settlement Calculation in: All zones* 9. User request factor of safety (apply to CSR), User= 1.3 Plot two CSR (fs1=User, fs2=1) 10. Use Curve Smoothing: Yes* * Recommended Options In-Situ Test Data: Depth D50 fs Rf gamma Fines qc ft atm atm pcf % mm

| 0.16
1.15
2.13
3.12
4.10
5.09
6.07
7.05
8.04
9.02
10.00
10.99
11.97
12.95
13.94
14.92
15.91
16.89
17.88
18.86
19.84
20.83
21.81
22.80
23.78
24.77
25.75
26.73
27.72
28.70
29.69
30.67
31.66
32.64
33.62
34.61
35.59
36.58
37.56
38.54
39.53
40.51
41.50
42.48
43.47 | 3.50
22.30
13.50
11.90
29.20
17.80
4.10
17.70
55.30
125.10
123.70
10.10
31.40
7.20
4.40
7.00
12.90
5.80
6.80
11.70
6.60
7.80
9.50
15.00
29.90
53.20
15.00
29.90
53.20
15.30
159.10
173.00
215.10
246.00
122.00
15.00
29.90
53.20
15.30
159.10
173.00
215.10
246.00
122.00
15.00
29.90
53.20
15.30
159.10
173.00
215.10
246.00
122.00
15.50
48.40
200.00
95.30
15.70
15.50
48.40
194.50
74.10 | 0.04
0.38
0.40
0.15
0.07
0.13
-0.01
0.25
0.76
0.75
0.53
0.30
0.76
0.10
0.01
0.01
0.06
0.17
0.08
0.12
0.08
0.11
0.09
0.12
0.08
0.11
0.09
0.46
0.37
0.30
0.47
1.50
1.18
1.65
1.68
2.27
0.56
0.57
1.18
1.65
1.68
2.27
0.56
0.57
1.18
1.75
1.21
1.21
0.44
0.45
1.87
3.18
2.76 | $\begin{array}{c} 1. 14\\ 1. 70\\ 2. 96\\ 1. 26\\ 0. 24\\ 0. 73\\ -0. 24\\ 1. 41\\ 1. 37\\ 0. 60\\ 0. 43\\ 2. 97\\ 2. 42\\ 1. 39\\ 0. 23\\ 0. 86\\ 1. 32\\ 1. 72\\ 1. 76\\ 0. 68\\ 1. 67\\ 1. 15\\ 2. 00\\ 3. 07\\ 1. 24\\ 0. 56\\ 3. 07\\ 1. 24\\ 0. 56\\ 3. 07\\ 1. 24\\ 0. 56\\ 3. 07\\ 1. 24\\ 0. 68\\ 1. 67\\ 1. 15\\ 2. 00\\ 3. 07\\ 1. 24\\ 0. 68\\ 1. 67\\ 1. 15\\ 2. 00\\ 3. 07\\ 1. 24\\ 0. 68\\ 1. 63\\ 3. 73\\ 2. 48\\ 1. 74\\ 0. 86\\ 0. 85\\ 0. 88\\ 1. 29\\ 1. 27\\ 2. 80\\ 2. 90\\ 3. 86\\ 1. 63\\ 3. 72\\ \end{array}$ | 120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 | 0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50 0.500 |
|---|---|---|---|--|--|--|
| 40. 51
41. 50 | 15.50
48.40 | 0. 45
1. 87 | 2.90
3.86 | 120. 00
120. 00 | 0.00
0.00 | 0. 50
0. 50 |
| 43. 43
46. 42
47. 40
48. 39
49. 37 | 19. 10
23. 00
220. 20
177. 00 | 0. 74
0. 77
2. 80
2. 08 | 3. 23
3. 87
3. 35
1. 27
1. 18 | 120.00
120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00
0.00 | 0.50
0.50
0.50
0.50
0.50 |

Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.

Output Results:

Settlement of Saturated Sands=2.69 in. Settlement of Unsaturated Sands=0.02 in. Total Settlement of Saturated and Unsaturated Sands=2.71 in. Differential Settlement=1.357 to 1.791 in.

| Depth
ft | CRRm | CSRfs | F. S. | S_sat.
in. | S_dry
in. | S_all
in. |
|-------------------------|-------------------------|-------------------------|----------------------|----------------------|-------------------------|-------------------------|
| 0. 16
1. 16
2. 16 | 0. 13
0. 30
0. 44 | 0. 58
0. 58
0. 58 | 5.00
5.00
5.00 | 2.69
2.69
2.69 | 0. 02
0. 02
0. 01 | 2. 71
2. 71
2. 70 |
| 3. 16
4. 16 | 0. 13
0. 13 | 0. 59
0. 67 | 0. 21*
0. 20* | 2. 66
2. 41 | 0.00
0.00 | 2.66
2.41 |
| 5.16 | 0.13 | 0.74 | 0. 20
0. 15* | 2. 18 | 0.00 | 2.18 |
| 6. 16
7. 14 | 2.00 | 0.78 | 5.00 | 2.09 | 0.00 | 2.09
1.94 |
| 7. 16
8. 16 | 0. 16
0. 36 | 0. 82
0. 85 | 0. 19*
0. 42* | 1. 94
1. 79 | 0.00
0.00 | 1. 94
1. 79 |
| 9.16 | 1.43 | 0.88 | 1.63 | 1.73 | 0.00 | 1.73 |
| 10.16 | 0.95 | 0.90 | 1.06 | 1.71
1.64 | 0.00 | 1.71 |
| 11. 16
12. 16 | 2.00
0.32 | 0. 92
0. 93 | 5.00
0.34* | 1. 64 | 0.00
0.00 | 1. 64
1. 54 |
| 13.16 | 2.00 | 0.94 | 5.00 | 1. 43 | 0.00 | 1.43 |
| 14.16 | 0.09 | 0.95 | 0.10* | 1.43 | 0.00 | 1.43 |
| 15. 16
16. 16 | 2.00
0.22 | 0. 96
0. 97 | 5.00
0.23* | 1. 23
1. 10 | 0.00
0.00 | 1. 23
1. 10 |
| 17.16 | 2.00 | 0. 98 | 5.00 | 1.02 | 0.00 | 1.02 |
| 18.16
10.16 | 2.00 | 0.99 | 5.00 | 1.02 | 0.00 | 1.02 |
| 19. 16
20. 16 | 0. 11
2. 00 | 0. 99
1. 00 | 0. 11*
5. 00 | 0. 91
0. 87 | 0.00
0.00 | 0. 91
0. 87 |
| 21.16 | 2.00 | 1.00 | 5.00 | 0.87 | 0.00 | 0.87 |
| 22.16 | 2.00
2.00 | 1.00 | 5.00 | 0.87 | 0.00 | 0.87 |
| 23. 16
24. 16 | 2.00
0.12 | 1. 01
1. 01 | 5.00
0.12* | 0. 87
0. 77 | 0.00
0.00 | 0. 87
0. 77 |
| 25.16 | 2.00 | 1.01 | 5.00 | 0.55 | 0.00 | 0.55 |
| 26. 16
27. 16 | 0. 30
0. 74 | 1. 01
1. 02 | 0. 30*
0. 73* | 0. 54
0. 49 | 0.00
0.00 | 0. 54
0. 49 |
| 28.16 | 1. 02 | 1.02 | 1.01 | 0.49 | 0.00 | 0.49 |
| 29.16 | 1.44 | 1.02 | 1.42 | 0.46 | 0.00 | 0.46 |
| 30. 16
31. 16 | 1. 29
2. 00 | 1. 02
1. 01 | 1. 27
5. 00 | 0. 46
0. 46 | 0.00
0.00 | 0. 46
0. 46 |
| 32.16 | 2.00 | 1.01 | 5.00 | 0.40 | 0.00 | 0.40 |
| 33.16 | 2.00 | 1.00 | 5.00 | 0.46 | 0.00 | 0.46 |
| 34. 16
35. 16 | 0. 52
1. 09 | 0. 99
0. 99 | 0. 52*
1. 11 | 0. 38
0. 35 | 0.00
0.00 | 0. 38
0. 35 |
| 36.16 | 0.95 | 0. 98 | 0.97* | 0.35 | 0.00 | 0.35 |
| 37.16 | 0.58 | 0.97 | 0.59* | 0.33 | 0.00 | 0.33 |

38.16 2.00 0.97 5.00 0.26 0.00 0.26 39.16 2.00 0.96 5.00 0.11 0.00 0.11 40.16 2.00 0.95 5.00 0.00 0.11 0. 11 41.16 2.00 0.94 5.00 0.11 0.00 0.11 42.16 0.94 0.94 1.01 0.10 0.00 0.10 43.16 0.50 0.93 0.53* 0.10 0.00 0.10 44.16 1.43 0.92 1.55 0.08 0.00 0.08 45.16 0.29 0.91 0.31* 0.06 0.00 0.06 46.16 2.00 0.91 5.00 0.02 0.00 0.02 47.16 2.00 0.90 5.00 0.02 0.00 0.02 48.16 0.36 0.89 0.41* 0.02 0.00 0.02 49.16 1.03 0.88 1.16 0.01 0.00 0.01

* F.S.<1, Liquefaction Potential Zone (F.S. is limited to 5, CRR is limited to 2, CSR is limited to 2)

Units: Unit: qc, fs, Stress or Pressure = atm (1.0581tsf); Unit Weight = pcf; Depth = ft; Settlement = in.

| 1 atm | (atmosphere) = 1 tsf (ton/ft2) |
|----------------|--|
| CRRm | Cyclic resistance ratio from soils |
| CSRsf | Cyclic stress ratio induced by a given earthquake (with user |
| request factor | of safety) |
| F. S. | Factor of Safety against liquefaction, F.S. = CRRm/CSRsf |
| S_sat | Settlement from saturated sands |
| S_dry | Settlement from Unsaturated Sands |
| S_al Ì | Total Settlement from Saturated and Unsaturated Sands |
| NoLiq | No-Liquefy Soils |
| | |

* * * * * * * * * * * * * * * * * * * LIQUEFACTION ANALYSIS SUMMARY Copyright by CivilTech Software www.civiltechsoftware.com * * * * * * * * * * * Font: Courier New, Regular, Size 8 is recommended for this report. 3/19/2020 6:26:49 PM Licensed to , Input File Name: N: \Projects\2020\60205029\Working Files\Calculations-Analyses\CPT-20.liq Title: Project Bruin Subtitle: 60205029 Surface Elev. = Hole No. = CPT-20 Depth of Hole= 44.60 ft Water Table during Earthquake= 3.00 ft Water Table during In-Situ Testing= 3.00 ft Max. Acceleration= 0.69 g Earthquake Magnitude= 7.10 Input Data: Surface Elev. = Hole No. = CPT-20 Depth of Hole=44.60 ft Water Table during Earthquake= 3.00 ft Water Table during In-Situ Testing= 3.00 ft Max. Acceleration=0.69 g Earthquake Magni tude=7.10 No-Liquefiable Soils: Based on Analysis 1. CPT Calculation Method: Modify Robertson* 2. Settlement Analysis Method: Tokimatsu, M-correction 3. Fines Correction for Liquefaction: Modify Stark/Olson 4. Fine Correction for Settlement: During Liquefaction* 5. Settlement Calculation in: All zones* 9. User request factor of safety (apply to CSR), User= 1.3 Plot two CSR (fs1=User, fs2=1) 10. Use Curve Smoothing: Yes* * Recommended Options In-Situ Test Data: Depth D50 fs Rf gamma Fines qc ft atm atm pcf % mm

| 0.16
1.15
2.13
3.12
4.10
5.09
6.07
7.05
8.04
9.02
10.00
10.99
11.97
12.95
13.94
14.92
15.91
16.89
17.88
18.86
19.84
20.83
21.81
22.80
23.78
24.77
25.75
26.73
27.72
28.70
29.69
30.67
31.66
32.64
33.62
34.61
35.59
36.58
37.56
38.54
39.53
40.51 | $\begin{array}{c} 1.\ 70\\ 7.\ 60\\ 24.\ 70\\ 10.\ 30\\ 5.\ 90\\ 5.\ 40\\ 65.\ 50\\ 79.\ 40\\ 128.\ 80\\ 132.\ 30\\ 9.\ 30\\ 4.\ 30\\ 7.\ 00\\ 45.\ 90\\ 37.\ 00\\ 10.\ 20\\ 9.\ 40\\ 10.\ 20\\ 9.\ 70\\ 12.\ 40\\ 10.\ 20\\ 9.\ 70\\ 12.\ 40\\ 10.\ 20\\ 9.\ 70\\ 12.\ 40\\ 10.\ 20\\ 9.\ 70\\ 12.\ 40\\ 10.\ 20\\ 9.\ 70\\ 12.\ 40\\ 10.\ 20\\ 9.\ 70\\ 12.\ 40\\ 10.\ 20\\ 9.\ 70\\ 12.\ 40\\ 10.\ 20\\ 9.\ 70\\ 12.\ 40\\ 10.\ 20\\ 9.\ 70\\ 12.\ 40\\ 10.\ 20\\ 9.\ 70\\ 12.\ 40\\ 10.\ 20\\ 9.\ 70\\ 12.\ 40\\ 10.\ 20\\ 9.\ 70\\ 12.\ 40\\ 10.\ 20\\ 9.\ 70\\ 12.\ 70\\ 17.\ 50\\ 30.\ 80\\ 33.\ 10\\ 47.\ 20\\ 17.\ 00\\ 13.\ 70\\ 184.\ 00\\ 34.\ 30\\ 189.\ 80\\ \end{array}$ | 0.02
0.13
0.26
0.14
0.07
0.05
0.20
1.01
0.57
0.37
0.28
0.03
0.08
1.05
0.28
0.23
0.17
0.11
0.15
0.28
1.05
0.28
0.17
0.11
0.57
0.57
0.51
0.59
0.55
0.56
1.46
0.53
0.89
0.55
0.98
0.41
0.55
0.98
0.41
0.55
0.98
0.55
0.98
0.55
0.98
0.55
0.98
0.41
0.33
1.26
1.35
1.91
0.55
0.98
0.41
0.33
1.26
1.35
1.91
0.55
0.98
0.55
0.98
0.41
0.33
1.26
1.35
1.91 | $\begin{array}{c} 1. \ 18 \\ 1. \ 71 \\ 1. \ 05 \\ 1. \ 36 \\ 1. \ 19 \\ 0. \ 93 \\ 0. \ 31 \\ 1. \ 27 \\ 0. \ 44 \\ 0. \ 28 \\ 3. \ 01 \\ 0. \ 70 \\ 1. \ 14 \\ 2. \ 29 \\ 0. \ 76 \\ 2. \ 25 \\ 1. \ 91 \\ 1. \ 67 \\ 1. \ 13 \\ 1. \ 21 \\ 1. \ 75 \\ 3. \ 86 \\ 4. \ 10 \\ 2. \ 57 \\ 1. \ 13 \\ 1. \ 21 \\ 1. \ 75 \\ 3. \ 86 \\ 4. \ 10 \\ 2. \ 57 \\ 1. \ 08 \\ 2. \ 91 \\ 3. \ 26 \\ 1. \ 56 \\ 2. \ 56 \\ 3. \ 25 \\ 2. \ 89 \\ 1. \ 66 \\ 2. \ 56 \\ 3. \ 25 \\ 2. \ 89 \\ 1. \ 66 \\ 2. \ 94 \\ 1. \ 01 \end{array}$ | 120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00
120.00 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00 | 0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50 |
|--|---|--|---|--|--|--|
| 38.54
39.53 | 184.00
34.30 | 1.26
1.35 | 0. 68
3. 94 | 120. 00
120. 00 | 0.00
0.00 | 0. 50
0. 50 |
| | | | | | | |

Modify Robertson method generates Fines from qc/fs. Inputted Fines are not relevant.

Output Results:

Settlement of Saturated Sands=2.47 in. Settlement of Unsaturated Sands=0.04 in. Total Settlement of Saturated and Unsaturated Sands=2.51 in. Differential Settlement=1.256 to 1.658 in.

| Depth
ft | CRRm | CSRfs | F. S. | S_sat.
in. | S_dry
in. | S_all
in. |
|------------------|----------------|--------------|-----------------|----------------|----------------|--------------|
| 0.16 | 0.14 | 0. 58 | 5.00 | 2.47 | 0.04 | 2. 51 |
| 1.16 | 0. 17 | 0.58 | 5.00 | 2.47 | 0.03 | 2.50 |
| 2.16 | 0.17 | 0.58 | 5.00 | 2.47 | 0. 02 | 2.49 |
| 3.16 | 0.13 | 0.59 | 0. 22* | 2.45 | 0.00 | 2.45 |
| 4.16 | 0. 18 | 0.67 | 0.26* | 2. 18 | 0.00 | 2.18 |
| 5.16 | 0. 12 | 0.74 | 0. 16* | 2.09 | 0.00 | 2.09 |
| 6. 16 | 0.35 | 0. 78 | 0.45* | 1.88 | 0.00 | 1.88 |
| 7.16 | 0.70 | 0.82 | 0.85* | 1.76 | 0.00 | 1.76 |
| 8.16 | 1.90 | 0.85 | 2.24 | | 0.00 | 1.75 |
| 9.16 | 1.23 | 0.88 | 1.40 | 1.75 | 0.00 | 1.75 |
| 10. 16 | 2.00 | 0.90 | 5.00 | 1.67 | 0.00 | 1.67 |
| 11.16 | 2.00 | 0. 92 | 5.00 | 1.67 | 0.00 | 1.67 |
| 12.16 | 0.31 | 0.93 | 0.33* | | 0.00 | 1.58 |
| 13.16 | 0.23 | 0.94 | 0.25* | | 0.00 | 1.47 |
| 14.16 | 0.13 | 0.95 | 0.14* | | 0.00 | 1.25 |
| 15.16 | 2.00 | 0.96 | 5.00 | 1.18 | 0.00 | 1.18 |
| 16.16 | 2.00 | 0.97 | 5.00 | 1.18 | 0.00 | 1.18 |
| 17.16 | 2.00 | 0.98 | 5.00 | 1.15 | 0.00 | 1.15 |
| 18.16 | 2.00 | 0.99 | 5.00 | 1.14 | 0.00 | 1.14 |
| 19.16 | 2.00 | 0.99 | 5.00 | 1.10 | 0.00 | 1.10 |
| 20.16 | 0.28 | 1.00 | 0.29* | 1.06 | 0.00 | 1.06
1.05 |
| 21.16 | 0. 93
2. 00 | 1.00 | 0. 93*
5. 00 | 1.05 | 0. 00
0. 00 | 1.05
1.05 |
| 22.16
23.16 | 2.00 | 1.00
1.01 | 5.00 | 1. 05
1. 03 | 0.00 | 1.03 |
| 23. 10
24. 16 | 0. 21 | 1.01 | 0. 21* | 1.03 | 0.00 | 1.03 |
| 25.16 | 1.34 | 1.01 | 1.33 | 0.95 | 0.00 | 0.95 |
| 26.16 | 0.46 | 1.01 | 0. 45* | 0.91 | 0.00 | 0.91 |
| 27.16 | 0.66 | 1.01 | 0.65* | 0.85 | 0.00 | 0.85 |
| 28.16 | 2.00 | 1.02 | 5.00 | 0.79 | 0.00 | 0.79 |
| 29.16 | 2.00 | 1.02 | 5.00 | 0.79 | 0.00 | 0.79 |
| 30.16 | 2.00 | 1.02 | 5.00 | 0.79 | 0.00 | 0.79 |
| 31.16 | 2.00 | 1.01 | 5.00 | 0.76 | 0.00 | 0. 76 |
| 32.16 | 0.25 | 1.01 | 0.25* | 0.70 | 0.00 | 0. 70 |
| 33.16 | 2.00 | 1.00 | 5.00 | 0.69 | 0.00 | 0.69 |
| 34.16 | 2.00 | 0.99 | 5.00 | 0.69 | 0.00 | 0.69 |
| 35.16 | 0. 16 | 0.99 | 0. 16* | 0.62 | 0.00 | 0.62 |
| 36.16 | 2.00 | 0. 98 | 5.00 | 0.51 | 0.00 | 0. 51 |
| 37.16 | 2.00 | 0.97 | 5.00 | 0.51 | 0.00 | 0. 51 |
| 38.16 | 0.27 | 0.97 | 0. 28* | 0.48 | 0.00 | 0.48 |
| 39.16 | 0.32 | 0.96 | 0.33* | 0.37 | 0.00 | 0.37 |
| 40.16 | 0.41 | 0.95 | 0.43* | 0.31 | 0.00 | 0.31 |
| 41.16 | 0.30 | 0.94 | 0.32* | 0.26 | 0.00 | 0.26 |
| 42.16 | 2.00 | 0.94 | 5.00 | 0. 21 | 0.00 | 0. 21 |

 43. 16
 0. 41
 0. 93
 0. 44*
 0. 16
 0. 00
 0. 16

 44. 16
 0. 50
 0. 92
 0. 54*
 0. 04
 0. 00
 0. 04

* F.S. <1, Liquefaction Potential Zone (F.S. is limited to 5, CRR is limited to 2, CSR is limited to 2)

Units: Unit: qc, fs, Stress or Pressure = atm (1.0581tsf); Unit Weight = pcf; Depth = ft; Settlement = in.

1 atm (atmosphere) = 1 tsf (ton/ft2) CRRm Cyclic resistance ratio from soils Cyclic stress ratio induced by a given earthquake (with user CSRsf request factor of safety) F. S. Factor of Safety against liquefaction, F.S. = CRRm/CSRsf Settlement from saturated sands S_sat S_dry Settlement from Unsaturated Sands S_al Ī Total Settlement from Saturated and Unsaturated Sands NoLiq No-Liquefy Soils