
CITY OF OXNARD Draft Environmental Impact Report

SCH #2000051046

TABLE OF CONTENTS

VOLUME I: ENVIRONMENTAL IMPACT REPORT

<u>Sect</u>	tion	Page
	SUMMARY	S-1
1.0	INTRODUCTION	
2.0	ENVIRONMENTAL SETTING	2.0~1
3.0		
	•	
4.0		
	4.1 Land Use Planning, Programs & Policies	
	4.2 Aesthetics	
	4.3 Earth Resources	
	4.5 Water Resources	
	4.6 Agricultural Resources	
	4.7 Transportation & Circulation	
	4.8 Air Quality	
	4.9 Noise	
	4.10 Public Services	
	4.10.1 Public Schools	4.10.1-1
	4.10.2 Fire Protection	4.10.2-1
	4.10.3 Police Protection	
	4.10.4 Parks & Recreation	
	4.10.5 Solid Waste Management	
	4.10.6 Library Services	
	4.11 Public Utilities	
	4.11.1 Stormwater Drainage	
	4.11.2 Water Supply and Distribution	
	4.11.3 Wastewater Service	
	4.11.4 Energy	
	4.12 Cultural Resources	
	4.15 Hazards	4.13-1
5.0	ALTERNATIVES	5.0-1
6.0	GROWTH INDUCING IMPACT ANALYSIS	6.0-1
7.0	SIGNIFICANT IRREVERSIBLE ENVIRONMENTAL CHANGE	GES7.0-1
8.0	REFERENCES	8.0-1
9.0		

i

LIST OF APPENDICES

VOLUME II

Appendix 1.0 – Notice of Preparation and Responses
Appendix 4.0 – Related Projects List
Appendix 4.3 – Geology Reports
Appendix 4.4 – Biological Data
Appendix 4.5 – Water Quality Data

VOLUME III

Appendix 4.7 – Traffic Study
Appendix 4.8 – Air Quality Calculations
Appendix 4.9 – Noise Calculations
Appendix 4.12 – Cultural Resources Reports
Appendix 4.13 – Site Assessment Report
Appendix 5.0 – Alternatives Information

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
2.0-1	Regional Location	2.0-3
2.0-2	Project Vicinity Map	
2.0-3	Project Location	
2.0-4	Onsite Land Uses.	
2.0-4	RiverPark Area 'A' Features	
2.0-6	RiverPark Area 'B' Features	
2.0-7	Surrounding Land Uses.	
2.0-8	Existing General Plan Land Use	
2.0-8	HERO Area within Project Site	
3.0-1	Conceptual Land Use Diagram	
3.0-1	Illustrative Plan	
3.0-2	Conceptual Oblique View Looking North	
3.0-3 3.0-4		
	Conceptual Oblique View Looking South	
3.0-5	Community Landscape Master Plan	
3.0-6	Trail and Sidewalk System	
3.0-7	Pedestrian Travel Distance	
3.0-8	Conceptual Land Use Plan	
3.0-9	Roadway Circulation	
3.0-10	Bicycle Facilities Plan	
3.0-11	Proposed Stormwater Quality Treatment System	
3.0-12	Development Phasing Plan	
3.0-13	General Plan Land Use Amendment	
4.1-1	Existing General Plan Land Use	
4.2-1	Existing View of Project Site from the South	
4.2-2	Existing Northward View of Vineyard Avenue from Myrtle Street	
4.2-3	Existing Southwesterly View of the Project Site from Vineyard Avenue	
4.2-4	Existing View of the Project Site from El Rio West Neighborhood	
4.2-5	Existing View of the Project Site from the North	
4.2-6	Existing Westward View of the Project Site from Telephone Road	
4.2-7	General Plan Community Design Structure Map	4.2-13
4.2-8	Streetscape Master Plan	
4.2-9	Open Space Master Plan	
4.2 - 10	View of Project from the South - Post-Development	
4.2 - 11	Southwesterly View of the Project Site from Vineyard Avenue - Post Development	4.2-21
4.2 - 12	Cross Section of El Rio West Neighborhood Buffer - Northern Edge	4.2-24
4.2-13	View of the Project Site from El Rio West Neighborhood - Post-Development	
4.2 - 14	Westward View of the Project Site from Telephone Road - Post-Development	4.2-26
4.3-1	Geologic Map	
4.3-2	Site Reclamation Plan	4.3-10
4.4-1	Vegetation Communities	4.4-5
4.5-1	Montalvo Forebay Location	4.5-3
4.5-2	Key Well Locations	4.5-6
4.5-3	Hydrograph 2N/22W-22R1	
4.5-4	Annual Precipitation and Water Levels in Well 2N/22W-22H1	4.5-10
4.5-5	Site Drainage Area Locations	
4.5-6	Artificial Recharge Montalvo Forebay	
4.5-7	Total Pumpage Montalvo Forebay	
4.5-8	RiverPark Pre-Project Water Balances	
4.5-9	Ambient Water Quality Well Locations	

LIST OF FIGURES (continued)

Figure_		Page
4.5-10	Surface Water Runoff and Pit Sampling Locations	4 5-52
4.5-11	Proposed Stormwater Treatment System Drainage Areas	
4.5-12	RiverPark Post-Project Water Balances	
4.5-13	Drainage Area 2B Hydrographs	
4.5-14	Drainage Area 3A Hydrographs	
4.5-15	Drainage Area 3B Hydrographs	
4.5-16	Drainage Area 4 Hydrographs	
4.6-1	Greenbelts and CURB and CBB Boundaries	4.6-9
4.6-2	State Important Farmland Map	
4.6-3	Existing Agricultural Land in the Specific Plan Area	4.6-13
4.7-1	Existing Circulation System	
4.7-2	Existing (2000) Traffic Volumes, AM Peak Hour	
4.7-3	Existing (2000) Traffic Volumes, PM Peak Hour	
4.7-4	Specific Plan Roadway Network	
4.7-5	Future (2020) Traffic Volumes, without Project, AM Peak Hour	4.7-25
4.7-6	Future (2020) Traffic Volumes, without Project, PM Peak Hour	4.7-26
4.7-7	Future (2020) Traffic Volumes, with Project, AM Peak Hour	4.7-27
4.7-8	Future (2020) Traffic Volumes, with Project, PM Peak Hour	4.7-28
4.9-1	Noise Attenuation by Barriers	
4.9-2	Land Use Compatibility Guidelines for Noise	4.9-6
4.9-3	Noise Levels of Typical Construction Equipment	4.9-11
4.9-4	Development Areas and Surrounding Uses	4.9-12
4.10.1-1	Rio School District School Attendance Boundary	4.10.1-3
4.10.1-2	Oxnard Union High School District School Attendance Boundary	4.10.1-4
4.10.2-1	Response Areas of Fire Stations	4.10.2-3
4.10.3-1	Locations of Police Stations	
4.10.3-2	City of Oxnard Police Beats	4.10.3-4
4.10.4-1	Open Space Master Plan	
4.10.4-2	Proposed Pedestrian Trails	
4.10.4-3	Proposed Biking Trails	
4.11.1-1	Site Drainage Area Locations	
4.11.1-2	City of Oxnard Storm Drain Master Plan	
4.11.1-3	RiverPark Storm Drain Master Plan	
4.11.2-1	RiverPark Specific Plan Water Master Plan	
4.11.3-1	Central Trunk System	
4.11.3-2	RiverPark Specific Plan Sewer Master Plan	4.11.3-6

LIST OF TABLES

<u>Table</u>		Page
3.0-1	Riverpark Specific Plan Summary of Proposed Land Uses	3 0-13
3.0-2	RiverPark Draft Specific Plan Land Use Summary by Planning District	
4.1-1	Adopted VCOG Population Projections	4 1 E
4.1-2	Adopted VCOG Housing Projections	
4.1-2		
4.1-3 4.1-4	Adopted 1998-2005 City of Oxnard Regional Housing Needs	4.1-/
4.1-4	SCAG Demographic Projections - VCOG Subtegion	4.1-32
4.1-3	SCAG Demographic Projections - City of Oxnard	
	Summary of Nearby Faults	4.3-9
4.4-1	Special-Status Plant Species Potentially Occurring in the RiverPark	4 4 10
4.4.0	Specific Plan Vicinity	4.4-13
4.4-2		
4.4.0	Occurring on the Project Site	
4.4-3	Projected Discharge of Selected Chemical Constituents and Toxicity Levels for Fish.	
4.4-4	Ornamentals to be Prohibited from the Project Site	
4.5-1	Key Wells	
4.5-2	Regional Water Balance – Montalvo Forebay	
4.5-3	RiverPark Site Water Balances – Existing Conditions Analysis	4.5-26
4.5-4	Primary Drinking Water Standards	
4.5-5	Secondary Drinking Water Standards	
4.5-6	Basin Plan Surface Water Quality Objectives	
4.5-7	Basin Plan Groundwater Quality Objectives	
4.5-8	Ambient Groundwater Quality Range	
4.5-9	Summary of Existing Total Dissolved Solids Conditions	
4.5-10	Summary of Existing Chloride Conditions	
4.5-11	Summary of Existing Sulfate Conditions	
4.5-12	Summary of Existing Nitrate Conditions	4.5-45
4.5-13	Summary of Existing Boron Conditions	4.5-46
4.5-14	Summary of Existing Metal Concentrations at Freeman Diversion	4.5-47
4.5-15	Summary of Existing Metal Conditions for City of Oxnard Wells	
4.5-16	Pit Water and Storm Water Runoff Quality	4.5-53
4.5-17	Anticipated Stormwater Constituent Concentrations vs.	
	Land-Use for Storms Smaller than 10-Year Event	4.5-55
4.5-18	Anticipated Stormwater Constituent Concentrations vs.	
	Land-Use for Storms Greater than 10-Year Event	4.5-56
4.5-19	Thresholds of Significance for Surface Water and Groundwater Quality	4.5-61
4.5-20	NPDES Dewatering Permit Effluent Limitations	4.5-63
4.5-21	RiverPark Site Water Balances - Project Analysis	
4.5-22	Project Impacts on Water Quantity	
4.5-23	Comparison of Dewatered Groundwater Quality with NPDES Standards	
4.5-24	Anticipated BMP Removal Efficiencies	
4.5-25	RiverPark Project Stormwater Discharges to Santa Clara River	4.5-82
4.5-26	RiverPark Project Stormwater Discharges to Water Storage/Infiltration Basins	
4.5-27	Rainfall Depth-Duration-Frequency at El Rio Station 239	
4.5-28	Existing and Project Runoff Quantities Tributary to	
	the Water Storage/Infiltration Basins	4.5-88
4.5-29	Projected Concentrations for Diverted Santa Clara River Water	
4.5-30	UWCD Santa Clara River Diversion Water Quality Analysis	
4.5-31	Project Stormwater Concentrations and Loads for TMDL-Related Constituents	
4.5-32	Existing Conditions and Project Runoff Comparison	
4.5-33	Existing Conditions and Project Percolation Comparison	

LIST OF TABLES (continued)

<u>Table</u>		Page
4 5 04		
4.5-34	Existing and Project Groundwater and Surface Water Net Contributions Comparis	30n4.5-98
4.6-1	Conversion of Farmlands within Ventura County 1988-1998	
4.7-1	Level of Service as a Function of V/C Values	4.7-11
4.7-2(a)	Intersection Volume/Capacity Summary	
	Existing (2000) Conditions, Project Area Intersections	4.7-14
4.7-2(b)	Intersection Volume/Capacity Summary	
	Existing (2000) Conditions, City of Ventura Intersections	
4.7-3	Freeway Mainline Level of Service Definitions	
4.7-4	Existing (2000) Freeway Volumes and Level of Service	4.7-16
4.7-5	City of Oxnard Vehicle Trip Generation Rates	
4.7-6	RiverPark Project Trip Generation	
4.7-7	Directional Distribution of Project Traffic, Average Daily Traffic, Study Year: 2	0204.7-24
4.7-8(a)	Intersection Volume/Capacity Summary - Future (2020) Peak Hour	
•	Traffic Conditions, Project Area Intersections	4.7-29
4.7-8(b)	Intersection Volume/Capacity Summary - Future (2020) Peak Hour	
	Traffic Conditions, City of Ventura Intersections	
4.7-9	Future (2020) Freeway Volumes and Level of Service	4.7-32
4.7-10(a)	Intersection Volume/Capacity Summary - Future (2020) Peak Hour Traffic	
	Conditions with Project and Mitigation, Project Area Intersections	4.7-34
4.7-10(b)	Intersection Volume/Capacity Summary - Future (2020) Peak Hour Traffic	
	Conditions with Project and Mitigation, City of Ventura Intersections	4.7-34
4.8-1	Ambient Pollutant Concentrations	
4.8-2	Existing Carbon Monoxide Concentrations	4.8-8
4.8-3	Estimated Operational Emissions - Proposed RiverPark Project, Year 2020	4.8-13
4.8-4	With Project Carbon Monoxide Concentrations	
4.8-5	Estimated Operational Emission Reductions - Proposed RiverPark Project, Year 2	20204.8-23
4.9-1	Outside to Inside Noise Attenuation	
4.9-2	Existing Roadway Noise Levels	4.9-7
4.9-3	Construction Equipment Noise Thresholds	4.9-9
4.9-4	Future On-site Noise Contours and Land Use Types	4.9-16
4.9-5	Existing Plus Project Roadway Noise Levels	4.9-19
4.9-6	Cumulative Roadway Noise Levels	4.9-21
4.10.1-1	Design Capacities and Current Enrollments of Local School Districts	4.10.1-2
4.10.1-2	Student Generation - Allowed Residential Units	4.10.1-10
4.10.1-3	Student Generation Impacts of Allowed Uses upon School Districts	4.10.1-10
4.10.5-1	Estimated Volume of Solid Waste Generated by Permitted Uses	
4.11.1-1	Existing and Proposed Stormwater Flow Characteristics (10 year / 100 year)	4.11.1-13
4.11.1-2	Freeboard Analysis - RiverPark at Santa Clara River	
4.11.1-3	100-year Storm Runoff Discharges to Water Storage/Recharge Basins	4.11.1-14
4.11.2-1	Projected Water Demand	4.11.2-10
4.11.3-1	Estimated Wastewater Generation	4.11.3-5
4.11.3-2	Oxnard Wastewater Master Plan 2020 Build-out Flow Projections -	
	Central Trunk System	4.11.3-8
4.11.4-1	California Electrical Energy Generation, 1983 to 1999;	
	Total Production, by Resource Type (millions of kilowatt hours)	4.11.4-2
4.11.4-2	Electricity Consumption Year 1980 to 2010 (GWh)	
	Projected Electrical Consumption at Total Build-out of the Project	
4.11.4-4	Approved Power Plants	4.11.4-8
4.11.4-5	Projected Natural Gas Consumption at Total Build-out of the Project	4.11.4-9

TRAFFIC ANALYSIS FOR OXNARD RIVERPARK SPECIFIC PLAN DEVELOPMENT

Prepared for:

CITY OF OXNARD, COUNTY OF VENTURA

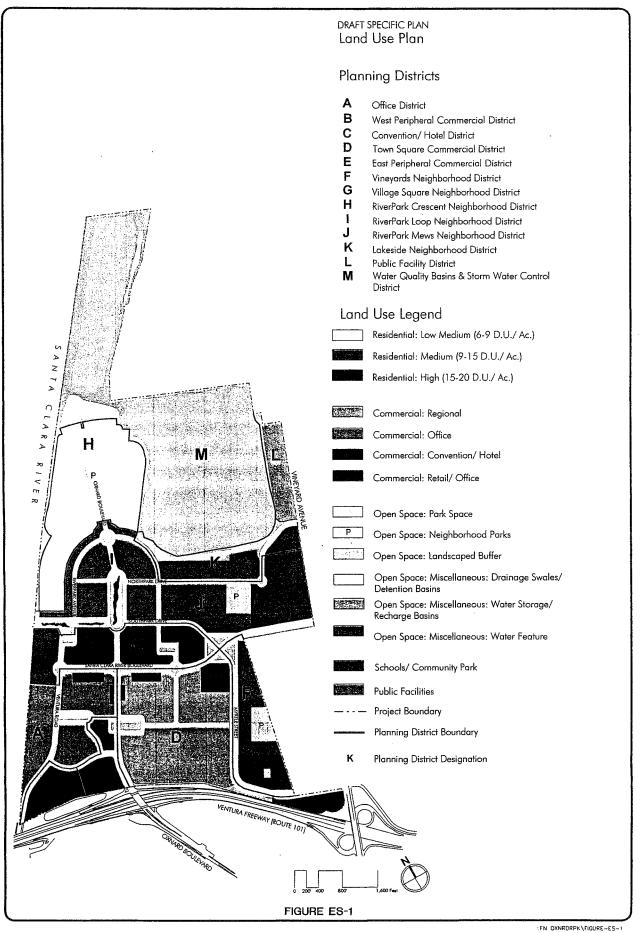
Prepared by:

Crain & Associates 2007 Sawtelle Boulevard, Suite 4 Los Angeles, California 90025 (310) 473 - 6508

EXECUTIVE SUMMARY

The project under consideration consists of a proposed Specific Plan to regulate the use of land within an approximate 700-acre area located immediately north of the Ventura Freeway (US-101) between Vineyard Avenue (SR-232) and the Santa Clara River. Approximately 272 acres of the project site, referred to as "RiverPark Area A", are currently located within the City of Oxnard. The remaining 428 acres of the site, referred to as "RiverPark Area B", are located outside of the City of Oxnard. The City of Oxnard adopted a specific plan for the majority of the RiverPark Area A in 1986 and annexed the area addressed by that specific plan (the small portion of RiverPark Area A not annexed by the City at that time was already within City limits). That existing specific plan titled the "Oxnard Town Center Specific Plan", allows development of up to 4.4 million square feet of commercial and industrial space in the area.

As summarized in Table ES-1, the proposed Specific Plan would allow the development of a newly integrated mixed-use community containing retail commercial, residential, office, hotel, open space and public facilities uses within the 700-acre Specific Plan Area. In addition, the draft Specific Plan allows for some flexibility in the exact development configuration of land uses. Table ES-2 shows the comparative trip values for the assumed and conditional land-uses. As this table shows, the total highest peakhour generator within each zone was selected inclusion within the traffic analysis. These uses would be linked by the proposed system of roadways and a network of open spaces. Figure ES-1 shows a conceptual land use plan of the project site.


Table ES-1 RiverPark Specific Plan Summary of Proposed Land Uses

1,416	units	Single-Family Residential
1,324	units	Multi-Family Residential
1,345	ksf	Regional Commercial
600	rooms	Hotel
1,030	ksf	Office
257	acre	Parks
40	ksf	Neighborhood Retail
81	ksf	Light Industrial/Public Facilities
1,600	students	Elementary/Middle School

Table ES-2
Traffic Generation Comparisons
for Conditional Land-Use Scenarios

<u>District</u>	<u>Scenario</u>	Land-Use	Size Units	Daily <u>Trips</u>	Pea AM	k Hour PM	<u>Trips</u> <u>Total</u>
D	Allowed	*Regional Commercial	80 ksf	2,630	53	245	298
	Conditional	Stadium	5,000 Seats	5,010	17	249	266
D	Allowed	*Office	190 ksf	2,670	361	355	716
	Conditional	Multi-Family Residential	194 units	1,550	128	167	295
F	Allowed	*Office -	250 ksf	3,510	475	468	943
	Conditional	Multi-Family Residential	256 units	2,050	169	220	389
G	Allowed	*Elementary/Middle School	500 students	550	140	125	265
	Conditional	Multi-Family Residential	174 units	1,390	115	150	265
J	Allowed	*Elementary/Middle School	1,100 students	1,200	308	275	583
	Conditional	Single-Family Residential	242 units	2,310	184	247	431

^{*} Land-Use Option included in the traffic analysis

The analysis incorporated a detailed evaluation of traffic conditions at 25 project area intersections and 8 additional remote intersections. Five regional facility study segments were also evaluated. These study locations include those roadway facilities most likely to be directly impacted by the traffic generated by the RiverPark project.

In accordance with the City of Oxnard's trip rates, the project is expected to generate approximately 94,174 net daily trips, including 5,807 trips in the morning peak hour and 9,859 trips in the afternoon peak hour. The RiverPark project will have significant impacts at seven study intersections in the City of Oxnard's or County of Ventura's control and one study intersection in the City of Ventura, prior to any mitigation measures.

In order to reduce the eight impacts to a level of insignificance, the following mitigation measures are proposed:

City of Oxnard/County of Ventura (equitable participation):

The project would pay appropriate fees and receive credit for any construction, to equitably participate in the buildout of the Master Plan of streets and Highways of the General Plan. This would include the following improvements which should be added to the City's and County's General Plans.

- Los Angeles Avenue and Vineyard Avenue -- Widen and restripe Los Angeles Avenue to provide one left-turn lane, two through lanes and one through/right shared lane in the westbound direction and one left-turn lane, two through lanes, one through/right shared lane and one right-turn lane in the eastbound direction.
- Oxnard Boulevard and Town Center Drive -- Construct this intersection to provide the following: dual left-turn lanes and one through/right shared lane in

the westbound direction, dual left-turn lanes, one through lane and two right-turn lanes in the eastbound direction, dual left-turn lanes, two through lanes and one right-turn lane in the northbound direction, and one left-turn lane, one through lane and one through/right shared lane in the southbound direction. In addition, provide a green phase for the eastbound right-turn movement concurrent with the northbound left-turn phase.

- Oxnard Boulevard and US-101 Northbound Ramps -- Improve this intersection to provide the following: one left-turn lane and one 'free' right-turn lane in the westbound direction, dual left-turn lanes and two through lanes in the northbound direction, and four through lanes and one right-turn lane in the southbound direction.
- Ventura Freeway SB On/Off-ramps and Oxnard Boulevard --- When sufficient redevelopment occurs to the Wagon Wheel Road area, a "hook" ramp along Wagon Wheel Road will be constructed. This ramp will provide direct access from Wagon Wheel Road to the southbound Ventura Freeway. The construction of this ramp will alleviate traffic that crosses to the east of the Ventura Freeway to access the southbound on-ramp from Oxnard Boulevard. In addition, a connection between southbound Oxnard Boulevard and this hook-ramp will be provided. Upon completion of the hook-ramp and connector, left-turns from southbound Oxnard Boulevard to the southbound Ventura Freeway diamond on-ramp will be prohibited. This connector will also allow access from Wagon Wheel Road to northbound Oxnard Boulevard. As part of the immediate roadway improvement project, the Oxnard Boulevard overcrossing will be constructed with sufficient length to accommodate the later installation of the hook ramp.

- o <u>Wagon Wheel Road and US-101 Southbound On-Ramp</u> -- Restripe Wagon Wheel Road to provide one through/right shared lane and one right-turn lane in the northbound direction.
- Oxnard Boulevard and Esplanade Drive -- Improve this intersection to provide dual left-turn lanes in the westbound and eastbound directions, and one left-turn lane, two through lanes, one through/right lane and one right-turn lane in the southbound direction.
- o <u>Vineyard Avenue and Esplanade Drive</u> -- Reconstruct the west and east legs of the Vineyard Avenue and Esplanade Drive intersection to provide two left-turn lanes, one left-through shared lane and one right-turn only lane in the eastbound direction and one left-turn lane, one left-through shared lane, one right-though shared lane and one right-turn only lane in the westbound direction. Widen Vineyard Avenue along the west and east curb and relocate the median island to provide dual left-turn lanes, four through lanes and one right-turn-only in the southbound direction and dual left-turn lanes, three through lanes and one right-through shared lane in the northbound direction. This will require additional right-of-way to be obtained from the Esplanade Mall.
- Vineyard Avenue and Ventura Road Restripe Ventura Road to provide one left-turn lane, three through lanes and one right-turn lane in the northbound direction and one left-turn lane, two through lanes and one through/right turn lane in the southbound direction. In addition, modify signal phasing to provide a green phase for the northbound right-turn movement during the westbound left-turn phase.
- Vineyard Avenue and Oxnard Boulevard -- Modify the median islands and
 restripe Oxnard Boulevard to provide dual left-turn lanes, three through lanes,

and two right-turn lanes in the northbound direction and two left-turn lanes, four through lanes and one right-turn lane in the southbound direction. In addition, flare and modify the median islands and restripe Vineyard Avenue to provide three left-turn lanes, three through lanes and one right-turn lane in the westbound direction and restripe the eastbound approach to provide one left-turn lane, three through lanes and one right-turn lane.

- O Gonzales Road and Ventura Road -- Restripe and widen this intersection to provide the following: dual left turn lanes, three through lanes and one right-turn-only lane in the eastbound direction, dual left-turn lanes, three through lanes, one through/right shared lane and one right-turn-only lane in the northbound direction, and dual left-turn lanes, four through lanes and one right-turn-only lane in the westbound and southbound directions.
- o Gonzales Road and Oxnard Boulevard -- The City of Oxnard General Plan calls for this intersection to either be grade separated with an urban interchange or to have other specialized treatment. The other treatments could be to require left-turn movements to be accommodated as U-turns beyond the intersection and "free right-turns" upon returning to the intersection. Other methods of removing left-turns from the critical movements at the intersection are also being considered. With this project, this intersection will continue to need one of those options to be implemented. For analysis purposes, it has been assumed that an urban interchange, including a grade separated crossing of Gonzales Road and the railroad tracks paralleling Oxnard Boulevard, would be constructed. However, other alternative improvements may be constructed which will still allow the City to achieve the General Plan performance standards.

City of Ventura Intersections (Stand-Alone Measures):

o <u>Johnson Drive and North Bank Drive</u> -- Flare and restripe Johnson Drive to provide one left-turn lane, two through lanes and one through/right shared lane in the southbound direction.

Residential Segments

Residential streets in the El Rio neighborhood will not be directly connected to any commercial use. Anyone who chose to use a residential street to access the project will most likely be a resident of that street. Further, speed humps have already been implemented along Stroube Street. Therefore, mitigation of impacts on residential street segments is neither considered warranted or feasible.

Project Roadway Improvements

It should be noted that the project would construct an extensive roadway network within the Specific Plan boundaries. These include:

- Oxnard Boulevard -- This roadway will be extended north of US-101. This roadway will be constructed as a six lane arterial between US-101 and Town Center Drive, a four lane arterial between Town Center Drive and Santa Clara River Boulevard, a four lane collector street between Santa Clara River Boulevard and the traffic circle located north of North Park Drive and a two lane collector street north of the traffic circle.
- Town Center Drive -- This roadway will be improved as a four lane arterial between Ventura Road and Oxnard Boulevard.
- Ventura Road -- This roadway will be extended northerly into the Specific
 Plan area where it bends easterly and becomes Santa Clara River Boulevard.

Ventura Road will be improved as a four lane arterial throughout the Specific Plan from US-101 to Santa Clara River Boulevard.

- Santa Clara River Boulevard -- This roadway will be constructed as a four lane arterial throughout the Specific Plan from Ventura Road to Vineyard Boulevard where it aligns with Simon Way. It is recommended that a traffic circle be constructed at the intersections of Ventura Road, Oxnard Boulevard and RiverPark Avenue east along Santa Clara River Boulevard. The traffic circle should have a minimum outside diameter of 180 feet in order to provide acceptable operations.
- South Park Drive/Myrtle Street -- This roadway will serve primarily as a four lane collector street in the Specific Plan area. It will generally extend in the northwest direction from Vineyard Avenue just north of the 101 Freeway to Ventura Road. The name will change to South Park Drive at Santa Clara River Boulevard where it will bend and extend westerly to Oxnard Boulevard. In addition, a short segment of South Park Drive will be constructed as a two lane collector street west of Oxnard Boulevard.
- o North Park Drive -- This roadway will be constructed as a two lane collector street between Oxnard Boulevard and Vineyard Avenue. A short segment of this roadway will also be a two lane collector street west of Oxnard Boulevard.

Mitigation measures previously identified would reduce the eight significant traffic impacts, resulting in an area transportation system that operates at acceptable levels of service and regional impacts which are reduced to less than a level of significance.

Transit Improvements

The site for the RiverPark development is mainly empty. With the exception along Vineyard Avenue north of the US 101 Freeway to Simon Way, no transit service is provided to the project area. All trips would need to be made by walking to stops at the Esplanade Shopping Center or along Vineyard Avenue. The routes serving these stops then cover the Cities of Oxnard and Ventura as well as the County of Ventura, making the entire region accessible by transit.

Future transit routes are not yet planned for the project area. It is not appropriate to speculate on which areas may have direct transit service by the time that the project is completed. However, it is appropriate to design the roadways throughout the Specific Plan area in such a way as to accommodate transit vehicles. In addition, sufficient room should be provided to make the commercial center a transit hub.

The following mitigation measures should be incorporated into the EIR and Specific Plan:

- Oxnard Boulevard should have concrete bus pads and sheltered stops along the curbs, immediately beyond (north of) the Town Center Drive intersection.
- O Additional transit stops should be provided along Oxnard Boulevard between Santa Clara River Boulevard and the US 101 Freeway and along Santa Clara River Boulevard between Oxnard Boulevard and Vineyard Avenue where the South Coast Area Transit (SCAT) is willing to commit to providing transit service and the City of Oxnard deems a stop feasible.
- Up to 5 bays in each direction should be provided to the southeast of the
 intersection of Oxnard Boulevard and Santa Clara River Boulevard. This hub

may be on parking or other roadways, but should provide layover and turnout space for full size (40 foot length) buses.

As discussed above, SCAT is unable to forecast its service for the next 20 years. However, the project will be constructed so that it will be able to utilize SCAT service, should it be provided.

The RiverPark project will also have a significant impact on the US-101 Freeway south of Central Avenue in the northbound direction during the morning peak hour and in the southbound direction during the afternoon peak hour. It should be noted that the substantial improvements already planned for the US-101 will in large part be responsible for the acceptable levels of service. In addition, any improvements on the US-101 Freeway south of Central Avenue (e.g. widening of this location) are addressed in the Ventura County CMP.

Per the City of Oxnard's request, an analysis of future traffic conditions with the RiverPark project was also conducted assuming the construction of a bridge located to the west of the project site. In addition, future traffic conditions assuming full buildout of the City of Oxnard's current General Plan was conducted. The analyses are discussed in detail and are found in the appendix of the report.

TABLE OF CONTENTS

	<u>Page</u>
Introduction	1
Project Description	5
Project Location	5
Project Background	5
Proposed Land Uses	8
Environmental Setting	13
Streets and Highways	13
Existing Traffic Volumes	16
Public Transit	16
Analysis of Existing Traffic Conditions	20
Analysis of Existing Freeway Conditions	23
Project Traffic	26
Project Trip Generation	26
Project Parking	29
Trip Distribution and Traffic Assignment	29
Future Traffic Conditions	32
Planned Programmed Highway Improvements	33
Discussion of Significance Impact Definition	34
Future Conditions Without and With Project	35
Analysis of Future Freeway Traffic Conditions	43
Mitigation Measures	46
Appendix A - Analysis of Future Traffic Conditions With Potential Future Bridge Appendix B - Analysis of Future Traffic Conditions with City of Oxnard General Appendix C - ICU Calculation Worksheets	

LIST OF FIGURES

Figure No.		<u>Page</u>
4.8-1	Project Site Vicinity Map	4
4.8-2	Project Site Plan	6
4.8-3	Conceptual Land Use Plan	10
4.8-4(a)	Existing (2000) Traffic Volumes, AM Peak Hour	17
4.8-4(b)	Existing (2000) Traffic Volumes, PM Peak Hour	18
4.8-5(a)	Future (2020) Without Project Traffic Volumes, AM Peak Hour	37
4.8-5(b)	Future (2020) Without Project Traffic Volumes, PM Peak Hour	38
4.8-6(a)	Future (2020) With Project Traffic Volumes, AM Peak Hour	39
4.8-6(b)	Future (2020) With Project Traffic Volumes, PM Peak Hour	40
4.8-7	Specific Plan Roadway Network	53

LIST OF TABLES

<u>Table No</u> .		Page
4.8-1	Summary of Proposed Land Uses	11
4.8-2	Intersection Level of Service Definition Summary	21
4.8-3	Existing (2000) Traffic Conditions	22
4.8-4	Freeway Mainline Level of Service Definitions	24
4.8-5	Existing (2000) Freeway Volumes and Level of Service	25
4.8-6	Vehicle Trip Generation Rates	26
4.8-7	Project Trip Generation	27
4.8-8	Traffic Generation Comparisons for Optional Land-Use Scenarios.	28
4.8-9	Directional Distribution of Project Traffic	30
4.8-10(a)	Future (2020) Traffic Conditions, Project Area Intersections	41
4.8-10(b)	Future (2020) Traffic Conditions, City of Ventura Intersections	43
4.8-11	Future (2020) Freeway Volumes and Level of Service	45
4.8-12(a)	Future (2020) Traffic Conditions, With Project Plus Mitigations - Project Area Intersections	54
4.8-12(b)	Future (2020) Traffic Conditions, With Project Plus Mitigations - City of Ventura Intersections	54

INTRODUCTION

The proposed project consists of a proposed Specific Plan to regulate the use of land within an approximate 700-acre area located immediately north of the Ventura Freeway (US-101) between Vineyard Avenue (SR 232) and the Santa Clara River. Figure 4.8-1 shows the project vicinity. Various land uses are proposed within the Specific Plan Area including single and multi-family residential, retail and office commercial, hotels, public facilities and open space uses. There is also the potential to substitute a baseball stadium complex for a portion of the other land uses. The project also will develop the infrastructure within the area, including an extensive roadway network. A more detailed description of the site and proposed project are provided in the Project Description section of this report.

Impact Sciences, Incorporated retained Crain & Associates to conduct a transportation study to be included in the RiverPark Specific Plan Environmental Impact Report (EIR). Under the City's technical direction, traffic impacts were assessed for the Project on the study area transportation system. The report documents the results of that study, which analyzed existing and future traffic conditions in accordance with procedures specified by the Ventura County Transportation Commission (VCTC) and Southern California Association of Governments (SCAG) in the Ventura County Congestion Management Plan (CMP). Staff from the City, and the County participated in a series of meetings to ensure that this report (and underlying analyses) met all applicable CEQA and CMP requirements. The analysis incorporated a detailed evaluation of traffic conditions at 25 project area intersections and eight more remote intersections. Five regional facility study segments were also evaluated. These study locations include those roadway facilities most likely to be impacted by the traffic generated by the RiverPark project. Mitigation measures were identified which would reduce the

significant traffic impacts, resulting in an area transportation system that operates at acceptable levels of service and regional impacts which are reduced to less than a level of significance.

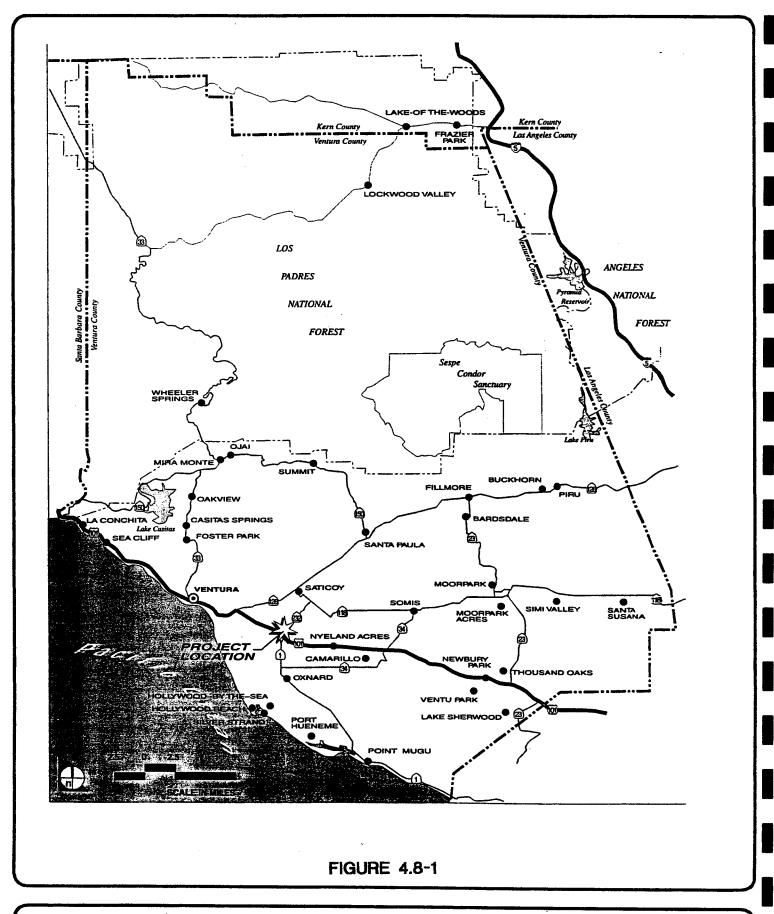
The 33 study intersections that were identified to be those most affected as a result of the proposed development are listed below. In this listing, the 14 CMP intersections are identified by "(CMP)" following the intersection descriptor.

Project Area Intersections

- 1. Los Angeles Avenue and Vineyard Avenue, (CMP)
- 2. Central Avenue and Vineyard Avenue, (CMP)
- 3. North Park Drive and Oxnard Boulevard
- 4. North Park Drive and Vineyard Avenue
- 5. Oxnard Boulevard and South Park Drive
- 6. Oxnard Boulevard and Santa Clara River Boulevard, (CMP)
- 7. South Park Drive and Santa Clara River Boulevard
- 8. Vineyard Avenue and Santa Clara River Boulevard, (CMP)
- 9. Vineyard Avenue and Stroube Street
- 10. Ventura Road and Town Center Drive
- 11. Oxnard Boulevard and Town Center Drive
- 12. Vineyard Avenue and Ventura Boulevard
- 13. Oxnard Boulevard and US-101 Northbound Ramps, (CMP)
- 14. Oxnard Boulevard and US-101 Southbound Ramps, (CMP)
- 15. Vineyard Avenue and US-101 Northbound Ramps, (CMP)
- 16. Vineyard Avenue and US-101 Southbound Ramps, (CMP)
- 17. Ventura Road and Wagon Wheel Road
- 18. Wagon Wheel Road and US-101 Southbound Off-ramp
- 19. Wagon Wheel Road and US-101 Southbound On-ramp
- 20. Oxnard Boulevard and Esplanade Drive
- 21. Vineyard Avenue and Esplanade Drive
- 22. Vineyard Avenue and Ventura Road, (CMP)

- 23. Vineyard Avenue and Oxnard Boulevard, (CMP)
- 24. Gonzales Road and Ventura Road, (CMP)
- 25. Gonzales Road and Oxnard Boulevard, (CMP)

City of Ventura Intersections


- 26. Victoria Avenue and Telephone Road, (CMP)
- 27. Victoria Avenue and Ralston Street
- 28. Victoria Avenue and U.S.-101 Northbound Ramps, (CMP)
- 29. U.S.-101 Southbound Ramps and Valentine Road
- 30. Victoria Avenue and Valentine Road
- 31. Ralston Street and Johnson Drive
- 32. Johnson Drive and Bristol Road
- 33. Johnson Drive and North Bank Drive

In addition, the five regional facilities that will be analyzed are listed below:

- 1. US-101 at the Santa Clara River Bridge
- 2. US-101 between Route 1 and Vineyard Avenue
- 3. US-101 between Vineyard Avenue and Rose Avenue
- 4. Oxnard Boulevard (Route 1) between Vineyard Avenue and US-101
- US-101 South of Central Avenue

The study analyses was performed by evaluating the capacities of the 33 study intersections as compared to: (1) existing traffic; (2) estimated future "Without Project" traffic due to ambient growth and related projects only; (3) estimated future "With Project" traffic due to ambient growth, related projects and RiverPark; (4) estimated future "With Project" traffic with the implementation of project mitigation measures.

The study provides information on existing traffic volumes; an analysis of traffic impacts using the Intersection Capacity Utilization method, a determination of levels of service at the study intersections, and mitigation measures recommended for the proposed development.

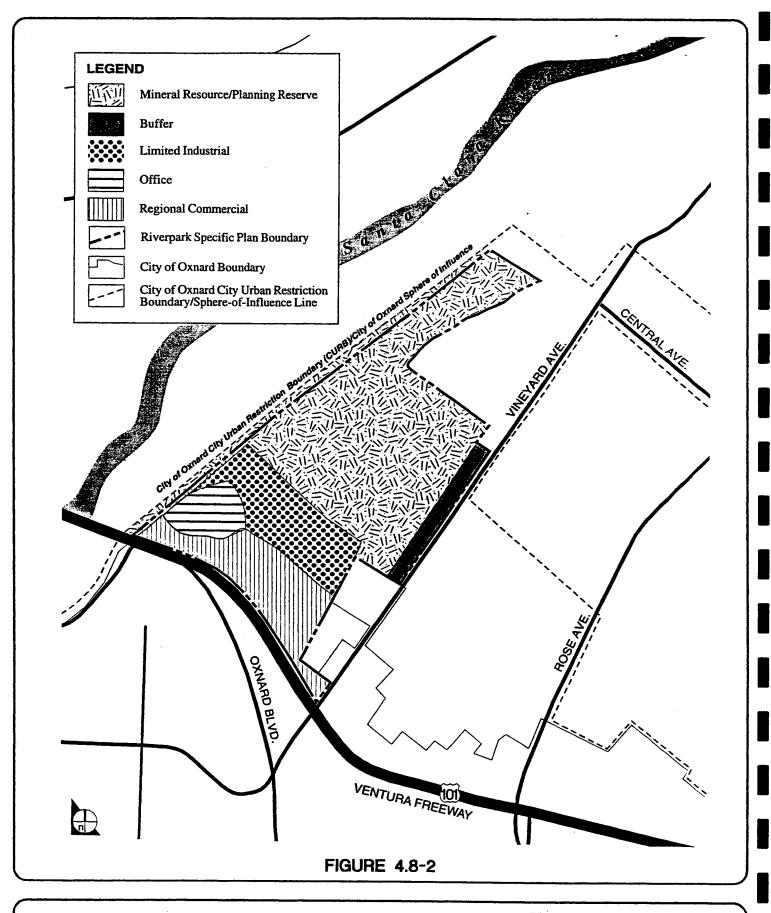
PROJECT VICINITY MAP

CRAIN & ASSOCIATES

2007 Sawtelle Boulevard Los Angeles, California 90025 (310) 473-6508

Transportation Planning - Traffic Engineering

PROJECT DESCRIPTION


Project Location

The City of Oxnard is located in southwestern Ventura County extending from the project site to the Pacific Ocean coastline. The location of the 700-acre site for the proposed RiverPark Specific Plan ("Specific Plan") in relation to the Central area of the City of Oxnard is illustrated in Figure 4.8-1 of the previous section of this report. The Specific Plan site is generally located north of the Ventura Freeway (US-101), between Vineyard Avenue and the Santa Clara River.

Project Background

As shown in Figure 4.8-2, the entire RiverPark site is located within the existing City of Oxnard City Urban Restriction Boundary (CURB) and the Sphere of Influence line for the City of Oxnard. An ordinance establishing the CURB was approved by the voters of Oxnard in November 1998. The CURB requires that the City restrict urban services and urbanized uses of lands within the CURB line through the year 2020. The CURB is conterminous with the Sphere of Influence for the City in this area.

Currently, approximately 272 acres of the project site are located within the City of Oxnard. This portion of the project site is referred to as "RiverPark Area A." The remaining 428 acres of the site are currently located outside of the City of Oxnard. This portion of the site is referred to as "RiverPark Area B." The City of Oxnard adopted a specific plan for the majority of the RiverPark Area A in 1986 and annexed the area addressed by that specific plan (the small portion of RiverPark Area A not annexed by the City at that time was already within City limits). That existing specific plan is titled the "Oxnard Town Center Specific Plan." The adopted plan allows development of up to 4.4 million square feet of commercial and industrial space in the area addressed by that plan. RiverPark Area A includes the area addressed by the Oxnard Town Center

EXISTING GENERAL PLAN LAND USE

CRAIN & ASSOCIATES

2007 Sawtelle Boulevard Los Angeles, California 90025 (310) 473-6508

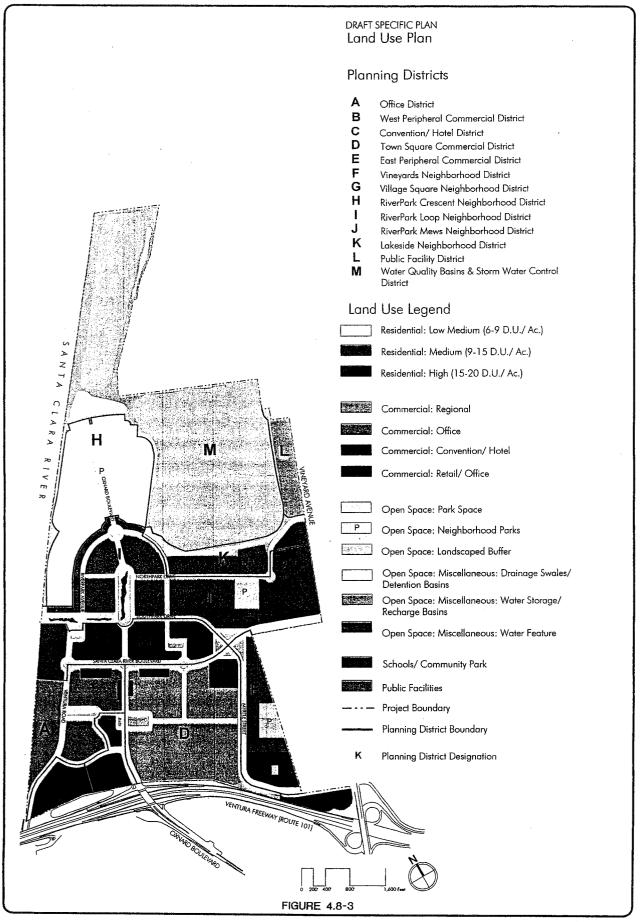
Transportation Planning · Traffic Engineering

Specific Plan and a small amount of additional land located directly north of US-101 and west of Vineyard Avenue. RiverPark Area A is also located within the Oxnard Community Development Commission's Historic Enhancement and Revitalization of Oxnard (HERO) Redevelopment Plan Area. RiverPark Area B includes an existing sand and gravel mine permitted by the County of Ventura in 1979 and detention basins operated by the Ventura County Flood Control District. All mining activities allowed by the current permit have been completed and the site is currently being reclaimed in accordance with the approved reclamation plan for this site.

RiverPark Area A is currently designated for development of Regional Commercial, Commercial Office, and Business and Research Park Uses consistent with the adopted Oxnard Town Center Specific Plan. RiverPark Area B is currently designated as Open Space-Mineral Resource and Open Space-Buffer on the Oxnard 2020 General Plan land use map, consistent with the existing mining use on this part of the site. RiverPark Area B is also designated as a Planning Reserve area as defined by the Oxnard 2020 General Plan. This Planning Reserve overlay was placed on certain open space areas contiguous to developed portions of the City to indicate that these areas may be considered for urbanization during the term of the 2020 General Plan.

Currently, the southwestern corner of RiverPark Area A has been previously developed. The existing streets, two office buildings and other infrastructure facilities built in the southwestern corner of RiverPark Area A were constructed in conformance with the adopted Oxnard Town Center Specific Plan. Immediately east of this developed area is a 14-acre area containing a complex of buildings housing various County of Ventura offices and facilities. The areas to the north and east of these developed portions of RiverPark Area A are currently in agricultural production. As discussed above, this part of the site was approved for urban use by the City of Oxnard in 1986.

The Santa Clara River, located on the western edge of the project site, is separated from the site by a levee built by the U.S. Army Corps of Engineers (ACOE). The California Department of Transportation (Caltrans) and the City of Oxnard are also currently planning improvements to US-101 in the vicinity of the project site. These improvements consist of a new bridge across the Santa Clara River, widening of the freeway immediately east and west of the new bridge and the construction of a new interchange between the freeway and Oxnard Boulevard, which would serve existing uses to the south of the interchange as well as this project site. Caltrans is the Lead Agency, as defined by the California Environmental Quality Act, for the environmental review of this freeway improvement project. The Federal Highway Administration is the Lead Agency for the environmental review of this freeway improvement project under the National Environmental Policy Act (NEPA). A Draft Supplemental EIR/EIS for this freeway improvement project is currently being prepared by Caltrans. The proposed Specific Plan will address the phasing of the project in relation to the schedule for this freeway improvement project.


Currently, there are existing residential uses in the El Rio West neighborhood, located between the project site and Vineyard Avenue. This neighborhood also contains commercial uses fronting Vineyard Avenue and some vacant parcels. Currently, portions of this neighborhood are within the City of Oxnard and portions are outside of the City limits. Existing industrial uses are located to the north of the project site. In addition, the site recently selected by the County of Ventura for development of a juvenile justice facility is located north of the project site.

Proposed Land Uses

The proposed Specific Plan would allow the development of a new integrated mixeduse community containing retail commercial, residential, office, hotel, open space and public facilities uses within the 700-acre Specific Plan Area. These uses would be linked by the proposed system of roadways and a network of open spaces. The conceptual land use plan for the project is presented in Figure 4.8-3.

As shown in the conceptual land use plan, a variety of commercial uses are proposed for the southern portion of the Specific Plan Area. Office, several types of retail commercial uses, and hotel uses would be allowed in this portion of the Specific Plan Area along with a trade facility for food and wine products. Development of either commercial or residential uses would be allowed in three specific areas on the site. One of these areas, consisting of approximately 10 acres located in the southeastern corner of the site, could be developed with commercial uses or mixed-use commercial/residential uses. The second area, located on the western edge of the site, consists of approximately 20 acres that could be developed with office or multi-family residential uses. Mixed neighborhood oriented commercial uses and residential uses would also be allowed on a small site in the residential area. Development of some second-story residential units would also be allowed in the central retail commercial area. Finally, an option to develop an up to 5,000 seat baseball stadium in the commercial area is also being included. This stadium would be constructed in-lieu of a portion of the regional commercial uses.

Proposed residential uses include a mixture of single-family homes, patio homes (attached single family homes), town-homes and multi-family units (apartments). The single-family neighborhoods would be located on the northern portion of the property. The proposed patio homes, town-homes and apartments would be located in the central portion of the site between the commercial and proposed single family residential areas. Medium density residential uses would also be located between the proposed commercial areas and existing single family development to the east of the site. A park would also be provided on the eastern and school site edge of the Specific Plan along this existing residential neighborhood.

·FN OXNRDRPK\SITE-LANDUSE

A variety of public open spaces and drainage basins, consisting of approximately 257 acres of small landscape greens, landscape buffers parks and drainage basins, would be located throughout the residential and commercial areas of the community. A 31-acre combination school and park site would be provided. The existing mine pits would be reclaimed and remain as open space. The currently adopted reclamation plan for the existing sand and gravel mine calls for these pits to be partially filled. The proposed concept for reclamation of these pits would involve reconfiguring the edges of the pits, stabilizing the slopes on the sides of the pits and planting the pits with wetland vegetation.

Proposed public facilities include a 12-acre site for an elementary school and approximately 37 acres site provided for the relocation of the County service center currently located along the southern edge of the site. The school site is proposed north and east of the residential areas. The site for the County service center would be located on Vineyard Avenue, immediately south of the existing drainage basin.

A summary of the proposed land uses is presented in Table 4.8-1. Note that for the purpose of this analysis, since there is some flexibility in the final mix of land uses for the project, the land uses that have the highest trip rates were used to produce a conservative trip generation estimate.

Table 4.8-1 RiverPark Specific Plan Summary of Proposed Land Uses

1,416	units	Single-Family Residential
1,324	units	Multi-Family Residential
1,345	ksf	Regional Commercial
600	rooms	Hotel
1,030	ksf	Office
257	acre	Parks
40	ksf	Neighborhood Retail
81	ksf	Light Industrial/Public Facilities
1.600	students	Elementary/Middle School

The proposed roadway network, consisting of primary arterial, secondary arterial, and collector streets, is shown in Figure 4.8-3. Ventura Road would extend northerly to a traffic circle where it bends easterly through the community and becomes Santa Clara River Boulevard. Myrtle Street would be extended north to connect to Santa Clara River Boulevard, providing additional access from Vineyard Avenue. Oxnard Boulevard would also be extended north through the center of the community from the planned new interchange with US-101. North Park Drive, a new roadway extending along the south edge of the school site, would also provide access from Vineyard Avenue to the residential portion of the community. Other roadways proposed within the Specific Plan Area would provide direct access to the commercial and residential uses.

ENVIRONMENTAL SETTING

The project site is adjacent to Vineyard Avenue (CA-232) and the Ventura Freeway (US-101). The Ventura Freeway furnishes regional access. The Ventura Freeway, a six to eight lane facility in the vicinity of the development, has interchanges with Town Center Drive/Wagon Wheel Road, Oxnard Boulevard, Vineyard Avenue, and North Rose Avenue. A general description of the existing highway system along the Ventura Freeway, Oxnard Boulevard (Route 1) and other roadways are described below.

Streets and Highways

The Ventura Freeway extends from the Los Angeles area through Ventura County and north to Santa Barbara County where US-101 continues to the north as the 101 Freeway. The Ventura Freeway currently provides two to three lanes in the northbound direction and three to four lanes in the southbound direction from the Santa Clara River Bridge to Vineyard Avenue. At the Route 1 interchange, the Ventura Freeway provides a two-lane ramp interchange in the southbound direction to southbound Route 1 (Oxnard Boulevard). Also provided is a one-lane flyover that connects the northbound Route 1 to the northbound Ventura Freeway.

Route 1 is a discontinuous state highway. At the interchange with the Ventura Freeway, Route 1 extends southerly as Oxnard Boulevard from the Ventura Freeway to south of Wooley Road, then extends in a southeast direction to Rose Avenue where it is constructed to freeway standards. Route 1 provides two lanes in each direction south of the Ventura Freeway.

Vineyard Avenue, designated as Route 232, extends northeasterly from Oxnard Boulevard to Los Angeles Avenue (Route 118). Route 232 provides full interchange with the Ventura Freeway. Vineyard Avenue also extends west of Oxnard Boulevard as

an arterial for approximately two miles where it bends in a southerly direction and becomes Patterson Road.

Ventura Road is designated a four-lane city street in the vicinity of the project site. This roadway extends in a north-south direction from the project site east of the US-101 to Port Hueneme Road.

Wagon Wheel Road is a two-lane "loop" roadway adjacent The Esplanade. It also extends northerly to the west of and parallel to Oxnard Boulevard and Ventura Freeway where it terminates at Ventura Road. The US-101 southbound off-ramp is also connected to Wagon Wheel Road.

Town Center Drive is a short roadway located east of the US-101 Freeway. It currently provides US-101 northbound on and off-ramp access. However, these ramps will be removed as part of the reconstruction of the Route 1 (Oxnard Boulevard)/US-101 interchange.

Esplanade Drive is a short two-lane roadway that extends from Wagon Wheel Road to Vineyard Avenue. It also extends east of Vineyard Avenue for approximately 1,000 feet.

Central Avenue is designated a two-lane rural highway. This roadway extends from Vineyard Avenue to SR-101.

Los Angeles Avenue is designated a rural two-lane highway between Saticoy and Moorpark. This roadway is located northeast of the project site and generally extends easterly.

Ventura Boulevard is a short frontage road that extends east of US-101. It extends southeasterly from Vineyard Avenue for approximately one mile.

Gonzales Road is designated a rural two-lane highway between Victoria Avenue and Patterson Road. From Patterson Road to Rice Avenue, this facility is a four-lane city street.

Stroube Street is a two-lane roadway located to the east of the project site. It extends southeasterly from Detroit Drive, adjacent to the RiverPark area, to Rose Avenue.

South Park Drive extends parallel and to the east of US-101. This roadway extends southeasterly from Town Center Drive for approximately 0.8 miles and bends northerly where it becomes Colonia Avenue.

North Park Drive is a two-lane roadway located to the east of the project site. It extends from Vineyard Avenue to Rose Avenue.

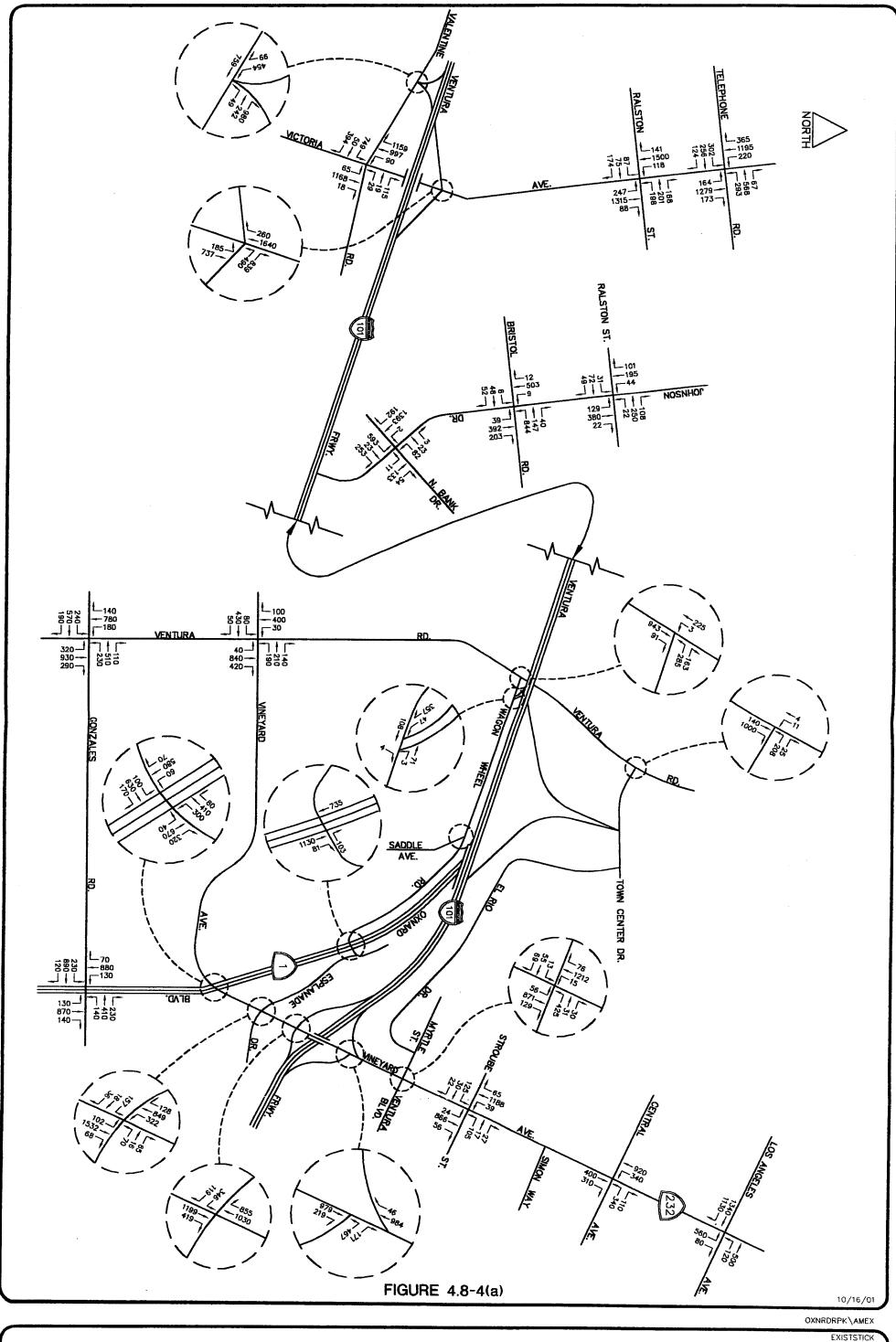
Johnson Drive is an arterial that extends in a north-south direction in Ventura. Johnson Drive provides access to the Ventura Freeway southbound on and off ramps located immediately to the north of the Santa Clara River Bridge. This roadway extends north from the Ventura Freeway ramps for approximately two miles where it terminates south of SR-126. The Johnson Drive interchange is being reconstructed and the freeway ramps aligned as a full interchange as part of a separate interchange reconstruction project.

North Bank Drive is a short roadway located north of the Santa Clara River Bridge and east of the Ventura Freeway. This roadway provides access from Johnson Drive to the Ventura Freeway northbound ramps.

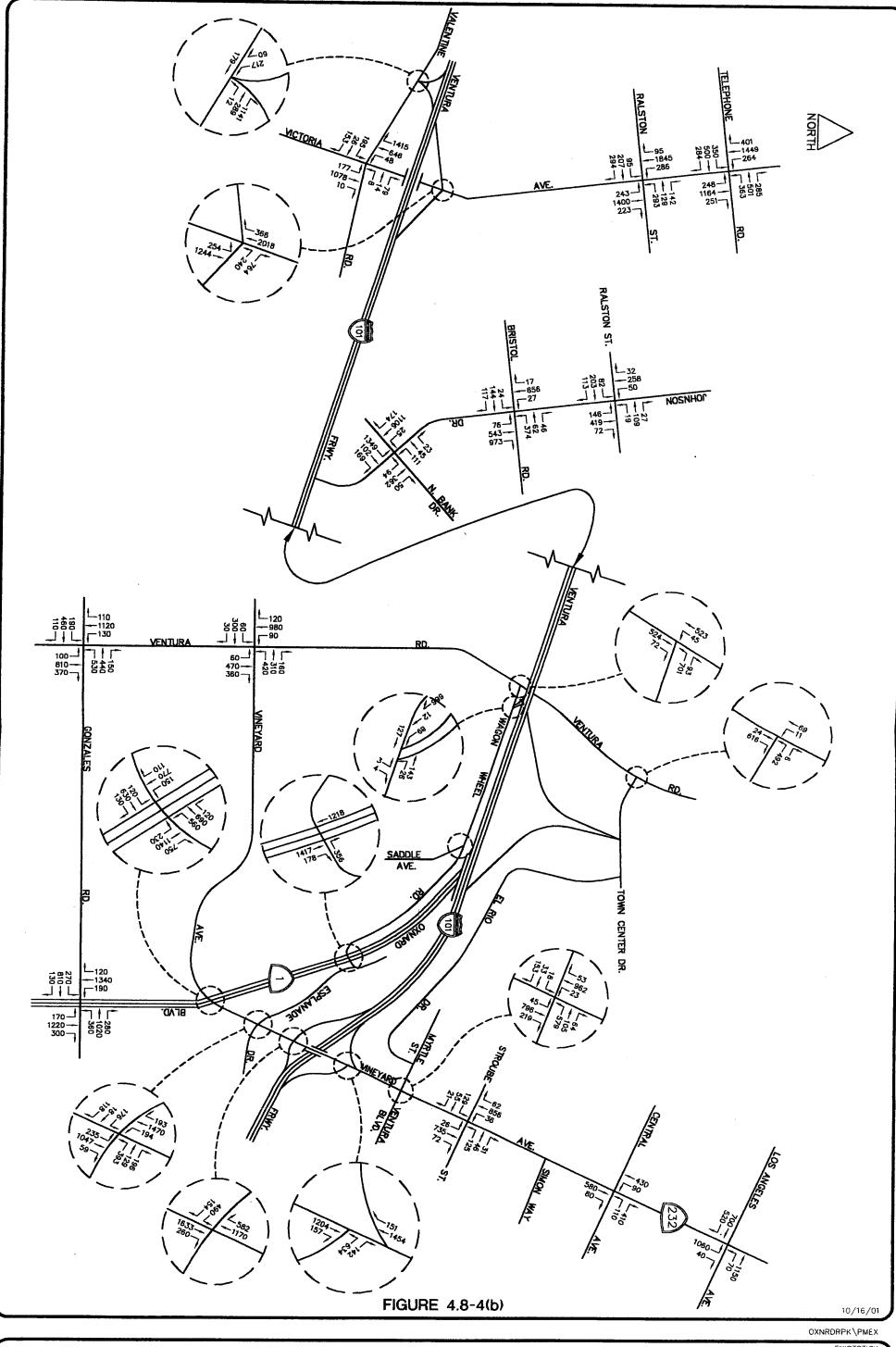
Victoria Avenue generally extends in a north-south direction. Victoria Avenue is a four-lane roadway between Valentine Road and Olivas Park Drive, provides five lanes between US-101 and Valentine Road and is a six-lane roadway between Webster Street and US-101.

Telephone Road is a six-lane roadway near Victoria Avenue. This roadway generally extends southwest from Wells Road past Olivas Park Drive where it becomes a local street.

Ralston Street is a two-lane roadway that extends in an east-west direction and to the north of the US-101 Freeway. This roadway extends from Portola Road to approximately 500 feet to the east of Ramelli Avenue.


Valentine Road is a local roadway that extends parallel to the US-101 Freeway on its south side. This roadway provides southbound on and off-ramp access to the US-101 Freeway near Victoria Avenue.

Existing Traffic Volumes


For the study intersections, traffic count information was provided by City of Oxnard staff. Traffic count information was collected by Crain & Associates in year 2000 for those locations where recent counts were not available. The morning and afternoon peak-hour traffic volumes at the 33 study intersections are shown in Figure 4.8-4.

Public Transit

The Southern Coast Area Transit (SCAT), with its extensive network of bus routes throughout Ventura County, is the primary service provider in the City of Oxnard and has several routes that serve the project area. In addition, Metrolink, the commuter rail service operated by the Southern California Regional Rail Authority (SCRRA), has a line which serves the Oxnard Metrolink Station. This station is located south of the project site on East Fourth Street and Meta Street. SCAT Lines 6 A/B and 15 provide service from the Oxnard Metrolink Station to the project site, as well as providing service from other portions of Oxnard and El Rio, as described below. In addition, Metrolink, the commuter train that connects Ventura with Los Angeles and other areas in Southern California, has a lay-over facility in Montalvo to serve the west county. At

EXISTSTICK

present, there are two Metrolink runs daily with additional runs funded and anticipated to begin in the future. Moreover, Union Pacific runs 12 trains a day through Ventura, providing freight service out of Los Angeles.

<u>SCAT 6A/B</u> – Line 6A/B provide services between the Oxnard Transportation Center and City of Ventura, via Ventura College. Service in the project vicinity is along Esplanade Drive with a stop at the Esplanade Center. Weekday service for both Line 6A and 6B operate at approximately 40 minute headways between 5:00 AM and 9:30 PM. Weekend and holiday service is also provided via buses that operate at one hour headways.

SCAT 15 – Line 15 provides service between the Oxnard Transportation Center and El Rio. Service for Line 15 includes Vineyard Avenue and North Park Drive, located within walking distance from the project site. Weekday service is provided from approximately 6:00 AM to 7:00 PM, with headways ranging from approximately 40 minutes during peak commute times to one hour during off-peak times. Weekend and holiday service is also provided from approximately 7:00 AM to 7:00 PM, with headways ranging from 50 minutes to one hour.

Discussion with SCAT staff indicate that one or more lines may be re-routed to directly serve the project. The potential has been enhanced by the recommended mitigation measures.

The above bus lines provide opportunities to connect with the Metrolink commuter rail system. These services also provide key linkages to Downtown Los Angeles' Union Station, the regional bus and rail transit hub. Furthermore, the rail stations directly served are within walking distance of the bus routes described above and tend to be mini-transit hubs that provide transfers to other local bus routes. When transfer opportunities are considered, many areas within the Southern California region are linked via public transit to the project vicinity. Thus, some of the vehicle trips generated

by the project, especially by employees, could be reduced by the utilization of public transportation. However, for purposes of determining project impacts (as discussed in a later section), a "more-than-typical case" assumption was made that nearly all trips would be auto-oriented.

Analysis of Existing Traffic Conditions

The Intersection Capacity Utilization (ICU) methodology used for the analysis and evaluation of traffic conditions at the two future study intersections is based on procedures outlined in the County's Congestion Management Program. In the discussion of the ICU method for signalized intersections, procedures have been developed for grading the operational quality of an intersection in terms of the "Level of Service" (LOS) which describes different traffic flow characteristics. LOS A to C operate quite well. (The City of Oxnard has adopted LOS C as their standard). LOS D typically is the level for which a metropolitan area street system is designed. LOS E represents volumes at or near the capacity of the street which might result in stoppage of momentary duration and fairly unstable flow. LOS F occurs when a facility is overloaded and is characterized by stop-and-go traffic with stoppages of long duration.

A determination of the LOS at an intersection, where traffic volumes are known or have been projected, can be obtained through a summation of the critical movement volumes: the highest combination of conflicting movements which must be accommodated at that intersection.

"Capacity" represents the maximum volume of vehicles in the critical lanes which has a reasonable expectation of passing through an intersection in one hour, under prevailing roadway and traffic conditions. For planning purposes, capacity equates to the maximum value of LOS E or 1,600 vehicles per hour per lane. The ICU values used in this study were calculated by dividing the critical movement volumes in the ICU

calculations by this capacity value. The Level of Service values are defined as a range of ICU values and are shown in Table 4.8-2.

Table 4.8-2
Level of Service
As a Function of V/C Values

	As a function of the values		
Level of Service	Description of Operating Characteristics	Range of V/C Values	
Α	Uncongested operations; all vehicles clear in a single cycle.	≤ 0.60	
В	Same as above.	>0.60 ≤ 0.70	
С	Light congestion; occasional backups on critical approaches.	>0.70 <u><</u> 0.80	
D	Congestion on critical approaches, but intersection functional. Vehicles required to wait through more than one cycle during short peaks. No long-standing lines formed.	>0.80 <u><</u> 0.90	
E	Severe congestion with some long-standing lines on critical approaches. Blockage of intersection may occur if traffic signal does not provide for protected turning movements.	>0.90 <u>≤</u> 1.00	
F	Forced flow with stoppages of long duration.	> 1.00	

Table 4.8-3 shows a summary of the existing traffic conditions at the 33 study intersections. As shown in this table, all existing study intersections in the project area are operating at Level of Service C or better. Similarly all study intersections in the City of Ventura are also operating at LOS C or better.

Table 4.8-3(a)
Intersection Volume/Capacity Summary
Existing (2000) Conditions, Project Area Intersections

		AM Pea	k Hour		k Hour
<u>No.</u> 1	Intersection	<u>V/C</u>	LOS	V/C	LOS
	Los Angeles Avenue and Vineyard Avenue	0.781	С	0.691	В
2	Central Avenue and Vineyard Avenue	0.647	В	0.491	Α
3	North Park Drive and Oxnard Boulevard				
4	Simon Way/North Park Drive and Vineyard Avenue				
5	Oxnard Boulevard and South Park Drive		~=		
6	Oxnard Boulevard and Santa Clara River Boulevard				
7	South Park Drive/Myrtle Street and Santa Clara River Boulevard				
8	Vineyard Avenue and Santa Clara River Boulevard	~~			
9	Vineyard Avenue and Stroube Street	0.512	Α	0.432	Α
10	Ventura Road and Town Center Drive	0.122	Α	0.191	Α
11	Oxnard Boulevard and Town Center Drive				
12	Vineyard Avenue and Ventura Boulevard	0.599	Α	0.624	В
13	Oxnard Boulevard and US-101 Northbound Ramps				
14	Oxnard Boulevard and US-101 Southbound Ramps				
15	Vineyard Avenue and US-101 Northbound Ramps	0.468	Α	0.672	В
16	Vineyard Avenue and US-101 Southbound Ramps	0.607	В	0.596	Α
17	Ventura Road and Wagon Wheel Road	0.692	В	0.597	Α
18	Wagon Wheel Road and US-101 Southbound Off-ramp	0.100	Α	0.151	Α
19	Wagon Wheel Road and US-101 Southbound On-ramp				
20	Oxnard Boulevard and Esplanade Drive	0.379	Α	0.499	Α
21	Vineyard Avenue and Esplanade Drive	0.526	Α	0.611	В
22	Vineyard Avenue and Ventura Road	0.496	Α	0.591	Α
23	Vineyard Avenue and Oxnard Boulevard	0.393	Α	0.754	C
24	Gonzales Road and Ventura Road	0.736	C	0.687	В
25	Gonzales Road and Oxnard Boulevard	0.554	A	0.715	С

⁻⁻ Intersection does not currently exist.

Table 4.8-3(b)
Intersection Volume/Capacity Summary
Existing (2000) Conditions, City of Ventura Intersections

			<u>k Hour</u>	PM Pea	ak Hour
No.	Intersection	ICU	LOS	ICU	LOS
26	Victoria Avenue and Telephone Road	0.524	Α	0.593	Α
27	Victoria Avenue and Ralston Street	0.591	Α	0.767	С
28	Victoria Avenue and U.S101 Northbound Ramps	0.507	Α	0.541	Α
29	U.S101 Southbound Ramps and Valentine Road	0.410	Α	0.158	Α
30	Victoria Avenue and Valentine Road	0.587	Α	0.345	Α
31	Ralston Street and Johnson Drive	0.441	Α	0.432	Α
32	Johnson Drive and Bristol Road	0.699	В	0.760	С
33	Johnson Drive and North Bank Drive	0.622	В	0.748	С

Analysis Of Existing Freeway Conditions

An examination of the freeway conditions was made along the Ventura Freeway and Route 1. These five study segments are listed below:

- 1. Ventura Freeway (US-101) at the Santa Clara River Bridge;
- 2. Ventura Freeway (US-101) between Route 1 and Vineyard Avenue;
- 3. Ventura Freeway (US-101) between Vineyard Avenue and Rose Avenue;
- 4. Route 1 (Oxnard Boulevard) between Vineyard Avenue and US-101; and
- 5. Ventura Freeway (US-101) south of Central Avenue.

Current traffic volumes were used to determine existing traffic flow conditions on these freeway segments. Traffic counts were obtained from the most recent Caltrans publication, 1998 Traffic Volumes on California State Highways. All 1998 traffic volumes were growth factored one percent per year to establish current 2000 traffic volumes, per CMP traffic forecasting procedures.

Existing freeway geometrics (e.g., number of mainline travel lanes) for each of the segments analyzed were determined from CMP data, City plans and field surveys. Segment peak hour traffic capacities were computed for each direction using established Highway Capacity Manual (HCM) methodology. As detailed in procedures discussed in the HCM Chapter 3, each mainline travel lane was assumed to have a capacity of 2,000 vehicles per hour (VPH). The total directional capacities were then computed, and used in conjunction with the previously determined peak hour directional freeway segment volumes to calculate the existing year 2000 freeway levels of service. The Level of Service values used for freeway segment analyses are estimated by calculating the demand-to-capacity (D/C) ratio and using the LOS definitions shown in Table 4.8-4.

Table 4.8-4
Freeway Mainline Level of Service Definitions*

D/C Ratio	LOS
0.000 - 0.304	Α
>0.304 - 0.487	В
>0.487 - 0.715	С
>0.715 - 0.876	D
>0.876 - 1.000	E
>1.000	F

^{*70} MPH design speed.

Source: Transportation Research Board, 1994.

The existing level of services for the freeway study segments were determined based on the definitions summarized in Table 4.8-4. As shown in Table 4.8-5, existing traffic conditions range from level of services A to E at most segments studied with the exception of the Ventura Freeway north of Ventura Road (i.e., on the Santa Clara River

Bridge) which is at LOS F in the northbound direction during the AM and PM peak hours and the Ventura Freeway south of Central Avenue which is operating at LOS F in the northbound direction during the PM peak hour.

Table 4.8-5
Existing (2000) Freeway Volumes
and Level of Service

	Existing (2000) Traffic Conditions						
Freeway Segment	<u>Direction</u>	Peak <u>Hour</u>	Freeway Capacity	Daily <u>Volume</u>	Peak Hour Volume	D/C Ratio	LOS
US-101 at the Santa Clara River Bridge	N/B	AM PM	6,000 6,000	158,100	6,990 7,110	1.165 1.185	F(0) F(0)
	S/B	AM PM	8,000 8,000		5,530 6,270	0.691 0.784	C D
US-101 between Route 1 and Vineyard Avenue	N/B	AM PM	6,000 6,000	122,400	5,410 5,510	0.902 0.918	D D
	S/B	AM PM	6,000 6,000		4,280 4,850	0.713 0.808	C D
US-101 between Vineyard Avenue and	N/B	AM PM	6,000 6,000	132,600	5,860 5,970	0.977 0.995	E E
Rose Avenue	S/B	AM PM	6,000 6,000		4,640 5,260	0.773 0.877	D D
Oxnard Blvd. (Route 1) between Vineyard Ave. and US-101	N/B	AM PM	4,000 4,000	26,500	1,010 1,060	0.253 0.265	A A
and 03-101	S/B	AM PM	4,000 4,000		910 1,200	0.228 0.300	A A
US-101 south of Central Avenue	N/B	AM PM	6,000 6,000	140,000	5,960 6,170	0.993 1.028	E F(0)
	S/B	AM PM	6,000 6,000		4,720 5,430	0.787 0.905	D D

PROJECT TRAFFIC

The following section contains information describing the vehicular trip generating characteristics of the RiverPark mixed-use development. It also presents the methodology used to estimate the trip generation, distribution and assignment of the traffic generated by the project.

Project Trip Generation

The site generation rates and equations were selected in accordance with City of Oxnard procedures, and were approved by City staff. The rates selected were those most appropriate for the land-uses that would be constructed on the project site under the proposed project. However, it should be noted that conservative categories were selected. The daily, AM and PM peak hour trip rates used for determining the project's trip generation are contained in Table 4.8-6.

Table 4.8-6
City of Oxnard
Vehicle Trip Generation Rates

		ITE	AM Pea	k Hour	PM Pea	k Hour	
Land Use Type	<u>Units</u>	LU Code	<u>In</u>	<u>Out</u>	<u>In</u>	<u>Out</u>	<u>ADT</u>
1 Single-Family Residential	DU	210	0.20	0.56	0.66	0.36	9.55
2 Multi-Family Residential	DU	210 & 220	0.20	0.46	0.53	0.33	8.01
7 Neighborhood Retail	TSF	820	1.28	.61	3.68	3.82	81.16
9 Regional Commercial	TSF	820	0.46	0.20	1.50	1.56	32.83
16 Hotel/Motel	Rooms	310 & 320	0.32	0.37	0.43	0.33	9.45
19 Office (100 TSF+)	TSF	710	1.69	0.21	0.32	1.55	14.03
23 Light Industrial/Industrial	TSF	110 & 130	0.81	0.11	0.23	0.74	6.97
26 Elementary/Middle School	Student	520	0.17	0.11	0.14	0.11	1.09
33 Park	Acre	411	0.00	0.00	0.00	0.00	2.23
Baseball Stadium*	Seat		0.00	0.00	0.04	0.01	0.83

^{*} Rate is based on studies in <u>Ventura Baseball Stadium Project Traffic Circulation and Parking Study</u>, Associated Transportation Engineers, June 1996

Project traffic, based on the City's trip rates are shown in Table 4.8-7. As this table shows, the project is expected to generate approximately 94,174 net daily trips, including 5,807 trips in the morning peak hour and 9,859 trips in the afternoon peak hour.

Table 4.8-7
RiverPark Project
Trip Generation

		AM P	eak Hour	PM Pe	ak Hour	
Land Use Type	<u>Units</u>	<u>In</u>	<u>Out</u>	<u>In</u>	<u>Out</u>	ADT
Single-Family Residential	1,416 DU	283	793	935	510	13,523
Multi-Family Residential	1,324 DU	265	609	702	437	10,605
Neighborhood Retail	40 ksf	51	24	147	153	3,246
Regional Retail	1,345 ksf	619	269	2,018	2,098	44,156
Hotel	600 rooms	192	222	258	198	5,670
Office (100 TSF+)	1,030 ksf	1,741	216	330	1,597	14,451
Light Industrial/Industrial	81 ksf	66	9	19	60	565
Elementary/Middle School	1,600 students	272	176	224	176	1,744
Park/Open Space	257 acres	0	0	0	0	213
TOTAL		3,488	2,319	4,631	5,228	94,174

The draft Specific Plan allows for some flexibility in the exact development configuration of land-uses. Some sub-areas within the plan (called flex-zones) can be developed with either of two uses. Generally, the trade-off is between multi-family residential development and employment sites (e.g. offices or industrial facilities). For those sub-areas with two options, the land use which results in the higher peak-hour generation was assumed in the traffic study. This resulted in a worst-case analysis whereby actual traffic impacts will be less than those listed in this study if the other land use option is selected when the project is developed.

One sub-area with land-use options does not include a residential option. Within the northern portion of the commercial center immediately to the east of Oxnard Boulevard, a baseball stadium of up to 5,000 seats could be substituted for an 80,000 square foot

portion of the retail commercial center. This substitution would also result in overall decrease in the total AM and PM peak hour trips from the analyzed scenario.

Therefore the larger retail commercial center has been assumed in the traffic analysis.

Table 4.8-8 shows the comparative trip values for the assumed and conditional land-uses. As this table shows, within each zone the total highest peak-hour generator was selected for inclusion within the traffic analysis. With the exception of a four trip difference for the stadium verses regional commercial and 25 trip difference for the residences verses the school during the PM peak hour, the selected options would result in individually higher peak-hour generation values independently during each of the two peak hours. Therefore, the impacts listed within the traffic analysis would be anticipated to be the same or lower if the optional land-uses were developed rather than those assumed in the traffic study.

Table 4.8-8
Traffic Generation Comparisons
for Conditional Land-Use Scenarios

				Daily	<u>Peak</u>	Hour T	<u>rips</u>
<u>District</u>	<u>Scenario</u>	<u>Land-Use</u>	Size Units	<u>Trips</u>	<u>AM</u>	<u>PM</u>	<u>Total</u>
D	Allowed Conditional	*Regional Commercial	80 ksf	2,630	53	245	298
	Conditional	Stadium	5,000 Seats	5,010	17	249	266
D	Allowed	* Office	190 ksf	2,670	361	355	716
	Conditional	Multi-Family Residential	194 units	1,550	128	167	295
F	Allowed	* Office	250 ksf	3,510	475	468	943
	Conditional	Multi-Family Residential	256 units	2,050	169	220	389
G	Allowed	* Elementary/Middle School	500 students	550	140	125	265
	Conditional	Multi-Family Residential	174 units	1,390	115	150	265
J	Allowed	*Elementary/Middle School	1,100 students	1,200	308	275	583
	Conditional	Single-Family Residential	242 units	2,310	184	247	431

^{*} Land-Use Option included in the traffic analysis

Project Parking

Parking for the project will be distributed through out the site. The parking will conform with City code requirements. However, in some portions of the project (mainly within the Regional Commercial center) shared parking may be utilized. This allows spaces that are needed for one use during only part of the day or week to be used for other purposes when not needed. For example, very little office parking is needed outside of the normal weekday business hours. Therefore, many of these spaces are available for retail and entertainment uses (e.g. stores, restaurants, or the potential baseball stadium) during evenings and weekends. This reduces the total paved and/or parking structure area and minimizes unnecessary costs and secondary environmental impacts.

The details of the shared parking arrangements will be dependent on the uses selected and the final layout of the site. Shared parking will only be permitted where the spaces will be within convenient walking distance two or more uses with different peak usage times. Each project will be individually and cumulatively evaluated to assure that ample parking will be available at all times as the project proceeds.

Trip Distribution and Traffic Assignment

The trip distribution and assignment for the project traffic along with the non-project traffic were done via the City of Oxnard's travel demand model. The model is described in the Future Traffic Conditions of this report, which follows this section. To determine the directional distribution for the Project's traffic, a cordon was drawn around the project and the Project's daily vehicle trips that crossed the cordon were counted. Carnegie Street was on the northern Specific Plan border of the cordon. The eastern border was drawn east of Vineyard Avenue but did not include trips which traveled north or south on Vineyard Avenue. The southern border was south of the Ventura Freeway, and the Santa Clara River was the western border (no streets cross the west

border except for the 101 Freeway). Table 4.8-9 summarizes the directional distribution of Project related traffic.

Table 4.8-9
Directional Distribution of Project Traffic
Average Daily Traffic, Study Year: 2020

	ADT Vehicle Trips	Percent of
Direction	Crossing Cordon	Total Traffic
North on surface streets	6,783	8.6%
South on surface streets	27,985	35.5%
East on surface streets	3,032	3.8%
West on surface streets	0	0.0%
East on Freeway (US-101)	18,087	23.0%
West on Freeway (US-101)	<u>22,955</u>	<u>29.1%</u>
Total	78,842	100.0%

Neighborhood Intrusion

The roadway system for the RiverPark Development has been carefully laid out. Several important factors were considered. First and foremost, connections to existing residential streets were minimized. No residential street to the north(west) of Vineyard Avenue has a direct connection. In particular, there is no continuity along Stroube Street between RiverPark and Vineyard Avenue. Any vehicle wishing to travel between the two must either travel to the south along Myrtle Road to access Vineyard Avenue near the interchange opposite Ventura Boulevard or must go around the north side of El Rio-West neighborhood utilizing Santa Clara River Boulevard or N. Park Drive (opposite Simon Way). Neither road is currently constructed or would route vehicles past any existing residents.

The proposed project will only have three access points along Vineyard Avenue to the east, two other direct access points to the south across the 101 Freeway, and access across the Santa Clara River (to the west) or the drainage basins (to the north). Thus, most access will be concentrated along Ventura Road across the 101 Freeway, Oxnard

Boulevard across and/or at the 101 Freeway and Myrtle Street leading to and from Vineyard Avenue near the 101 Freeway. Other routes leading to and from Vineyard Avenue are Santa Clara River Boulevard and North Park Drive. Except North Park Drive, which will only serve the school, recreation and residential uses within RiverPark, no roadway leads through a residential area or leads to or from a residential area. The street system of RiverPark has been carefully laid out to not route commercial traffic past single-family residences.

It should be noted that despite the careful layout of the street system and the land uses, persons destined to or from commercial uses will pass in front of single family residences. For instance, persons driving from their house to the grocery store must often drive in front of their next-door neighbors house. Other persons will choose to drive down residential streets to find the shortest time travel route. The shortest time routes were calculated and used in the model.

FUTURE TRAFFIC CONDITIONS

Future year 2020 traffic conditions in the City of Oxnard and surrounding areas were analyzed using the City of Oxnard's transportation model which is based on the Ventura County Transportation Commission (VCTC) model. The VCTC model was prepared using Southern California Association of Governments (SCAG) land use data and is updated regularly as new land-use projections are made available. Existing and future freeway traffic volumes projected by the VCTC model for freeway segments were used as it is the most accepted model for transportation planning in Ventura County. Future freeway traffic volumes for this report were determined by adding the growth between the VCTC's future model volumes and the existing model volumes to the existing traffic volumes.

The VCTC model, however, does not provide information on intersection turning movements. In order to obtain future traffic volumes at the study intersections, the City's transportation model was updated and modified. Future year 2020 land use data for the City of Oxnard was updated using the build-out condition of the City's General Plan including the land use from a proposed General Plan amendment for the RiverPark Development. In addition, the City's transportation model network was updated to include the proposed improvements to the Ventura Freeway (US-101) bridge over the Santa Clara River and the Oxnard Boulevard interchange reconstruction. Other physical improvements in the area were also assumed in the model. Major network modifications include: improvements to the Route 1/Pleasant Valley interchange, Rice Avenue/Route 101 interchange, and Del Norte Boulevard/Route 101 interchange; and Rice Avenue redesignation as Route 1 and development to expressway standards from Fifth Street to Route 101.

Planned/Programmed Highway Improvements

Several improvements in the project vicinity were assumed in the VCTC and City models. In particular, improvements to the Ventura Freeway include replacing and widening the Santa Clara River Bridge to provide six lanes in each direction. Also proposed is the widening of the Ventura Freeway to the east in order to provide four to six lanes from Vineyard Avenue (Route 232) to the Santa Clara River Bridge in the northbound and southbound directions. In addition, the northbound Route 1 (Oxnard Boulevard) connector to the northbound Ventura Freeway will be removed to eliminate a non-standard "flyover" and left-side merge section. Oxnard Boulevard will be reconstructed to extend across the Ventura freeway. In addition, the Oxnard Boulevard interchange to the Ventura Freeway will provide northbound and southbound on/off-ramp access. Oxnard Boulevard will provide four lanes in each direction at the Ventura Freeway ramps. The northbound off-ramp is proposed to include an auxiliary (exit-only) lane flaring into separate right and left-turn lanes at Oxnard Boulevard. The northbound on-ramp will consist of three lanes at Oxnard Boulevard, tapering to two lanes prior to joining the Ventura Freeway mainline at the Santa Clara River Bridge. The southbound off-ramp will include one auxiliary lane and one diverge lane, flaring to two left-turn and one free right-turn lane at Oxnard Boulevard. The southbound on-ramp will merge from two lanes at Oxnard Boulevard to a single auxiliary lane on the freeway mainline where it will extend to the Vineyard Avenue off-ramp.

In addition, when sufficient redevelopment occurs to the Wagon Wheel Road area, a "hook" ramp along Wagon Wheel Road will be constructed. This ramp will provide direct access from Wagon Wheel Road to the southbound Ventura Freeway. The construction of this ramp will alleviate traffic that crosses to the east of the Ventura Freeway to access the southbound on-ramp from Oxnard Boulevard. A connection

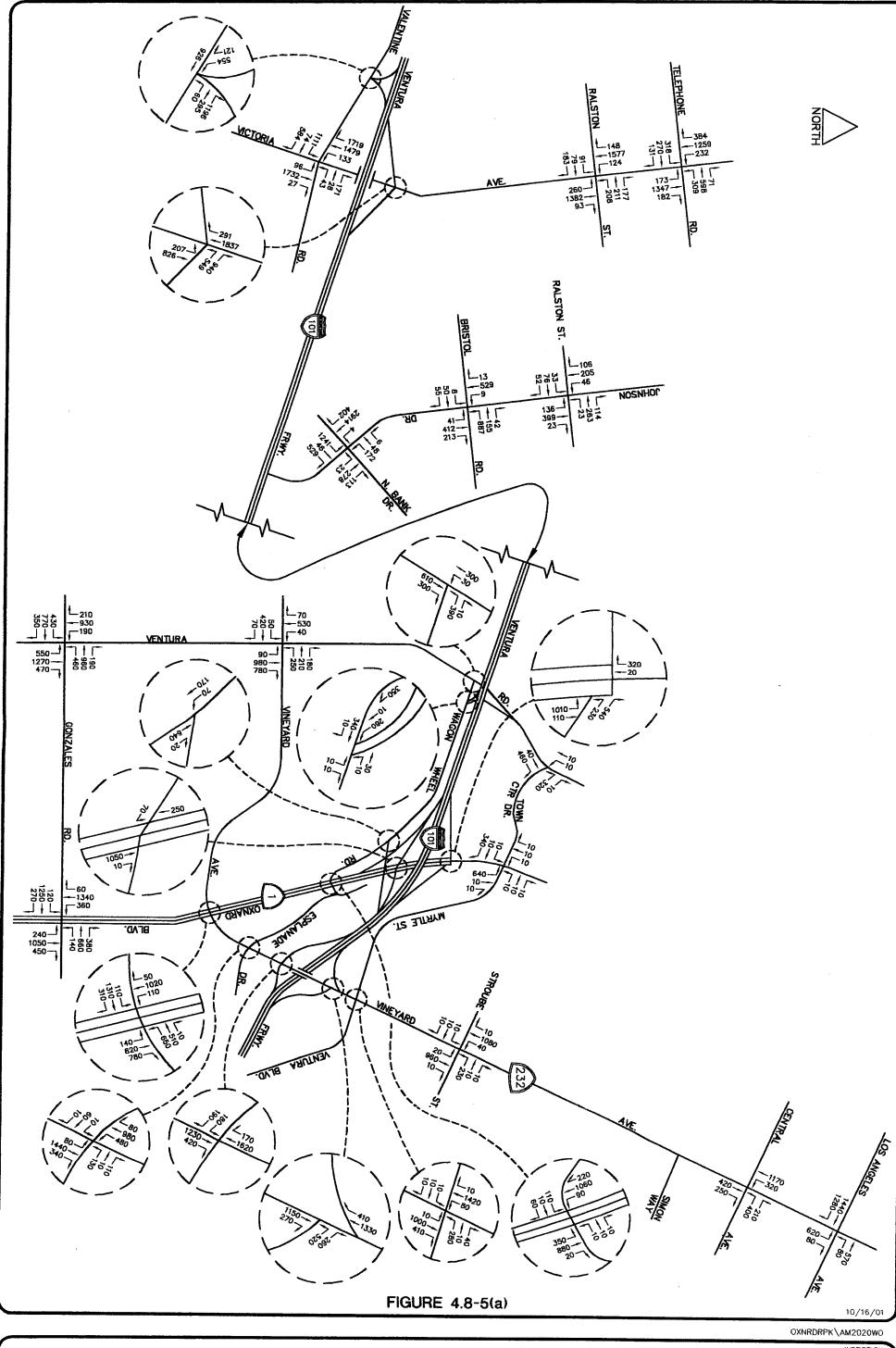
between southbound Oxnard Boulevard and this hook-ramp will also be provided.

Upon completion of the hook-ramp and connector, left-turns from southbound Oxnard Boulevard to the southbound Ventura Freeway diamond on-ramp will be prohibited.

This connector will also allow access from Wagon Wheel Road to northbound Oxnard Boulevard. As part of the immediate roadway improvement project, the Oxnard Boulevard overcrossing will be constructed with sufficient length to accommodate the later installation of the hook ramp.

As part of the development of the Specific Plan area, several new roadways will be constructed. Improvements include the extension of Oxnard Boulevard and Myrtle Avenue and the construction of Santa Clara River Boulevard, South Park and North Park Drives. In addition, a series of 2-lane collector streets will also be constructed to serve the residential neighborhood in the northern part of the project site. A detailed description of these roadway improvements are discussed in the mitigation section.

Discussion of Significant Impact Definition

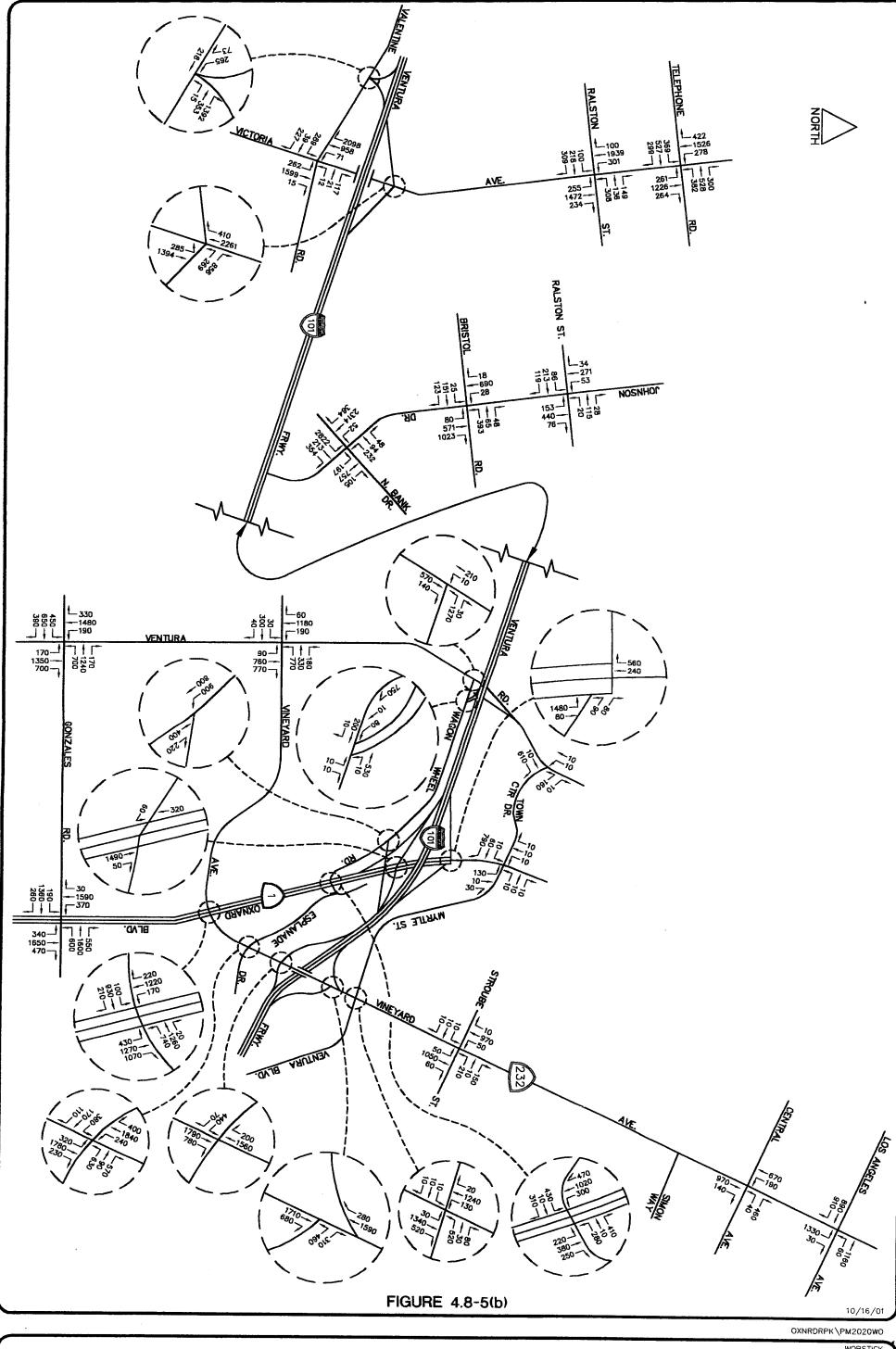

The California Environmental Quality Act (CEQA) defines a significant effect as being "a substantial or potentially substantial adverse change in any of the physical conditions within the area affected by the activity." Guidelines for implementing CEQA provisions have been adopted which allow each jurisdiction the latitude to determine what is a substantial or potentially substantial adverse change (significant impact) in the environment. For intersections within the City of Oxnard's and County of Ventura's control, significant traffic impacts are defined as those intersections where the project adds 75 or more trips per hour that result in a level of service of D, E or F with the project generated traffic. At these locations, the project must participate in cumulative mitigation to restore conditions to LOS C or better.

For intersections outside of the City of Oxnard's and County of Ventura's control participation in cumulative mitigation is not available. Therefore, revisions to meet LOS C where the local jurisdiction is unwilling to commit to achieving LOS C without the project is not feasible. Instead, significant traffic impacts are defined by the City of Oxnard as those which cause the intersection V/C ratio to increase by 0.020 or more with a resulting LOS E or F. At these locations, stand alone mitigations are identified since implementation of larger, multi-project measures are beyond the City of Oxnard's and County of Ventura's control. (It should be noted that the City of Oxnard's criteria is more stringent the Congestion Management Plan only requires that LOS F intersections be addressed).

Future Conditions Without and With Project

Traffic conditions in the study area were forecast for future analysis year 2020. This future year scenario was developed by using forecasted traffic growth from the City of Oxnard Transportation Model (which utilizes the VCTC vehicle trip projection data and known related projects that were assumed to be developed by 2020). Only those transportation improvements considered "reasonably assured" were assumed for the future year projections. The resulting 2020 traffic volumes reflect the expected future "Without Project Conditions" and were used as the "baseline" conditions from which to evaluate the potential traffic impacts of the proposed project. The "Without Project" traffic volumes for future year 2020 conditions, not only provide the baseline against which the determination of the effects of incremental project traffic in the project vicinity is made, but also provide a gauge of the impact of ambient traffic growth and cumulative development in the study area. This allows for a more comprehensive evaluation of the potential project impact mitigation requirements by also considering the need for cumulative infrastructure improvements.

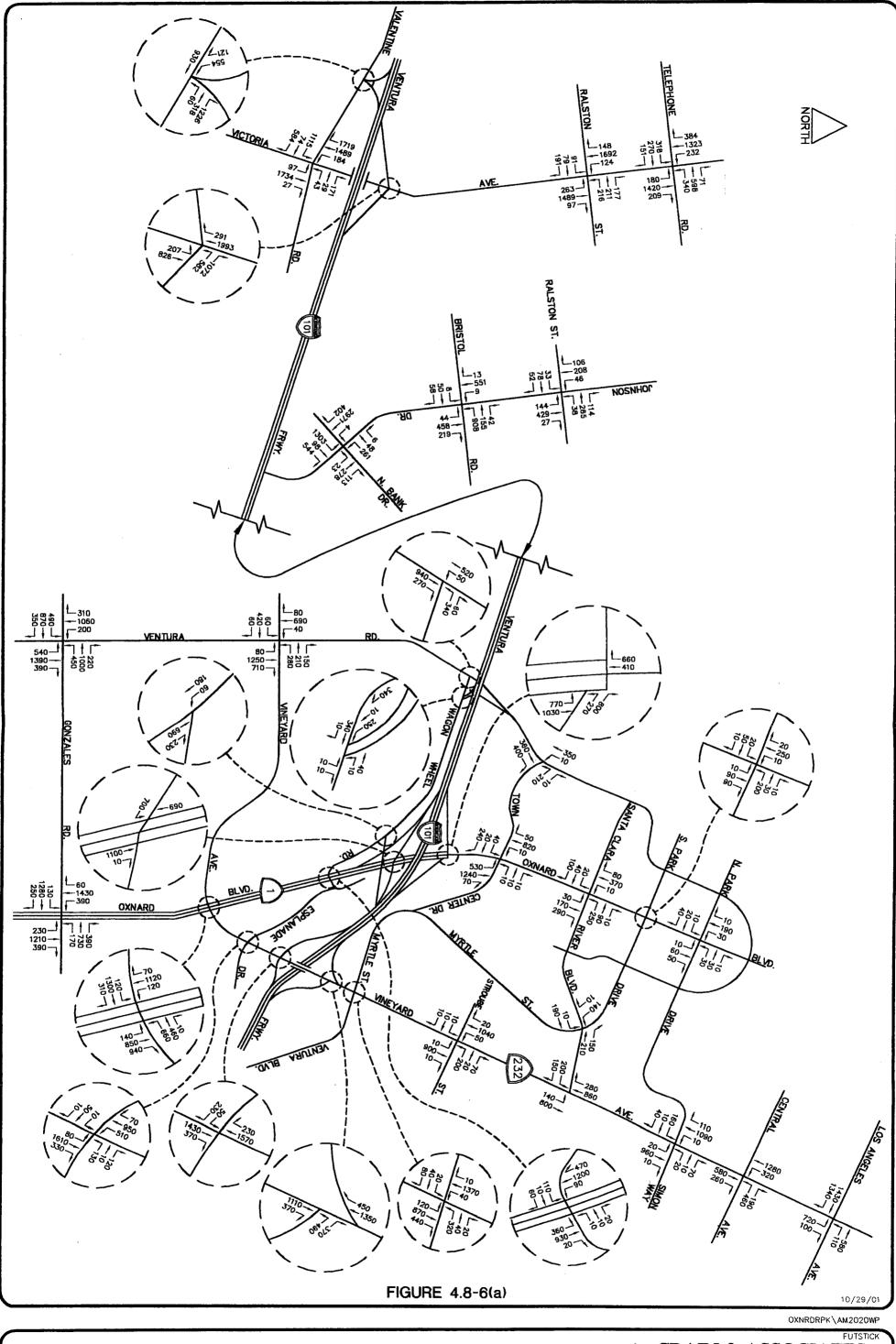
Future 2020 traffic volumes with the addition of the RiverPark mixed-use development was also analyzed by adding project traffic generation to the "Without Project" scenarios. The traffic growth as a result of the project is used to determine the potential project traffic impact in the surrounding area. The future year "With Project" traffic volumes were determined by adding the incremental growth determined from a comparison of the "With Project" and "Without Project" scenarios to the "Without Project" traffic volumes in the study area. Future intersection traffic volumes for the "Without Project" and "With RiverPark Project" scenarios are shown on Figures 4.8-5 and 4.8-6, respectively. Summaries of the ICU and LOS "Without Project" and "With Project" conditions at the 33 study intersections for the future year 2020 are shown in Table 4.8-10. As shown in Table 4.8-10, the RiverPark project will have significant impacts at seven study intersections in the City of Oxnard's or County of Ventura's control and one study intersection in the City of Ventura, prior to any mitigation measures.



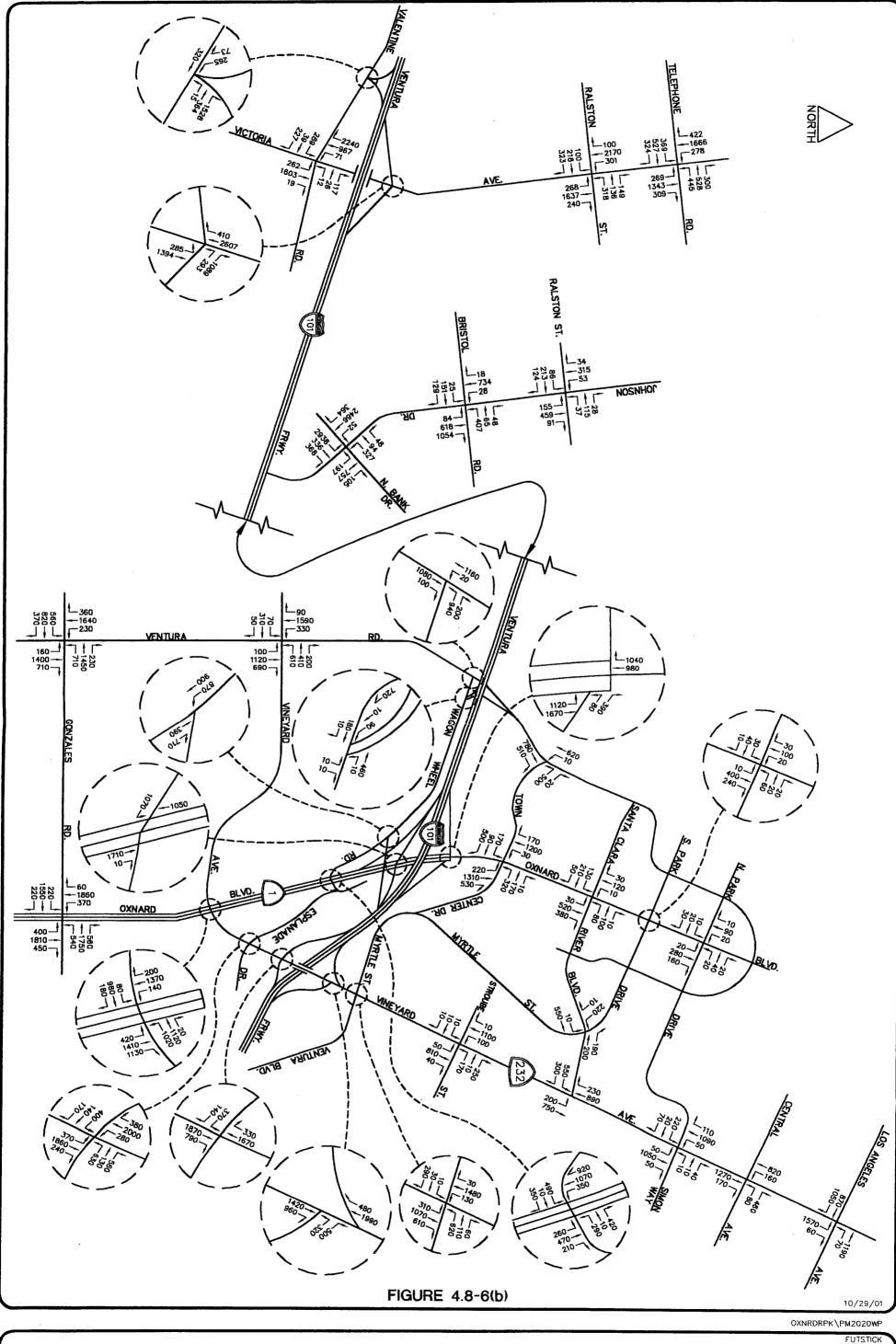
FUTURE (2020) TRAFFIC VOLUMES
WITHOUT PROJECT
AM PEAK HOUR

CRAIN & ASSOCIATES

2007 Sawtelle Boulevard Los Angeles, California 90025 (310) 473-6508 Transportation Planning · Traffic Engineering


FUTURE (2020) TRAFFIC VOLUMES
WITHOUT PROJECT
PM PEAK HOUR

CRAIN & ASSOCIATES


2007 Sawtelle Boulevard Los Angeles, California 90025 (310) 473-6508

Transportation Planning · Traffic Engineering

CRAIN & ASSOCIATES

2007 Sawtelle Boulevard Los Angeles, California 90025 (310) 473-6508 Transportation Planning · Traffic Engineering

FUTURE (2020) TRAFFIC VOLUMES
WITH RIVERPARK PROJECT
PM PEAK HOUR

CRAIN & ASSOCIATES

2007 Sawtelle Boulevard Los Angeles, California 90025 (310) 473-6508 Transportation Planning · Traffic Engineering

Table 4.8-10(a)
Intersection Volume/Capacity Summary
Future (2020) Peak Hour Traffic Conditions, Project Area Intersections

		Peak	With <u>Proj</u>	ect	With <u>Project</u>	
<u>No.</u> 1	Intersection Los Angeles Avenue and Vineyard Avenue	Hour AM PM	<u>V/C</u> 0.850 0.778	D C	<u>V/C</u> 0.906 0.863	LOS E* D*
2	Central Avenue and Vineyard Avenue	AM PM	0.659 0.694	B B	0.750 0.788	C
3	North Park Drive and Avenue Oxnard Boulevard	AM PM	N/A N/A	N/A N/A	0.188 0.231	A A
4	Simon Way/North Park Drive and Vineyard Avenue	AM PM	N/A N/A	N/A N/A	0.473 0.541	A A
5	Oxnard Boulevard and South Park Drive	AM PM	N/A N/A	N/A N/A	0.253 0.281	A A
6	Oxnard Boulevard and Santa Clara River Boulevard	AM PM	N/A N/A	N/A N/A	0.213 0.428	A A
7	South Park Drive/Myrtle Street and Santa Clara River Boulevard	AM PM	N/A N/A	N/A N/A	0.206 0.367	A A
8	Vineyard Avenue and Santa Clara River Boulevard	AM PM	N/A N/A	N/A N/A	0.336 0.499	A A
9	Vineyard Avenue and Stroube Street	AM PM	0.387 0.387	A A	0.354 0.374	A A
10	Ventura Road and Town Center Drive	AM PM	0.124 0.063	A A	0.154 0.341	A
11	Oxnard Boulevard and Town Center Drive	AM PM	0.422 0.339	A A	0.480 0.694	A C
12	Vineyard Avenue and Ventura Boulevard	AM PM	0.404 0.546	A A	0.468 0.762	A C
13	Oxnard Boulevard and US-101 Northbound Ramps	AM PM	0.494 0.602	A B	0.497 0.588	A A
14	Oxnard Boulevard and US-101 Southbound Ramps	AM PM	0.188 0.253	A A	0.412 0.635	A B

N/A - Intersections do not exist in the "Without Project" Scenario

^{*} Denotes a significant impact prior to mitigation.

Table 4.8-10(a) (Con't)
Intersection Volume/Capacity Summary
Future (2020) Peak Hour Traffic Conditions, Project Area Intersections

		Peak	With Proje		Wit Proje	
<u>No</u>	<u>Intersection</u>	Hour	<u>v/c</u>	LOS	<u>V/C</u>	LOS
15	Vineyard Avenue and	AM	0.439	A	0.452	A
	US-101 Northbound Ramps	PM	0.517	B	0.566	A
16	Vineyard Avenue and US-101 Southbound Ramps	AM PM	0.456 0.533	A A	0.471 0.549	A A
17	Ventura Road and	AM	0.343	A	0.442	A
	Wagon Wheel Road	PM	0.621	B	0.673	B
18	Wagon Wheel Road and	AM	0.384	A	0.378	A
	US-101 Southbound Off-Ramp	PM	0.806	D	0.744	C
19	Wagon Wheel Road and US-101 Southbound On-Ramp	AM PM	0.424 0.559	A A	0.452 0.743	A C
20	Oxnard Boulevard and Esplanade Drive	AM PM	0.561 0.808	A D	0.648 0.932	B E*
21	Vineyard Avenue and	AM	0.617	B	0.654	B
	Esplanade Drive	PM	0.887	D	0.944	E*
22	Vineyard Avenue and	AM	0.687	B	0.648	B
	Ventura Road	PM	0.826	D	0.866	D*
23	Vineyard Avenue and	. AM	0.798	C	0.899	D*
	Oxnard Boulevard	PM	0.893	D	0.940	E*
24	Gonzales Road and	AM	0.731	C	0.783	C
	Ventura Road	PM	0.829	D	0.891	D*
25	Gonzales Road and	AM	0.690	B	0.674	B
	Oxnard Boulevard	PM	0.874	D	0.946	E*

^{*} Denotes a significant impact prior to mitigation.

Table 4.8-10(b)
Intersection Volume/Capacity Summary
Future (2020) Peak Hour Traffic Conditions, City of Ventura Intersections

		Peak		hout ject	Wi Proj		
No	<u>Intersection</u>	<u>Hour</u>	V/C	LOS	V/C	LOS	<u>Impact</u>
26	Victoria Avenue and Telephone Road	AM PM	0.552 0.625	A B	0.568 0.672	A B	0.016 0.047
27	Victoria Avenue and	AM	0.621	B	0.641	B	0.020
	Ralston Street	PM	0.807	D	0.858	D	0.051
28	Victoria Avenue and	AM	0.568	A	0.615	B	0.047
	US-101 Northbound Ramps	PM	0.607	B	0.697	B	0.090
29	Valentine Road and	AM	0.500	A	0.501	A	0.001
	US-101 Southbound Ramps	PM	0.193	A	0.196	A	0.003
30	Valentine Road and Victoria Avenue	AM PM	0.871 0.511	D A	0.874 0.513	D A	0.003 0.002
31	Ralston Street and Johnson Drive	AM PM	0.463 0.454	A A	0.483 0.476	A A	0.020 0.022
32	Johnson Drive and	AM	0.735	C	0.759	C	0.024
	Bristol Road	PM	0.799	C	0.837	D	0.038
33	Johnson Drive and	AM	1.302	F	1.357	F	0.055*
	North Bank Drive	PM	1.566	F	1.669	F	0.103*

^{*} Denotes a significant impact prior to mitigation.

Analysis of Future Freeway Traffic Conditions (With and Without Project)

To address the increasing public concern that traffic congestion was impacting the quality of life and economic vitality of the State of California, the Congestion Management Program (CMP) was enacted by Proposition 111 in 1990. The intent of the CMP is to provide the analytical basis for transportation decisions through the State Transportation Improvement Program (STIP) process. A Countywide approach has been established by the Ventura County Transportation Commission, the Local CMP agency, to implement the statutory requirements of the CMP. The Countywide approach includes designating a

highway network that includes all state highways and principal arterials within the County and monitoring the network's Level of Service standards. This monitoring of the CMP network is one of the responsibilities of local jurisdictions. If level of service standards deteriorate, then local jurisdictions must prepare a deficiency plan to be in conformance with the Countywide plan.

Five segments along the Ventura Freeway and on Route 1 in the project study area were examined as the regional facility segments most likely to be impacted by the project. These are the same segments identified in the discussion of existing freeway conditions.

Traffic volumes attributable to the RiverPark project, as determined earlier, were then analyzed as an incremental increase to the "Without Project" conditions. This methodology allowed for both an assessment of overall future freeway conditions and a determination of the project impacts to these regional transportation facilities. The Level of Service values used for Freeway segment analyses are estimated by calculating the demand-to-capacity (D/C) ratio and using the LOS definitions shown in Table 4.8-4 of this report. Freeway traffic conditions in the study area were forecast for future year 2020. Using capacities calculated based on the HCM methodology as discussed previously, the level of service at the freeway segments was computed and is shown in Table 4.8-11.

As this table shows, all study freeway segments are projected to operate at level of service D and better except at the US-101 south of Central Avenue where traffic conditions will operate at LOS F in the northbound direction during the morning peak hour and in the southbound during the PM peak hour. It should be noted that the substantial improvements already planning for the Ventura Freeway will in large part be responsible for the acceptable levels of service. In addition, any improvements on the Ventura Freeway south of Central Avenue (e.g. widening of this location) are addressed in the Ventura County CMP.

Table 4.8-11 Future (2020) Freeway Volumes and Level of Service

				Withou	Future (Future (2020) Without Project Traffic Conditions	ons	Wit	Future (2020) With Project Traffic Conditions	e (2020) raffic Co	ndition	S
CMP Station	Dir	Peak Hour	Freeway Capacity	Daily Volume	Peak Hour Volume	D/C Ratio	LOS	Daily F	Peak Hour <u>Volume</u>	D/C Ratio	FOS	Project <u>Impact</u>
US-101 at the Santa Clara River Bridge		AM PM	12,000 12,000	199,600	8,530 9,460	0.711	00	213,200	8,833 10,072	0.736	O O	0.025
	S/B	A M	12,000 12,000		8,310	0.693	ပဏ		8,828 7,188	0.736	ပပ	0.043
US-101 between Route 1 and Vineyard Avenue	N/B	AM PM	10,000	169,000	6,610 8,290	0.661	O D	180,000	7,143 9,077	0.714	00	0.053 0.079
	S/B	A M	10,000		6,010 6,780	0.601	ပ ပ		6,156 7,122	0.616	υυ	0.015
US-101 between Vineyard Avenue and Rose Avenue	N/B	AM PM	10,000	177,600	7,050 8,350	0.705	OD	187,400	7,533 8,661	0.753	OO	0.048
	S/B	AM PM	10,000		6,510 7,190	0.651	υυ		6,794 7,724	0.679	OO	0.028
Oxnard Boulevard (Route 1) between Vineyard Ave.	N/B	AM PM	4,000	32,300	1,230	0.308	۷ ۵	35,100	1,296	0.324	4 4	0.016
and 00-101	S/B	AM PM	4,000		1,240 1,330	0.310	∢ ∢		1,413 1,443	0.353 0.361	മ മ	0.043
US-101 south of Central Avenue	N/B	AM PM	8,000	182,4000	7,940 7,110	0.993	шО	187,700	8,258 7,250	1.032	F(0)	0.039* 0.017
	S/B	AM PM	8,000		5,980	0.748	ОШ		6,086	0.761 1.036	C (0)	0.013 0.036*

^{*} Denotes a significant project impact.

MITIGATION MEASURES

As stated previously, eight significant impacts are anticipated at the 33 study intersections after full build-out of the project. In order to reduce the impacts to a level of insignificance, the following mitigation measures are recommended:

<u>City/County Transportation Fees</u> -- Pay all fees due to the City of Oxnard and County of Ventura. It is recognized that these fees will be used, in part, to provide the improvements which follow. These improvements implemented by the project will be subject to reimbursement/credit as applicable. Fees are approximately as follows:

	City of Oxnard	County of Ventura
Daily Trip Ends	94,174	94,174
Percent Using Jurisdiction Roads	100%	10%
Fee/Trip	<u>\$173.90</u>	<u>\$139.00</u>
Total Fee	\$16,376,858	\$1,309,019

These fees are approximate and will be set when the actual development is known.

However, the end result for the City and County in new trip fees is anticipated to \$15-20 million. These fees would address impacts on roadway/freeway segments as well as at intersections.

City of Oxnard/County of Ventura (equitable participation):

The project would pay appropriate fees and receive credit for any construction, to equitably participate in the buildout of the Master Plan of streets and Highways of the General Plan. This would include the following improvements which should be added to the City's and County's General Plans.

Los Angeles Avenue and Vineyard Avenue -- Widen and restripe Los Angeles
 Avenue to provide one left-turn lane, two through lanes and one through/right

shared lane in the westbound direction and one left-turn lane, two through lanes, one through/right shared lane and one right-turn lane in the eastbound direction.

- Oxnard Boulevard and Town Center Drive -- Construct this intersection to provide the following: dual left-turn lanes and one through/right shared lane in the westbound direction, dual left-turn lanes, one through lane and two right-turn lanes in the eastbound direction, dual left-turn lanes, two through lanes and one right-turn lane in the northbound direction, and one left-turn lane, one through lane and one through/right shared lane in the southbound direction. In addition, provide a green phase for the eastbound right-turn movement concurrent with the northbound left-turn phase.
- Oxnard Boulevard and US-101 Northbound Ramps Improve this intersection to provide the following: one left-turn lane and one 'free' right-turn lane in the westbound direction, dual left-turn lanes and two through lanes in the northbound direction, and four through lanes and one right-turn lane in the southbound direction.
- Ventura Freeway SB On/Off-ramps and Oxnard Boulevard -- When sufficient redevelopment occurs to the Wagon Wheel Road area, a "hook" ramp along Wagon Wheel Road will be constructed. This ramp will provide direct access from Wagon Wheel Road to the southbound Ventura Freeway. The construction of this ramp will alleviate traffic that crosses to the east of the Ventura Freeway to access the southbound on-ramp from Oxnard Boulevard. In addition, a connection between southbound Oxnard Boulevard and this hook-ramp will be provided. Upon completion of the hook-ramp and connector, left-turns from southbound Oxnard Boulevard to the southbound

Ventura Freeway diamond on-ramp will be prohibited. This connector will also allow access from Wagon Wheel Road to northbound Oxnard Boulevard. As part of the immediate roadway improvement project, the Oxnard Boulevard overcrossing will be constructed with sufficient length to accommodate the later installation of the hook ramp.

- Wagon Wheel Road and US-101 Southbound On-Ramp -- Restripe Wagon
 Wheel Road to provide one through/right shared lane and one right-turn lane in the northbound direction.
- Oxnard Boulevard and Esplanade Drive -- Improve this intersection to provide dual left-turn lanes in the westbound and eastbound directions, and one left-turn lane, two through lanes, one through/right lane and one right-turn lane in the southbound direction.
- o <u>Vineyard Avenue and Esplanade Drive</u> -- Reconstruct the west and east legs of the Vineyard Avenue and Esplanade Drive intersection to provide two left-turn lanes, one left-through shared lane and one right-turn only lane in the eastbound direction and one left-turn lane, one left-through shared lane, one right-though shared lane and one right-turn only lane in the westbound direction. Widen Vineyard Avenue along the west and east curb and relocate the median island to provide dual left-turn lanes, four through lanes and one right-turn-only in the southbound direction and dual left-turn lanes, three through lanes and one right-through shared lane in the northbound direction. This will require additional right-of-way to be obtained from the Esplanade Mall.
- O <u>Vineyard Avenue and Ventura Road</u> -- Restripe Ventura Road to provide one left-turn lane, three through lanes and one right-turn lane in the northbound direction and one left-turn lane, two through lanes and one through/right turn

lane in the southbound direction. In addition, modify signal phasing to provide a green phase for the northbound right-turn movement during the westbound left-turn phase.

- o <u>Vineyard Avenue and Oxnard Boulevard</u> -- Modify the median islands and restripe Oxnard Boulevard to provide dual left-turn lanes, three through lanes, and two right-turn lanes in the northbound direction and two left-turn lanes, four through lanes and one right-turn lane in the southbound direction. In addition, flare and modify the median islands and restripe Vineyard Avenue to provide three left-turn lanes, three through lanes and one right-turn lane in the westbound direction and restripe the eastbound approach to provide one left-turn lane, three through lanes and one right-turn lane.
- o Gonzales Road and Ventura Road -- Restripe and widen this intersection to provide the following: dual left turn lanes, three through lanes and one right-turn-only lane in the eastbound direction, dual left-turn lanes, three through lanes, one through/right shared lane and one right-turn-only lane in the northbound direction, and dual left-turn lanes, four through lanes and one right-turn-only lane in the westbound and southbound directions.
- o Gonzales Road and Oxnard Boulevard -- The City of Oxnard General Plan calls for this intersection to either be grade separated with an urban interchange or to have other specialized treatment. The other treatments could be to require left-turn movements to be accommodated as U-turns beyond the intersection and "free right-turns" upon returning to the intersection. Other methods of removing left-turns from the critical movements at the intersection are also being considered. With this project, this intersection will continue to need one of those options to be implemented. For analysis

purposes, it has been assumed that an urban interchange, including a grade separated crossing of Gonzales Road and the railroad tracks paralleling Oxnard Boulevard, would be constructed. However, other alternative improvements may be constructed which will still allow the City to achieve the General Plan performance standards.

City of Ventura Intersections (Stand-Alone Measures):

o <u>Johnson Drive and North Bank Drive</u> -- Flare and restripe Johnson Drive to provide one left-turn lane, two through lanes and one through/right shared lane in the southbound direction.

Residential Segments

Residential streets in the El Rio neighborhood will not be directly connected to any commercial use. Anyone who chose to use a residential street to access the project will most likely be a resident of that street. Further, speed humps have already been implemented along Stroube Street. Therefore, mitigation of impacts on residential street segments is neither considered warranted or feasible.

Project Roadway Improvements

It should be noted that the project would construct an extensive roadway network within the Specific Plan boundaries. These include:

Oxnard Boulevard -- This roadway will be extended north of US-101. This roadway will be constructed as a six lane arterial between US-101 and Town Center Drive, a four lane arterial between Town Center Drive and Santa Clara River Boulevard, a four lane collector street between Santa Clara River

- Boulevard and the traffic circle located north of North Park Drive and a two lane collector street north of the traffic circle.
- o <u>Town Center Drive</u> -- This roadway will be improved as a four lane arterial between Ventura Road and Oxnard Boulevard.
- Ventura Road -- This roadway will be extended northerly into the Specific Plan area where it bends easterly and becomes Santa Clara River Boulevard. Ventura Road will be improved as a four lane arterial throughout the Specific Plan from US-101 to Santa Clara River Boulevard.
- Santa Clara River Boulevard This roadway will be constructed as a four lane arterial throughout the Specific Plan from Ventura Road to Vineyard Boulevard where it aligns with Simon Way. It is recommended that a traffic circle be constructed at the intersections of Ventura Road, Oxnard Boulevard and RiverPark Avenue east along Santa Clara River Boulevard. The traffic circle should have a minimum outside diameter of 180 feet in order to provide acceptable operations.
- South Park Drive/Myrtle Street -- This roadway will serve primarily as a four lane collector street in the Specific Plan area. It will generally extend in the northwest direction from Vineyard Avenue just north of the 101 Freeway to Ventura Road. The name will change to South Park Drive at Santa Clara River Boulevard where it will bend and extend westerly to Oxnard Boulevard. In addition, a short segment of South Park Drive will be constructed as a two lane collector street west of Oxnard Boulevard.

North Park Drive -- This roadway will be constructed as a two lane collector street between Oxnard Boulevard and Vineyard Avenue. A short segment of this roadway will also be a two lane collector street west of Oxnard Boulevard.

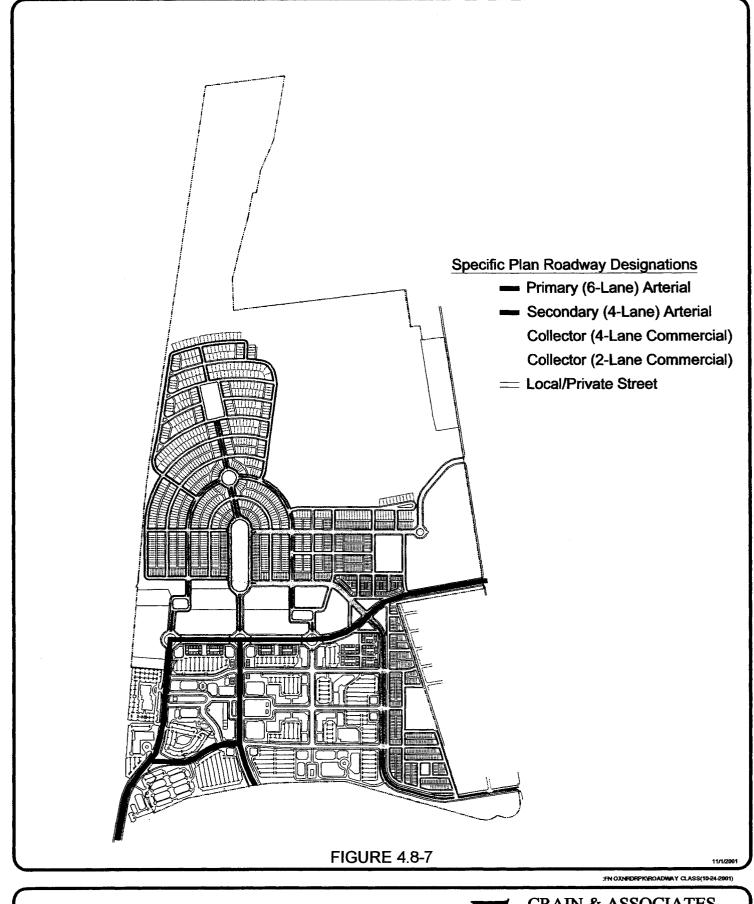

It should also be noted that Figure 4.8-7 is illustrative only. As the project is designed in detail and constructed, some refinement in the alignment of these roadways is anticipated and necessary.

Table 4.8-12 shows the effectiveness of the proposed mitigation. As this analysis shows, all impacts of the project with the above proposed mitigation measures will be less than significant.

Transit Improvements

The site for the RiverPark development is mainly empty. Except for along Vineyard Avenue north of the US 101 Freeway to Simon Way, no transit service is provided to the project area. All trips would need to be made by walking to stops at the Esplanade Shopping Center or along Vineyard Avenue. The routes serving these stops then cover the Cities of Oxnard and Ventura as well as the County of Ventura, making the entire region accessible by transit.

Future transit routes are not yet planned for the project area. While the shifting of a route appears to provide the most immediate option, over time more than one route will be shifted and several new routes may be formed. It is not appropriate to speculate on which areas may have direct transit service by the time that the project is completed. However, it is appropriate to design the roadways throughout the Specific Plan area in such a way as to accommodate transit vehicles. In addition, sufficient room should be provided to make the commercial center a transit hub.

CRAIN & ASSOCIATES

2007 Sawtelle Boulevard Los Angeles, California 90025 (310) 473-6508

Transportation Planning -Traffic Engineering

Table 4.8-12(a)
Intersection Volume/Capacity Summary
Future (2020) Peak Hour Traffic Conditions
With Project and Mitigation

		<u>Peak</u>	W/O	Project	With I	Project	With Pr Mitig	
No	<u>Intersection</u>	<u>Hour</u>	V/C	<u>LOS</u>	V/C	LOS	V/C	LOS
1	Los Angeles Avenue	AM	0.850	D	0.906	E*	0.670	В
	and Vineyard Avenue	PM	0.778	С	0.863	D*	0.739	С
20	Oxnard Boulevard and	AM	0.561	Α	0.648	В	0.519	Α
	Esplanade Drive	PM	0.808	D	0.932	E*	0.623	В
21	Vineyard Avenue and	AM	0.617	В	0.654	В	0.550	Α
	Esplanade Drive	PM	0.887	D	0.944	E*	0.786	С
22	Vineyard Avenue and	AM	0.687	В	0.648	В	0.600	В
	N. Ventura Road	PM	0.826	D	0.866	D*	0.746	С
23	Vineyard Avenue and	AM	0.798	С	0.899	D*	0.719	С
	Oxnard Boulevard	PM	0.893	D	0.940	E*	0.793	С
24	Gonzales Road and	AM	0.731	С	0.783	С	0.688	В
	Ventura Road	PM	0.829	D	0.891	D*	0.762	С
25	Gonzales Road and	AM	0.690	В	0.674	В	0.592	Α
	Oxnard Boulevard	PM	0.874	D	0.946	E*	0.646	В

^{*} Denotes a significant impact prior to mitigation.

Table 4.8-12(b)
Intersection Volume/Capacity Summary
Future (2020) Peak Hour Traffic Conditions
With Project and Mitigation

	Peak	W/O P	roject	<u>v</u>	/ith Proj	<u>ect</u>	With Pro	oject + N	litigation
No Intersection	<u>Hour</u>	V/C	LOS	<u>V/C</u>	LOS	<u>Impact</u>	<u>V/C</u>	LOS	<u>Impact</u>
33 Johnson Drive and	AM	1.302	F	1.357	F	0.055*	1.131	F	-0.171
North Bank Drive	PM	1.566	F	1.669	F	0.103*	1.488	F	-0.078

^{*} Denotes a significant impact prior to mitigation.

The project will provide sufficient density to make transit a workable and necessary at the same time a travel alternative. In particular, a transit hub will need to be incorporated near the center of the Regional Center.

The following mitigation measures should be included in the EIR and Specific Plan:

- o Oxnard Boulevard should have concrete bus pads and sheltered stops along the curbs, immediately beyond (north of) the Town Center Drive intersection.
- Additional transit stops should be provided along Oxnard Boulevard between Santa Clara River Boulevard and the US 101 Freeway and along Santa Clara River Boulevard between Oxnard Boulevard and Vineyard Avenue where the South Coast Area Transit (SCAT) is willing to commit to providing transit service and the City of Oxnard deems a stop feasible.
- o Up to 5 bays in each direction should be provided to the southeast of the intersection of Oxnard Boulevard and Santa Clara River Boulevard. This hub may be on parking or other roadways, but should provide layover and turnout space for full size (40 foot length) buses.

As discussed above, SCAT is unable to forecast its service for the next 20 years. However, the project will be constructed so that it will be able to utilize SCAT service, should it be provided.

APPENDIX A TRANSPORTATION AND CIRCULATION STUDY WITH POTENTIAL FUTURE BRIDGE

As requested by the City of Oxnard, an analysis of future traffic conditions with the RiverPark Project was also conducted assuming the construction of a Bridge located to the west of the project site. The potential bridge would extend across the Santa Clara River from Ventura Road at its bend within the Specific Plan area to the City of Ventura's street network system. The results of this analysis are shown below.

The methodology used to analyze future traffic conditions with the potential future bridge is the same methodology used in the body of the report. The future year 2020 "With Project and Potential Future Bridge" traffic volumes for the AM and PM peak hours are shown in Figures A-1(a) and (b), respectively. Based on the traffic volumes in Figures A-1(a) and (b), the level of service at the 33 study intersections were also calculated and are shown in Table A-1. According to Table A-1(a), the project would have significant impacts at seven of the 25 project intersections with the RiverPark project and with the construction of the potential future Bridge. Table A-1(b) shows that one of the eight study intersections in the City of Ventura would be impacted by the project with the construction of the bridge. In addition, Table A-2 shows that the project would significantly impact the US-101 Freeway south of Central Avenue. The RiverPark project, should this bridge be constructed by others, would result in the same number significant impacts with the construction of the bridge.

It is not proposed that this appendix be used to set conditions of approval. Rather, the appendix shows that, should the City of Ventura proceed with construction of another crossing of the Santa Clara River, nothing being constructed in the RiverPark Specific Plan would prevent that crossing. In fact, specific arrangements have been made so that the bridge would be connected as the fourth leg on the northwest most traffic circle and that traffic would be routed through the Specific Plan. While this development is not predicated on such a bridge being built, it does not prevent such a facility.

Table A-1(a)
Intersection Volume/Capacity Summary
Future (2020) Peak Hour Traffic Conditions with Potential Future Bridge,
Project Area Intersections

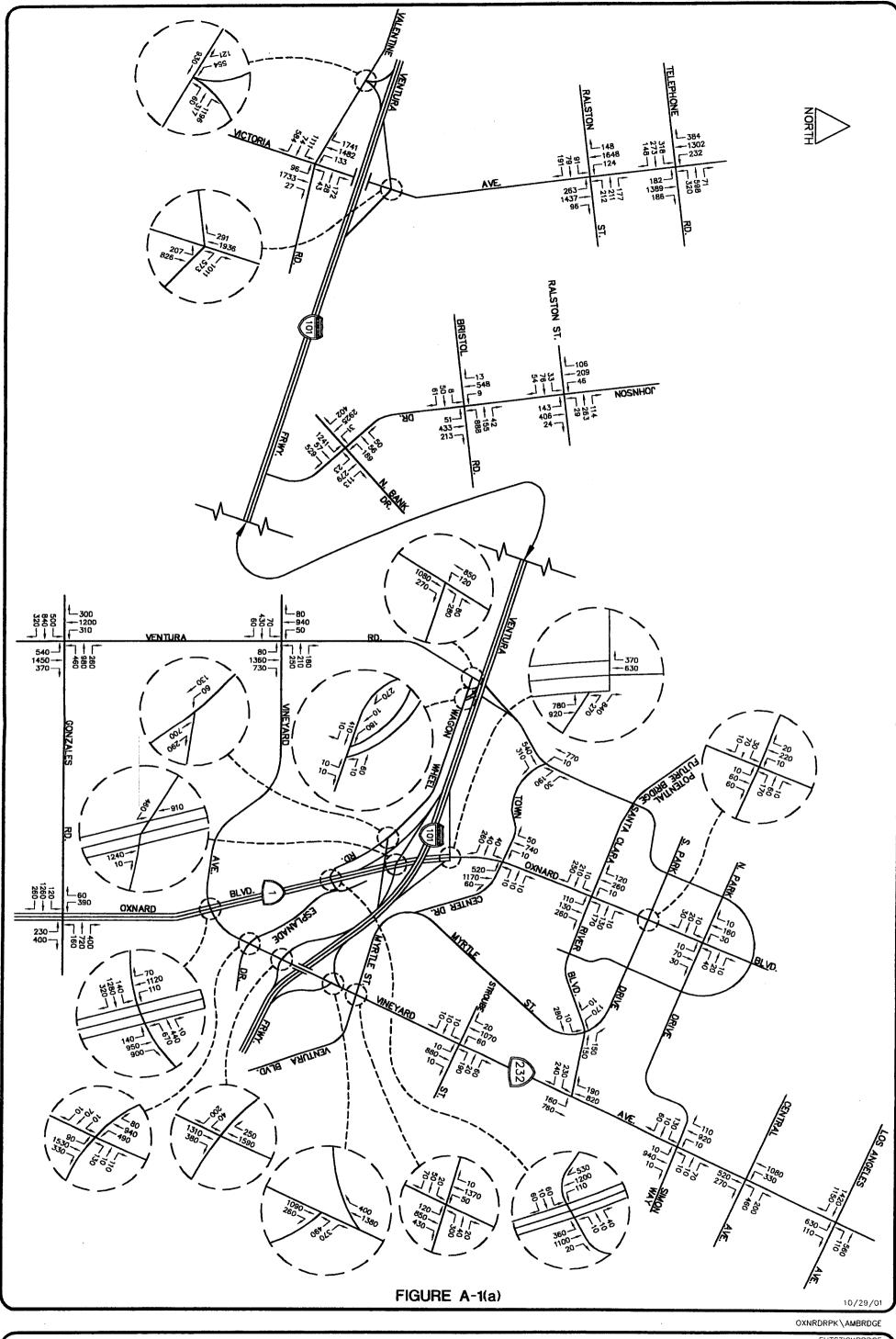
		Peak	With Proj		W Pro	ith ject
No	<u>. Intersection</u>	Hour	<u>v/C</u>	Los	<u>v/c</u>	Los
1	Los Angeles Avenue and	AM	0.850	D	0.788	С
	Vineyard Avenue	PM	0.778	С	0.750	С
2	Central Avenue and	AM	0.659	В	0.741	С
	Vineyard Avenue	PM	0.694	В	0.688	В
3	North Park Drive and	AM	N/A	N/A	0.169	Α
	Oxnard Boulevard	PM	N/A	N/A	0.225	Α
4	Simon Way/North Park Drive and	AM	N/A	N/A	0.412	Α
	Vineyard Avenue	PM	N/A	N/A	0.452	Α
5	Oxnard Boulevard and	AM	N/A	N/A	0.237	Α
	South Park Drive	PM	N/A	N/A	0.284	Α
6	Oxnard Boulevard and	AM	N/A	N/A	0.223	Α
	Santa Clara River Boulevard	PM	N/A	N/A	0.553	Α
7	South Park Drive/Myrtle Street and	AM	N/A	N/A	0.221	Α
	Santa Clara River Boulevard	PM	N/A	N/A	0.344	Α
8	Vineyard Avenue and	AM	N/A	N/A	0.349	Α
	Santa Clara River Boulevard	PM	N/A	N/A	0.466	Α
9	Vineyard Avenue and	AM	0.387	Α	0.354	Α
	Stroube Street	PM	0.387	Α	0.363	Α
10	Ventura Road and	AM	0.124	Α	0.226	Α
	Town Center Drive	PM	0.663	Α	0.392	Α
11	Oxnard Boulevard and	AM	0.422	Α	0.454	Α
	Town Center Drive	PM	0.339	Α	0.684	В
12	Vineyard Avenue and	AM	0.404	Α	0.476	Α
	Ventura Boulevard	PM	0.546	Α	0.690	В
13	Oxnard Boulevard and	AM	0.494	Α	0.536	Α
	US-101 Northbound Ramps	PM	0.602	В	0.597	Α
14	Oxnard Boulevard and	AM	0.188	Α	0.352	Α
	US-101 Southbound Ramps	PM	0.253	Α	0.561	Α
15	Vineyard Avenue and	AM	0.439	Α	0.457	Α
	US-101 Northbound Ramps	PM	0.517	Α	0.554	Α

Table A-1(a) (Con't)
Intersection Volume/Capacity Summary
Future (2020) Peak Hour Traffic Conditions with Potential Future Bridge,
Project Area Intersections

		Peak	Witho		Wit Proje	
No.		Hour	V/C	LOS	V/C	LOS
16	Vineyard Avenue and	AM	0.456	A	0.456	A
	US-101 Southbound Ramps	PM	0.533	A	0.526	A
17	Ventura Road and	AM	0.343	A	0.509	A
	Wagon Wheel Road	PM	0.621	B	0.711	C
18	Wagon Wheel Road and US-101 Southbound Off-Ramp	AM PM	0.384 0.806	A D	0.378 0.750	A C
19	Wagon Wheel Road and US-101 Southbound On-Ramp	AM PM	0.424 0.559	A A	0.458 0.759	A D*
20	Oxnard Boulevard and	AM	0.561	A	0.629	B
	Esplanade Drive	PM	0.808	D	0.816	D*
21	Vineyard Avenue and	AM	0.617	A	0.644	B
	Esplanade Drive	PM	0.868	D	0.939	E*
22	Vineyard Avenue and	AM	0.687	B	0.677	B
	Ventura Road	PM	0.826	D	0.887	D*
23	Vineyard Avenue and	AM	0.798	C	0.867	D*
	Oxnard Boulevard	PM	0.893	D	0.954	E*
24	Gonzales Road and	AM	0.731	C	0.812	D*
	Ventura Road	PM	0.829	D	0.891	D*
25	Gonzales Road and	AM	0.690	B	0.674	B
	Oxnard Boulevard	PM	0.874	D	0.819	D*

N/A - Intersections do not exist in the "Without Project" Scenario.

^{*} Denotes a significant impact prior to mitigation.

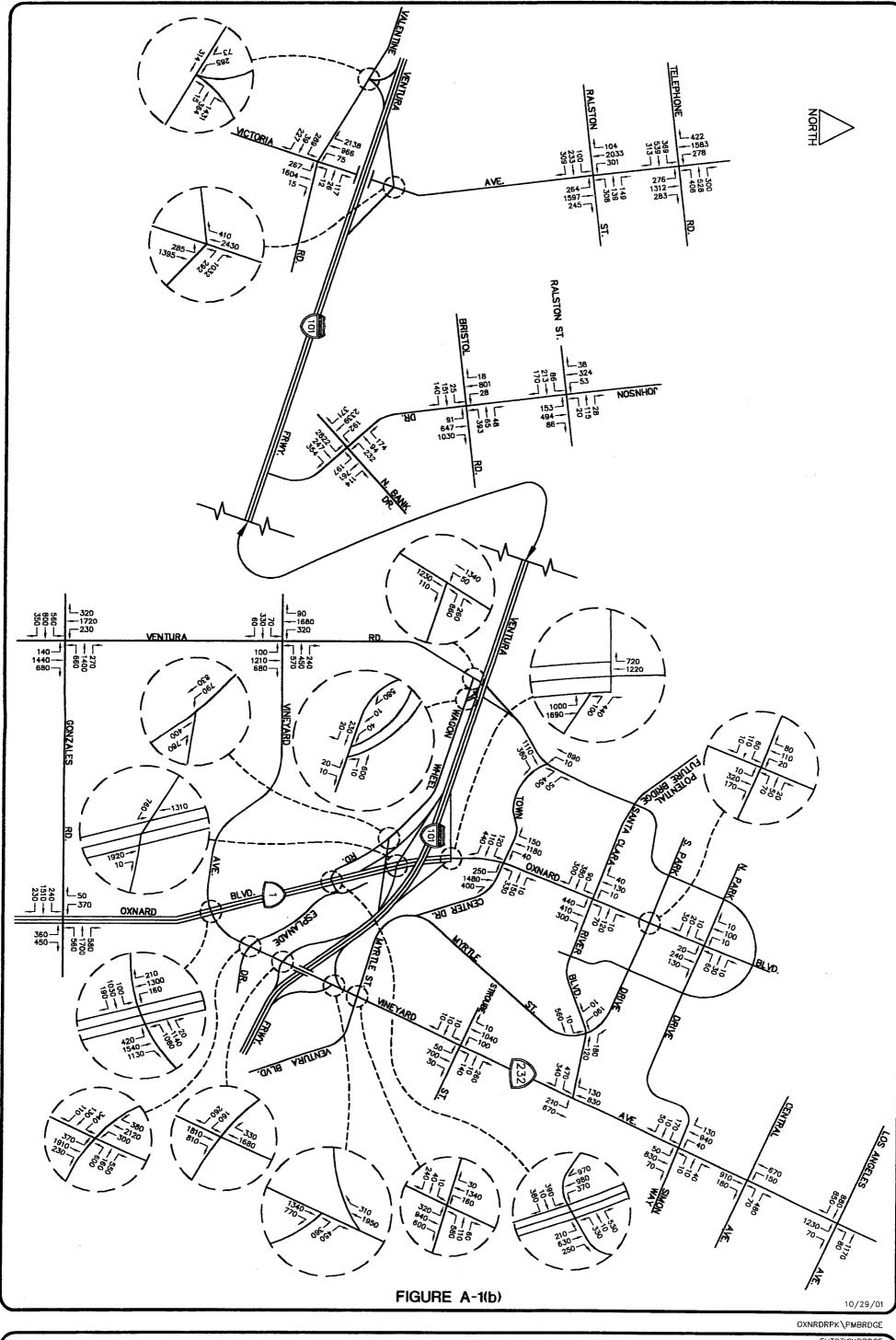

Table A-1(b)
Intersection Volume/Capacity Summary
Future (2020) Peak Hour Traffic Conditions with Potential Future Bridge,
City of Ventura Intersections

		Peak		hout ject		ith ject	
No	<u>. Intersection</u>	<u>Hour</u>	V/C	LOS	V/C	LOS	<u>Impact</u>
26	Victoria Avenue and	AM	0.552	Α	0.560	Α	0.008
	Telephone Road	PM	0.625	В	0.653	В	0.028
27	Victoria Avenue and	AM	0.621	В	0.634	В	0.013
	Ralston Street	PM	0.807	D	0.837	D	0.030*
28	Victoria Avenue and	AM	0.568	В	0.596	Α	0.028
	US-101 Northbound Ramps	PM	0.607	В	0.662	В	0.055
29	Valentine Road and	AM	0.500	Α	0.501	Α	0.001
	US-101 Southbound Ramps	PM	0.193	Α	0.196	Α	0.003
30	Valentine Road and	AM	0.871	D	0.872	D	0.001
	Victoria Avenue	PM	0.511	Α	0.514	Α	0.003
31	Ralston Street and	AM	0.463	Α	0.468	Α	0.005
	Johnson Drive	PM	0.454	Α	0.488	Α	0.034
32	Johnson Drive and	AM	0.735	С	0.757	С	0.022
	Bristol Road	PM	0.799	С	0.886	D	0.087
33	Johnson Drive and	AM	1.302	F	1.310	F	0.008
	North Bank Drive	PM	1.566	F	1.560	F	- 0.006

Table A-2 Future (2020) Freeway Volumes and Level of Service with Potential Future Bridge

				Withou	Future (Without Project Tr	Future (2020) oject Traffic Conditions	ons	Wit	Future (2020) With Project Traffic Conditions	e (2020) raffic Co	ndition	SI
CMP Station	<u>oi</u>	Peak Hour	Freeway Capacity	Daily Volume	Peak Hour Volume	D/C Ratio	FOS	Daily Volume	Peak Hour <u>Volume</u>	D/C Ratio	<u>507</u>	Project Impact
US-101 at the Santa Clara River Bridge	N/B	AM PM	12,000 12,000	199,600	8,530 9,460	0.711	00	193,600	8,333 9,164	0.694 0.764	ပပ	-0.017 -0.024
	S/B	A P M	12,000 12,000		8,310 6,400	0.693 0.533	ပေရ		7,998 6,214	0.667 0.518	ОШ	-0.026 -0.015
US-101 between Route 1 and Vineyard Avenue	N/B	AM PM	10,000	169,000	6,610 8,290	0.661	O 0	175,000	6,961 8,683	0.696	00	0.035
	S/B	P A	10,000		6,010	0.601	υυ		6,045 6,982	0.605	ပပ	0.004
US-101 between Vineyard Avenue and Rose Avenue	N/B	A P M	10,000	177,600	7,050 8,350	0.705 0.835	OO	187,300	7,507 8,687	0.751	O 0	0.046
	S/B	P A M	10,000		6,510 7,190	0.651	ပ ပ		6,770 7,732	0.677	00	0.026
Oxnard Boulevard (Route 1) between Vineyard Ave.	N/B	AM PM	4,000	32,300	1,230 1,290	0.308	∢ ∢	37,200	1,461 1,556	0.365	m m	0.057
and US-101	S/B	AM PM	4,000		1,240 1,330	0.310	∢ ∢		1,409	0.352	മ മ	0.042
US-101 south of Central Avenue	N/B	AM PM	8,000	182,4000	7,940 7,110	0.993	шО	187,700	8,258 7,250	1.032 0.906	F(0)	0.039* 0.017
	S/B	AM PM	8,000		5,980	0.748	ОШ		6,086 8,287	0.761	C F(0)	0.013 0.036*

^{*} Denotes a significant project impact.


FUTURE (2020) TRAFFIC VOLUMES
WITH PROJECT (WITH POTENTIAL FUTURE BRIDGE)
AM PEAK HOUR

CRAIN & ASSOCIATES

2007 Sawtelle Boulevard Los Angeles, California 90025 (310) 473-6508

Transportation Planning • Traffic Engineering

FUTURE (2020) TRAFFIC VOLUMES
WITH PROJECT (WITH POTENTIAL FUTURE BRIDGE)
PM PEAK HOUR

CRAIN & ASSOCIATES

2007 Sawtelle Boulevard Los Angeles, California 90025 (310) 473-6508

Transportation Planning · Traffic Engineering

APPENDIX B TRANSPORTATION AND CIRCULATION STUDY WITH CITY OF OXNARD GENERAL PLAN

An analysis assuming full buildout of the City of Oxnard's current General Plan was conducted. The General Plan now reflects land uses that would be allowed under the Oxnard Towncenter Specific Plan, but these uses would be superseded by the RiverPark Specific Plan.

The methodology used for the analysis with the General Plan is similar to the methodology used in the body of the report. The future year 2020 traffic volumes for the General Plan scenario are shown in Figures B-1(a) for the AM peak hour and B-1(b) for the PM peak hour. Based on the traffic volumes in Figures B-1(a) and (b), the level of service for the 33 study intersections was calculated. The ICU calculations for the project intersections and the City of Ventura's intersections are shown in Tables B-1(a) and B-1(b), respectively. According to Table B-1(a), the General Plan scenario would significantly impact nine of the 25 project area intersections. In addition, Table B-1(b) shows that two of the eight study intersections in the City of Ventura would be impacted by the project with the City of Oxnard General Plan. This would result in three more significant impacts at the study intersections as compared to the proposed RiverPark Specific Plan scenario. In addition, the US-101 south of Central Avenue would be significantly impacted, as shown in Table B-2.

Table B-1(a)
Intersection Volume/Capacity Summary
Future (2020) Peak Hour Traffic Conditions with General Plan,
Project Area Intersections

		Peak	With Proje		Wit General	
<u>No</u> 1	<u>Intersection</u> Los Angeles Avenue and Vineyard Avenue	Hour AM PM	V/C 0.850 0.778	Los D C	<u>V/C</u> 0.919 0.853	LOS E* D*
2	Central Avenue and	AM	0.659	B	0.759	C
	Vineyard Avenue	PM	0.694	B	0.831	D*
3	North Park Drive and	AM	N/A	N/A	N/A	N/A
	Oxnard Boulevard	PM	N/A	N/A	N/A	N/A
4	North Park Drive and	AM	N/A	N/A	N/A	N/A
	Vineyard Avenue	PM	N/A	N/A	N/A	N/A
5	Oxnard Boulevard and South Park Drive	AM PM	N/A N/A	N/A N/A	N/A N/A	N/A N/A
6	Oxnard Boulevard and	AM	N/A	N/A	N/A	N/A
	Santa Clara River Boulevard	PM	N/A	N/A	N/A	N/A
7	South Park Drive/Myrtle Street and Santa Clara River Boulevard	AM PM	N/A N/A	N/A N/A	N/A N/A	N/A N/A
8	Vineyard Avenue and	AM	N/A	N/A	N/A	N/A
	Santa Clara River Boulevard	PM	N/A	N/A	N/A	N/A
9	Vineyard Avenue and	AM	0.387	A	0.477	A
	Stroube Street	PM	0.387	A	0.712	C
10	Ventura Road and	AM	0.124	A	0.111	A
	Town Center Drive	PM	0.063	A	0.346	A
11	Oxnard Boulevard and	AM	0.422	A	0.504	A
	Town Center Drive	PM	0.339	A	0.847	D*
12	Vineyard Avenue and	AM	0.404	A	0.408	A
	Ventura Boulevard	PM	0.546	A	0.618	B
13	Oxnard Boulevard and US-101 Northbound Ramps	AM PM	0.494 0.602	A B	0.552 0.610	A B
14	Oxnard Boulevard and US-101 Southbound Ramps	AM PM	0.188 0.253	A A	0.424 0.629	A B
15	Vineyard Avenue and	AM	0.439	A	0.498	A
	US-101 Northbound Ramps	PM	0.517	A	0.554	A

Table B-1(a) (Con't)
Intersection Volume/Capacity Summary
Future (2020) Peak Hour Traffic Conditions with General Plan,
Project Area Intersections

		Peak	With Proje		Wit <u>Genera</u>	
No.	Intersection	Hour	V/C	LOS	V/C	LOS
16	Vineyard Avenue and US-101 Southbound Ramps	AM PM	0.456 0.533	A	0.517 0.558	A
17	Ventura Road and	AM	0.343	A	0.493	A
	Wagon Wheel Road	PM	0.621	B	0.626	B
18	Wagon Wheel Road and	AM	0.384	A	0.353	A
	US-101 Southbound Off-Ramp	PM	0.806	D	0.656	B
19	Wagon Wheel Road and	AM	0.424	A	0.517	A
	US-101 Southbound On-Ramp	PM	0.559	A	0.774	C
20	Oxnard Boulevard and Esplanade Drive	AM PM	0.561 0.808	A D	0.625 0.849	B D*
21	Vineyard Avenue and Esplanade Drive	AM PM	0.617 0.887	A D	0.650 0.958	B E*
22	Vineyard Avenue and	AM	0.687	B	0.729	C
	Ventura Road	PM	0.826	D	0.913	E*
23	Vineyard Avenue and	AM	0.798	C	0.881	D*
	Oxnard Boulevard	PM	0.893	D	0.938	E*
24	Gonzales Road and	AM	0.731	C	0.815	D*
	Ventura Road	PM	0.829	D	0.917	E*
25	Gonzales Road and	AM	0.690	B	0.792	C
	Oxnard Boulevard	PM	0.874	D	0.991	E*

N/A - Intersections do not exist in the "Without Project" and "With General Plan" scenario.

^{*} Denotes a significant impact prior to mitigation.

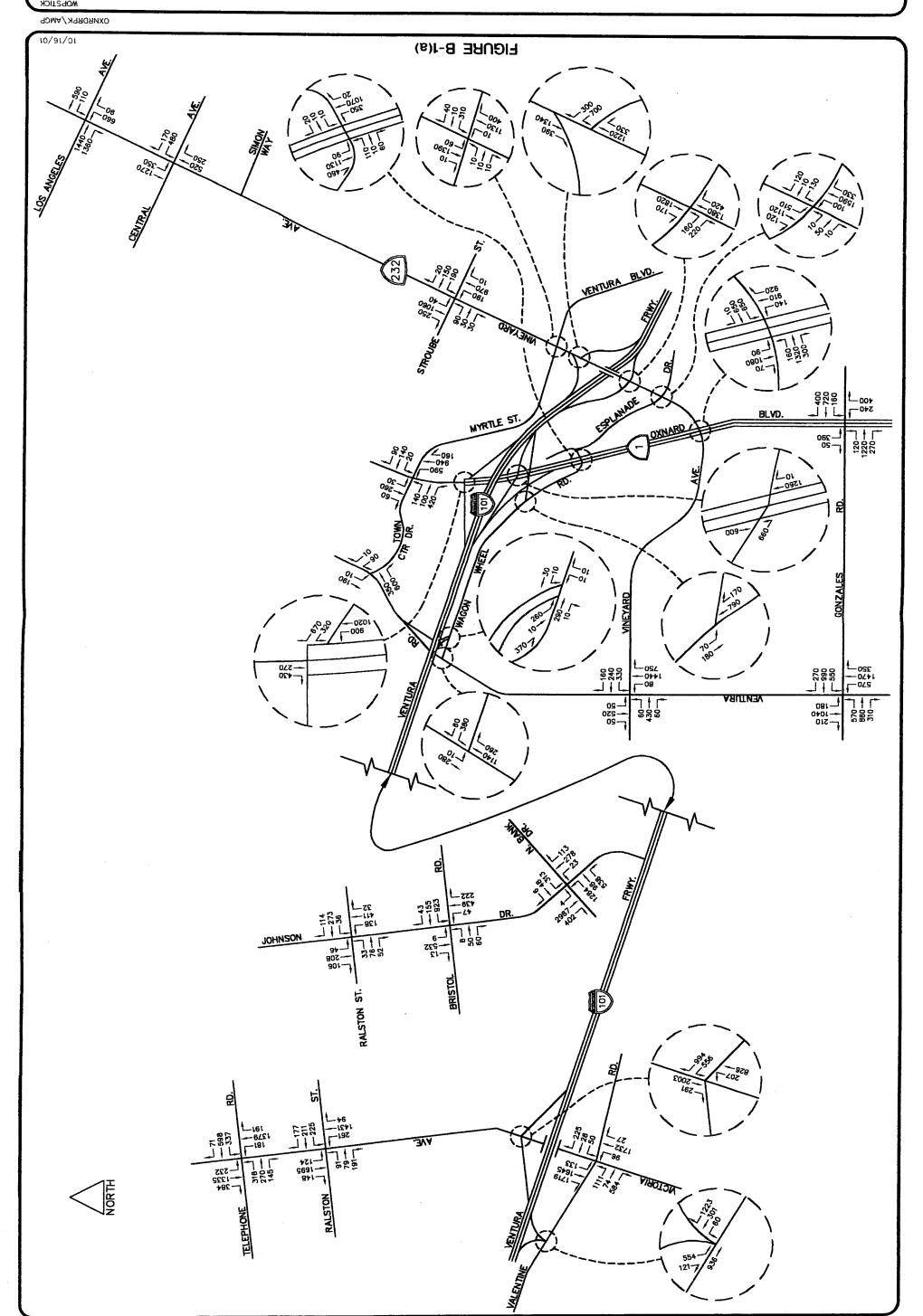
Table B-1(b)
Intersection Volume/Capacity Summary
Future (2020) Peak Hour Traffic Conditions with General Plan,
City of Ventura

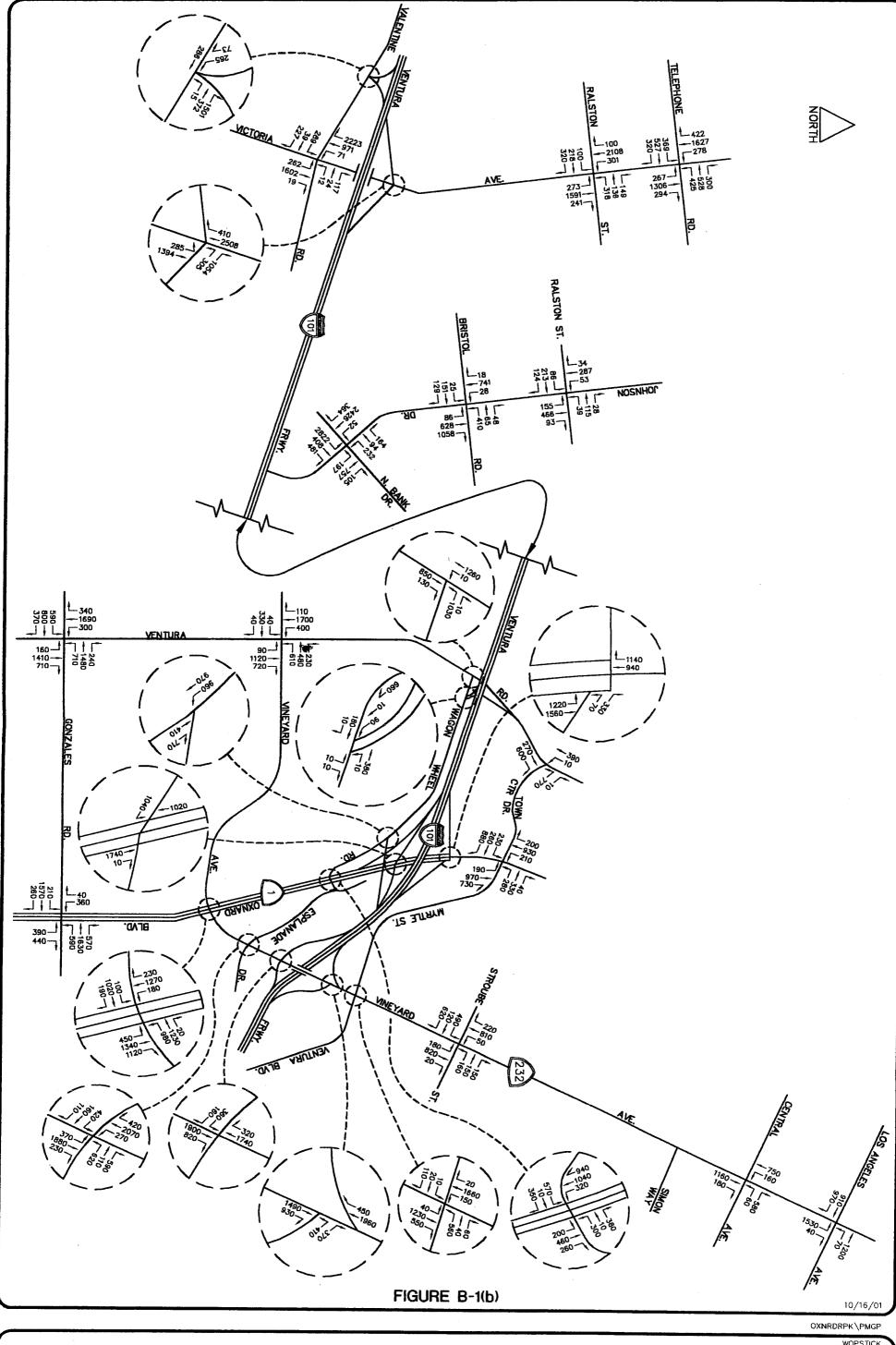
		0.0, 0.	Torreard	_			
		- .		hout		/ith_	
		Peak	•	<u>ject</u>		<u>ral Plan</u>	
<u>No</u>	<u>o. Intersection</u>	<u>Hour</u>	<u>V/C</u>	<u>LOS</u>	<u>V/C</u>	<u>LOS</u>	<u>lmpact</u>
26	Victoria Avenue and	AM	0.552	Α	0.559	Α	0.007
	Telephone Road	PM	0.625	В	0.658	В	0.033
	,						
27	Victoria Avenue and	ΑM	0.621	В	0.641	В	0.020
	Ralston Street	PM	0.807	D	0.851	D	0.044
28	Victoria Avenue and	AM	0.568	Α	0.600	В	0.032
		PM	0.607	В	0.677	В	0.070
	US-101 Northbound Ramps	1 141	0.007	D	0.077	b	0.070
29	Valentine Road and	AM	0.500	Α	0.503	Α	0.003
	US-101 Southbound Ramps	PM	0.193	Α	0.199	Α	0.006
30	Valentine Road and	AM	0.871	D	0.927	E	0.056*
00							
	Victoria Avenue	PM	0.511	Α	0.514	Α	0.003
31	Ralston Street and	AM	0.463	Α	0.477	Α	0.014
	Johnson Drive	PM	0.454	Α	0.482	Α	0.028
20	Jahanaan Dahar and	A B 4	0.705	_	0.750	•	
32	Johnson Drive and	AM	0.735	С	0.756	C	0.021
	Bristol Road	PM	0.799	С	0.844	D	0.045
33	Johnson Drive and	AM	1.302	F	1.375	F	0.073*
	North Bank Drive	PM	1.566	F	1.587	F	0.021*
		1 141		'	1.007	•	0.021

^{*} Denotes a significant impact prior to mitigation.

Table B-2
Future (2020) Freeway Volumes and Level of Service with General Plan

			ı	Withou	Future	Future (2020) Without Project Traffic Conditions	ons	Wi	Future (2020) With Project Traffic Conditions	e (2020) raffic Co	ndition	S
CMP Station US-101 at the Santa Clara River Bridge	Dir N/B	Hour AM PM	Capacity 12,000 12,000	Volume 199,600	Yeak Hour Volume 8,530 9,460	D/C Ratio 0.711 0.788	C C	Volume 212,000	Yeak Hour Volume 8,629 10,200	NC Ratio 0.719 0.850	C C	Project
	S/B	AM M	12,000 12,000	-	8,310 6,400	0.693	OB		8,882 7,025	0.740 0.585	υυ	0.047
US-101 between Route 1 and Vineyard Avenue	N/B	A A	10,000	169,000	6,610 8,290	0.661	О 0	178,000	6,952 8,944	0.695 0.894	υD	0.034
	S/B	P A	10,000		6,010	0.601	υυ		6,130 7,144	0.613 0.714	υo	0.012 0.036
US-101 between Vineyard Avenue and Rose Avenue	N/B	AM M	10,000	177,600	7,050	0.705 0.835	O 0	186,200	7,573 8,561	0.757	00	0.052
	S/B	AM PM	10,000		6,510 7,190	0.651	υυ		6,624 7,752	0.662	OO	0.011 0.056
Oxnard Boulevard (Route 1) between Vineyard Ave.	N/B	AM PM	4,000	32,300	1,230 1,290	0.308	4 4	35,100	1,426 1,344	0.357	യ ∢	0.049
and US-101	S/B	A A	4,000		1,240 1,330	0.310	∢ ∢		1,334 1,424	0.334	₽	0.024 0.023
US-101 south of Central Avenue	N/B	A M	8,000	182,4000	7,940 7,110	0.993	ШΩ	189,100	8,454 7,203	1.057 0.900	F(0) D	0.064* 0.011
	S/B	P A M	8,000		5,980	0.748	ОШ		5,984 8,455	0.748 1.057	C F(0)	0.000


^{*} Denotes a significant project impact.


FUTURE (2020) TRAFFIC VOLUMES WITH GENERAL PLAN PROJECT AM PEAK HOUR

nsıT

2007 Sawielle Boulevard Los Angeles, California 90025 (310) 473-6508 Transportation Planning •Traffic Engineering

CRAIN & ASSOCIATES

FUTURE (2020) TRAFFIC VOLUMES WITH GENERAL PLAN PROJECT PM PEAK HOUR

CRAIN & ASSOCIATES

2007 Sawtelle Boulevard Los Angeles, California 90025 (310) 473-6508 Transportation Planning Traffic Engineering

TRAFFIC ANALYSIS FOR OXNARD RIVERPARK SPECIFIC PLAN DEVELOPMENT

ICU CALCULATION WORKSHEETS

Prepared for:

CITY OF OXNARD, COUNTY OF VENTURA

Prepared by:

Crain & Associates 2007 Sawtelle Boulevard, Suite 4 Los Angeles, California 90025 (310) 473 - 6508

INTERSECTION: 1, Los Angeles Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 120 0 560 0		ROUGH 500 1340 0 0	** MII	RI N ON GRE 0 850 20 0	GHT TURNS EN MA	** X ON RED 0 280 60 0
		** N	UMBER OF	LANES	**		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 1 1 0		ROUGH ONLY S 2 2 0 0	RIGHT SHARED 0 0 0 0	RIGHT ONLY 0 1 0	L/T/R SHARED 0 0 0	TOTAL LANES 3 4 3
		** ASSIGN	ED LANE	VOLUME	S **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 120 0 280 N/A	LEFT SHARED N/A N/A 280 N/A	THROUG ONL: 250 670 N/I	Y S O O A	RIGHT HARED N/A N/A N/A N/A	RIGHT ONLY N/A 850 20 N/A	L/T/R SHARED N/A N/A N/A
	NORTH-SOU		L VOLUME: VOLUME: CLEARANG	ES S CE INTE		280 1250 3*	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1 10-16-2001, 9:33 AM

INTERSECTION: 1, Los Angeles Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 80 0 620	T	HROUGH 570 1440 0	** MI	RI N ON GRI 0 970 40 0	ight turns een ma	X ON RED 0 310 40
SOUTHBOOKD	U				•		· ·
		** 1	NUMBER	OF LANES	**		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 1 0	LEFT TE SHARED 0 0 1	ROUGH ONLY 2 2 0 0	RIGHT SHARED 0 0 0 0	RIGHT ONLY 0 1 0	L/T/R SHARED 0 0 0	TOTAL LANES 3 4 3
		** ASSIGN	NED LAN	E VOLUME	S **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 80 0 310 N/A	LEFT SHARED N/A N/A 310 N/A	2 7 N		RIGHT HARED N/A N/A N/A N/A	RIGHT ONLY N/A 970 40 N/A	L/T/R SHARED N/A N/A N/A
	NORTH-SOU		AL VOLUM CLEARA	MES		1360	•

capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 1, Los Angeles Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 110 0 720 0		TROUGH 580 1430 0	** MI	RI N ON GRE 0 980 45 0	GHT TURNS EEN MA	** X ON RED 0 360 55 0			
		** N	UMBER (OF LANES	**					
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 1 0		ROUGH ONLY 2 2 0 0	RIGHT SHARED 0 0 0 0	RIGHT ONLY 0 1 1	L/T/R SHARED 0 0 0	TOTAL LANES 3 4 3 1			
** ASSIGNED LANE VOLUMES **										
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND		LEFT SHARED N/A N/A 360 N/A	7: N		RIGHT HARED N/A N/A N/A N/A	RIGHT ONLY N/A 980 45 N/A	L/T/R SHARED N/A N/A N/A			
	NORTH-SOU	CRITICAL TH CRITICA F CRITICAL	T AOTA	MES		360				
		CRITICAL								
	CMA VALUE									
	LEVEL OF	SERVICE				Е				

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 1, Los Angeles Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH	LEFT	Т	HROUGH	* * MI	RI IN ON GRE	GHT TURNS	X ON RED		
WESTBOUND	110		580		0		0		
EASTBOUND	0		1430		980		360		
NORTHBOUND	720		0		45		55		
SOUTHBOUND	0		0		0		0		
		**	NUMBER	OF LANES	; **				
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	2	1	0	0	4		
EASTBOUND	1	0	2	1	1	0	5		
NORTHBOUND	1	1	0	0	1	0	3		
SOUTHBOUND	0	0	0	0	0	1	1		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R		
	ONLY	SHARED			HARED	ONLY	SHARED		
WESTBOUND	110	N/A		.93	193 602	N/A 602	N/A		
EASTBOUND	0	N/A 360		02 /A	602 N/A	602 45	N/A N/A		
NORTHBOUND SOUTHBOUND	360 N/A	N/A		I/A I/A	N/A N/A	N/A	N/A 0		
SOUTHBOOMD	N/A	N/A	14	1/ A	N/A	N/A	U		
		r CRITICAL		-					
	NORTH-SO	JTH CRITIC	AL VOLU	MES		360			
	THE SUM	OF CRITICA	L VOLUM	ES		1072			
	NUMBER O	F CRITICAL	CLEARA	NCE INTE	RVALS	3*			
	CMA VALU	B				0.670			
	LEVEL OF	SERVICE .				В			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR4
10-16-2001, 9:33 AM

INTERSECTION: 1, Los Angeles Avenue and Vineyard Avenue

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 110 0 630 0	ТН	IROUGH 560 1420 0 0	** MI		IGHT TURNS EEN MA	** X ON RED 0 315 55
500112501	-	** N	IUMBER	OF LANES	**		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 1 0	_	IROUGH ONLY 2 2 0	RIGHT SHARED 0 0 0 0	RIGHT ONLY 0 1 0	L/T/R SHARED 0 0 0	TOTAL LANES 3 4 3
		** ASSIGN	NED LAN	E VOLUME	S **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 110 0 315 N/A	LEFT SHARED N/A N/A 315 N/A	2 7 N		RIGHT HARED N/A N/A N/A N/A	RIGHT ONLY N/A 835 55 N/A	L/T/R SHARED N/A N/A N/A
	NORTH-SOU THE SUM C	CRITICAL TH CRITICAL OF CRITICAL	AL VOLUM L VOLUM CLEARA	MES IES		315	,
	CMA VALUE	SERVICE .				0.788 C	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 1, Los Angeles Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	qu	IROUGH	* * M1	R IN ON GR	IGHT TURNS	** X ON RED		
WESTBOUND	110	11.	590	1-1.3	01 01	EER PE	0		
EASTBOUND	0		1440		1030		330		
NORTHBOUND	660		0		35		55		
SOUTHBOUND	0		0		0		0		
		** 1/	IUMBER (OF LANES	S **				
APPROACH	LEFT ONLY	LEFT TH	ROUGH ONLY	RIGHT SHARED	RIGHT ONLY	L/T/R SHARED	TOTAL LANES		
WESTBOUND	1	0	2	0	0	0	3		
EASTBOUND	1	0	2	Ö	1	Ō	4		
NORTHBOUND	1	1	0	0	1	0	3		
SOUTHBOUND	0	0	0	0	0	1	1		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON		HARED	ONLY	SHARED		
WESTBOUND	110	N/A		95	N/A	N/A	N/A		
EASTBOUND NORTHBOUND	0 330	N/A 330	7:		N/A	1030	N/A		
SOUTHBOUND	330 N/A	N/A		/A /A	N/A N/A	35 N/A	N/A 0		
SOUTHBOOKE	N/A	N/A	IN,	A	N/A	N/A	U		
				_					
		CRITICAL TH CRITICA							
	NORTH-SOC	IH CRITICA	ידי אסדיסו	MES	• • • • • •	330			
	THE SUM C	F CRITICAL	VOLUMI	ES		1470			
	NUMBER OF	CRITICAL	CLEARAI	NCE INTE	RVALS .	3*			
	CMA VALUE		• • • • • •	• • • • • • • •		0.919			
	LEVEL OF	SERVICE	•••••	• • • • • • •	• • • • • • •	E			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 1, Los Angeles Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				**	RIGHT TURNS	s **			
	LEFT	THI	ROUGH	MIN ON	GREEN M	AX ON RED			
WESTBOUND	70	-	1150		0	0			
EASTBOUND	0		700		0	520			
NORTHBOUND	1060		0		0	40			
SOUTHBOUND	0		0		0	0			
		** M	UMBER OF L	ANES **					
APPROACH	LEFT	LEFT THI	ROUGH RI	GHT RIGI	HT L/T/R	TOTAL			
	ONLY	SHARED (ONLY SHA	RED ON	LY SHARED	LANES			
WESTBOUND	1	0	2	0	0 C	3			
EASTBOUND	1	0	2	0	1 0	4			
NORTHBOUND	1	1	0	-	1 0	3			
SOUTHBOUND	0	0	0	0	0 1	1			
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THROUGH	RIGH	r RIGHT	L/T/R			
	ONLY	SHARED	ONLY	SHARE		SHARED			
WESTBOUND	70	N/A	575	N/A	-	N/A			
EASTBOUND	0	N/A	350	N/A	0	N/A			
NORTHBOUND	530	530	N/A	N/A		N/A			
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	0			
		CRITICAL THE CRITICAL							
	THE SUM C	F CRITICAL	VOLUMES .		1105				
	NUMBER OF	CRITICAL (CLEARANCE	INTERVAL	s 3	*			
	CMA VALUE	·	· · · · · · · · · · · · · · · ·		0.691				
	LEVEL OF	SERVICE			В				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 1, Los Angeles Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**		RIGHT		**
MECEDOIDEO	LEFT		THROUGH 1160	MI	N ON	GREEN O	MAX	ON RED
WESTBOUND EASTBOUND	60 0		890		24			665
NORTHBOUND	1330		0			0		30
SOUTHBOUND	0		ŏ			0		0
	· ·					•		•
		**	NUMBER	OF LANES	**			
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGH		T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONL		ARED	LANES
WESTBOUND	1	0	2	0	0		0	3
EASTBOUND	1	0	2	0	1		0	4
NORTHBOUND		1	0	0	1		0	3
SOUTHBOUND	0	0	0	0	0		1	1
		** ASS	IGNED LAN	NE VOLUME	s **			
APPROACH	LEFT	LEF'	r THRO	UGH	RIGHT	RIG	HT	L/T/R
	ONLY	SHARI		ILY S	HARED	ON	1LY	SHARED
WESTBOUND	60	N/2		80	N/A		I/A	N/A
EASTBOUND	0	N/2		45	N/A	2	245	N/A
NORTHBOUND		66!		I/A	N/A		0	N/A
SOUTHBOUND	N/A	N/1	y y	I/A	N/A	N	I/A	0
	EAST-WEST						580 665	
						-		
	THE SUM O	F CRITIC	CAL VOLUM	ies	• • • • •		1245	
	NUMBER OF	CRITICA	AL CLEARA	NCE INTE	RVALS		3*	
	CMA VALUE	• • • • • •		• • • • • • • •		0	.778	
	LEVEL OF	SERVICE					С	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 1, Los Angeles Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	TH	ROUGH	** MIN	RIG ON GREE	HT TURNS	** K ON RED
WESTBOUND	70		1190	*****	0		0
EASTBOUND	,0	•	870		265		785
NORTHBOUND	-		0		0		60
SOUTHBOUND	_		ŏ		Ŏ		0
SOUTHBOOMD	O .		V		J		ŭ
		** N	UMBER OF	LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH R	IGHT R	IGHT	L/T/R	TOTAL
ALLICACII	ONLY				ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	1	Ö	2	Ö	1	Ö	4
NORTHBOUND		i	ō	Ö	ī	Ö	3
SOUTHBOUND	Ō	Ō	Ö	Ŏ	ō	1	1
SOUTHBOOKE	· ·	•	· ·	· ·	·	_	_
	•	** ASSIGN	ED LANE V	OLUMES	**		
APPROACH	LEFT	LEFT	THROUGH	RI	GHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHA	RED	ONLY	SHARED
WESTBOUND	70	N/A	595	N	ſ/A	N/A	N/A
EASTBOUND	0	N/A	435	N	/A	265	N/A
NORTHBOUND	·	785	N/A		/A	0	N/A
SOUTHBOUND		N/A	N/A		/A	N/A	0
	,	•	•		•	·	
	EAST-WEST	CRITICAL	VOLUMES .			. 595	
		TH CRITICA					
	MONTH DOC	/	_				
	THE SUM C	F CRITICAL	VOLUMES			. 1380	
	NUMBER OF	CRITICAL	CLEARANCE	INTERV	ALS	3*	
	CMA VALUE					. 0.863	
	LEVEL OF	SERVICE				. D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 1, Los Angeles Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH					IGHT TURNS	**
	LEFT		ROUGH	MIN ON GR	een ma	X ON RED
WESTBOUND	70	-	1190	0		0
EASTBOUND	0		870	265		785
NORTHBOUND SOUTHBOUND			0 0	6 0		54
SOUTHBOOMD	0		U	U		0
		** N	UMBER OF LA	ANES **		
APPROACH	LEFT	LEFT THI	ROUGH RIO	GHT RIGHT	L/T/R	TOTAL
	ONLY	SHARED (ONLY SHAI		SHARED	LANES
WESTBOUND	1	0	2	1 0	0	4
EASTBOUND	1	0		1	0	5
NORTHBOUND	_	1		1	0	3
SOUTHBOUND	0	0	0 (0	1	1
		** ASSIGN	ED LANE VOI	LUMES **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	70	N/A	397	397	N/A	N/A
EASTBOUND	0	N/A	290	N/A	265	N/A
NORTHBOUND		785	N/A	N/A	6	N/A
SOUTHBOUND	N/A	N/A	N/A	N/A	N/A	0
	71.CT					
				• • • • • • • • • • • • • • • • • • • •	785	
	THE SUM O	F CRITICAL	VOLUMES	• • • • • • • • • • • • • • • • • • • •	1182	
	NUMBER OF	CRITICAL O	CLEARANCE 1	INTERVALS .	3*	
	CMA VALUE	• • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	0.739	
	LEVEL OF	SERVICE	· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	с	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR8 10-16-2001, 9:33 AM

INTERSECTION: 1, Los Angeles Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 80 0 1230		ROUGH 1170 880 0 0	** MIN ON G 235		X ON RED 0 615 70 0			
	-	** N	UMBER OF L	ANES **					
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 1 0			GHT RIGHT RED ONLY 0 0 0 1 0 1 0 0	, ,	TOTAL LANES 3 4 3			
** ASSIGNED LANE VOLUMES **									
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND		LEFT SHARED N/A N/A 615 N/A	THROUGH ONLY 585 440 N/A N/A	RIGHT SHARED N/A N/A N/A	RIGHT ONLY N/A 235 0 N/A	L/T/R SHARED N/A N/A N/A			
	NORTH-SOU	CRITICAL TH CRITICA OF CRITICAL CRITICAL	L VOLUMES .	INTERVALS	615				
	CMA VALUE								
	LEVEL OF	SERVICE			C				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 1, Los Angeles Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	7 TO TOTAL		WID OUT OUT	**		IGHT TURNS	
MACABOTA	LEFT	. 1	'HROUGH	MI	N ON GE	AM NAS	X ON RED
WESTBOUND	70		1200		0 205		0 765
EASTBOUND	1 = 3 0		910		205		40
NORTHBOUND SOUTHBOUND			0 0		0		0
SOUTHBOOMD	U		U		U		U
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	'HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	0	0	3
EASTBOUND	1	0	2	0	1	0	4
NORTHBOUND	1	1	0	0	1	0	3
SOUTHBOUND	0	0	0	0	0	1	1
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	70	N/A	6	00	N/A	N/A	N/A
EASTBOUND	0	N/A	4	55	N/A	205	N/A
NORTHBOUND	765	765	N	/A	N/A	0	N/A
SOUTHBOUND	N/A	N/A	N	/A	N/A	N/A	0
	Drom tipos		***				
		CRITICAL TH CRITIC					
	NORTH-SOC	IN CRITIC	AL VOLU	MES	• • • • • • •		
	THE SUM C	F CRITICA	L VOLUM	ES		1365	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	3*	
	CMA VALUE			• • • • • • • • • • • • • • • • • • • •	• • • • • • •	0.853	
	LEVEL OF	SERVICE .		• • • • • • • •		D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 2, Central Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT	ייי	HROUGH	* * MT	RI N ON GRE	GHT TURNS	** X ON RED		
WESTBOUND	340		0		0		110		
EASTBOUND	0		0		0		0		
NORTHBOUND	0		400		310		0		
SOUTHBOUND	340		920		0		0		
		**]	NUMBER	OF LANES	**				
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	0	0	1	0	2		
EASTBOUND	0	0	0	0	0	0	0		
NORTHBOUND	0	0	1	1	0	0	2		
SOUTHBOUND	1	0	2	0	0	0	3		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED		
WESTBOUND	340	N/A	N	/A	N/A	0	N/A		
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A		
NORTHBOUND	N/A	N/A		55	355	N/A	N/A		
SOUTHBOUND	340	N/A	4	60	N/A	N/A	N/A		
		r CRITICAL JTH CRITICA							
	THE SUM (OF CRITICAL	L VOLUM	ES		1035			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*			
	CMA VALUI	3				0.647			
	LEVEL OF	SERVICE .			• • • • • • •	В			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 2, Central Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	TH	ROUGH	** MI)	RI N ON GRE	GHT TURNS	** X ON RED
WESTBOUND	400		0		50		160
EASTBOUND	0		0		0		0
NORTHBOUND	0		420		250		0
SOUTHBOUND	320		1170		0		0
		** N	UMBER O	F LANES	**		
APPROACH	LEFT		ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY			SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	0	2
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0 1	0 0	1 2	1 0	0 0	0 0	2 3
SOUTHBOUND	1	U	2	U	U	U	3
		** ASSIGN	ED LANE	VOLUME	S **		
APPROACH	LEFT	LEFT	THROU	GH 1	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONL		HARED	ONLY	SHARED
WESTBOUND	400	N/A	N/I		N/A	50	N/A
EASTBOUND	N/A	N/A	N/I		N/A	N/A	N/A
NORTHBOUND	N/A	N/A	33!		335	N/A	N/A
SOUTHBOUND	320	N/A	58	5	N/A	N/A	N/A
		CRITICAL					
	NORTH-SOU	TH CRITICA	T AOTAW	ES		655	
	THE SUM C	F CRITICAL	VOLUME:	s			
	NUMBER OF	CRITICAL	CLEARAN	CE INTE	RVALS	3*	
	CMA VALUE			• • • • • • •	• • • • • • •	0.659	
	LEVEL OF	SERVICE				в	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2 10-16-2001, 9:33 AM

INTERSECTION: 2, Central Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	-	THROUGH	* * MT	R: N ON GRI	IGHT TURNS	** AX ON RED				
WESTBOUND	460	•	0	•••	30		160				
EASTBOUND	0		0		0		0				
NORTHBOUND	0		580		260		0				
SOUTHBOUND	320		1280		0		0				
** NUMBER OF LANES **											
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL				
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES				
WESTBOUND	1	0	0	0	1	0	2				
EASTBOUND	0	0	0	0	0	0	0				
NORTHBOUND	0	0	1	1	0 0	0 0	2 3				
SOUTHBOUND	1	0	2	0	U	U	3				
** ASSIGNED LANE VOLUMES **											
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R				
	ONLY	SHARE	ON	LY S	HARED	ONLY	SHARED				
WESTBOUND	460	N/A	N	/A	N/A	30	N/A				
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A				
NORTHBOUND	N/A	N/A		20	420	N/A	N/A				
SOUTHBOUND	320	N/A	6	40	N/A	N/A	N/A				
EAST-WEST CRITICAL VOLUMES 460											
	NORTH-SOUTH CRITICAL VOLUMES 740										
THE SUM OF CRITICAL VOLUMES 1200											
	NUMBER OF CRITICAL CLEARANCE INTERVALS 3*										
	CMA VALUE 0.750										
	LEVEL OF SERVICE C										

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 2, Central Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	ī	RIGHT TURNS	3 **					
ALLKOACH	LEFT	זיד	HROUGH	МТ	n on gr	· - -	AX ON RED					
WESTBOUND	460		0		35		165					
EASTBOUND	0		Ō		0		0					
NORTHBOUND			520		270		Ö					
SOUTHBOUND			1080		0		Ō					
		** 1	NUMBER	OF LANES	**							
APPROACH	LEFT	LEFT TH	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL					
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES					
WESTBOUND	1	0	0	0	1	0	2					
EASTBOUND	0	0	0	0	0	0	0					
NORTHBOUND	0	0	1	1	0	0	2					
SOUTHBOUND	1	0	2	0	0	0	3					
** ASSIGNED LANE VOLUMES **												
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R					
	ONLY	SHARED	ON	ILY S	HARED	ONLY	SHARED					
WESTBOUND	460	N/A	N	I/A	N/A	35	N/A					
EASTBOUND	N/A	N/A	N	/A	N/A	N/A	N/A					
NORTHBOUND	N/A	N/A	3	95	395	N/A	N/A					
SOUTHBOUND	330	N/A	5	40	N/A	N/A	N/A					
EAST-WEST CRITICAL VOLUMES												
THE SUM OF CRITICAL VOLUMES 1185												
NUMBER OF CRITICAL CLEARANCE INTERVALS 3*												
CMA VALUE 0.741												
	LEVEL OF	SERVICE		• • • • • • • • • • • • • • • • • • • •	• • • • • • •	C						

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 2, Central Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 480 0 0 350		ROUGH 0 0 520 1270	** I MIN ON GE 0 0 250 0	RIGHT TURNS REEN MA	** X ON RED 170 0 0		
		** N	UMBER OF L	ANES **				
		•••	91.22.					
APPROACH	LEFT ONLY		ROUGH RICONLY SHA	GHT RIGHT RED ONLY	L/T/R SHARED	TOTAL LANES		
WESTBOUND	1	0	0	0 1	0	2		
EASTBOUND	0	0	-	0 0	0	0		
NORTHBOUND	0	0		1 0	0	2		
SOUTHBOUND	1	0	2	0 0	0	3		
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT ONLY	LEFT SHARED	THROUGH ONLY	RIGHT SHARED	RIGHT ONLY	L/T/R S HARE D		
WESTBOUND	480	N/A	N/A	N/A	0	N/A		
EASTBOUND	N/A	N/A	N/A	N/A	N/A	N/A		
NORTHBOUND	N/A	N/A	385	385	N/A	N/A		
SOUTHBOUND	350	N/A	635	N/A	N/A	N/A		
		CRITICAL TH CRITICA						
	THE SUM (F CRITICAL	VOLUMES .		1215			
	NUMBER OF	F CRITICAL	CLEARANCE	INTERVALS	3*			
	CMA VALUE	3			0.759			
	LEVEL OF	SERVICE			C			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3 10-16-2001, 9:42 AM

INTERSECTION: 2, Central Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* · M	* RI	IGHT TURNS	** AX ON RED		
WESTBOUND	110		0	1.2	365		45		
EASTBOUND	0		0		0		0		
NORTHBOUND			580		80		0		
SOUTHBOUND	90		430		0		0		
		**	NUMBER	OF LANE	S **				
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	0	0	1	0	2		
EASTBOUND	0	0	0	0	0	0	0		
NORTHBOUND		0	1	1	0	0	2		
SOUTHBOUND	1	0	2	0	0	0	3		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT			RIGHT	RIGHT	L/T/R		
	ONLY	SHARE			SHARED	ONLY	SHARED		
WESTBOUND	110	N/A		I/A	N/A	365	N/A		
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A		
NORTHBOUND	•	N/A		30	330	N/A	N/A		
SOUTHBOUND	90	N/A	2	15	N/A	N/A	N/A		
	EAST-WEST								
	THE SUM C	F CRITIC	AL VOLUM	ES		785			
	NUMBER OF	CRITICA	L CLEARA	NCE INT	ERVALS	3*	•		
	CMA VALUE			• • • • • • •		0.491			
	LEVEL OF	SERVICE	• • • • • • •	• • • • • •	• • • • • • • • •	A			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 2, Central Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	тн	ROUGH	** MTN	RIC ON GREE	HT TURNS	** X ON RED	
WESTBOUND	40	4.14	0		365		95	
EASTBOUND	0		Ö		0		0	
NORTHBOUND	Ō		970		140		0	
SOUTHBOUND	190		670		0		0	
		** N	UMBER OF	LANES	**			
APPROACH	LEFT				RIGHT	L/T/R	TOTAL	
	ONLY	-			ONLY	SHARED	LANES	
WESTBOUND	1	0	0	0	1	0	2	
EASTBOUND	0	0	0	0	0	0	0	
NORTHBOUND	0	0	1	1	0	0	2 3	
SOUTHBOUND	1	0	2	0	0	0	3	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THROUGH	H RI	GHT	RIGHT	L/T/R	
111 1 11011011	ONLY	SHARED	ONLY		RED	ONLY	SHARED	
WESTBOUND	40	N/A	N/A	N	I/A	365	N/A	
EASTBOUND	N/A	N/A	N/A	N	I/A	N/A	N/A	
NORTHBOUND	N/A	N/A	555	5	555	N/A	N/A	
SOUTHBOUND	190	N/A	335	N	I/A	N/A	N/A	
		CRITICAL TH CRITICA						
	THE SUM C	F CRITICAL	VOLUMES					
	NUMBER OF	CRITICAL	CLEARANCI	E INTERV	ALS	3*		
	CMA VALUE				· • • • • • •	0.694		
	LEVEL OF	SERVICE				В		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 2, Central Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	,	THROUGH	* 1	RIN ON GRI	IGHT TURNS	X ON RED		
WESTBOUND	80		inkough 0	141 -	380	een Me	80 80		
EASTBOUND	0		Ö		0		0		
NORTHBOUND	0		1270		170		0		
SOUTHBOUND	160		820		0		0		
		**	NUMBER	OF LANES	5 **				
APPROACH	LEFT	LEFT :	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	0	0	1	0	2		
EASTBOUND	0	0	0	0	0	0	0		
NORTHBOUND		0	1	1	0	0	2		
SOUTHBOUND	1	0	2	0	0	0	3		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R		
	ONLY	SHAREI			SHARED	ONLY	SHARED		
WESTBOUND	80	N/A		/A	N/A	380	N/A		
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A		
NORTHBOUND		N/A		20	720	N/A	N/A		
SOUTHBOUND	160	N/A	4	10	N/A	N/A	N/A		
	EXCT_MECT	r Cormicai	. UOI IIMI	c		200			
	NORTH-SOU	CRITICAL TH CRITIC	TAL VOLUME	MES	• • • • • • • •	380			
	THE SUM (F CRITICA	AL VOLUM	ES		1260			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*			
	CMA VALUE		• • • • • • •	• • • • • • •		0.788			
	LEVEL OF	SERVICE .	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •		C			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 2, Central Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 70 0 0 150	THE	ROUGH 0 0 910 670	** R MIN ON GR 405 0 180	IGHT TURNS EEN MA	** X ON RED 75 0 0
		** N	JMBER OF L	ANES **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 0 0		ONLY SHA 0 0 1	GHT RIGHT RED ONLY 0 1 0 0 1 0 0 0	L/T/R SHARED 0 0 0	TOTAL LANES 2 0 2 3
		** ASSIGN	ed lane vo	LUMES **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	•	LEFT SHARED N/A N/A N/A N/A	THROUGH ONLY N/A N/A 545 335	RIGHT SHARED N/A N/A 545 N/A	RIGHT ONLY 405 N/A N/A N/A	L/T/R SHARED N/A N/A N/A N/A
	NORTH-SOU	CRITICAL THE CRITICAL	L VOLUMES		695	
				INTERVALS .		
	CMA VALUE					

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 2, Central Avenue and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	raam	r	mmonan	* *		IGHT TURNS		
WESTBOUND	LEFT 60	1	THROUGH 0	141.7	N ON GR 500	ERIA ME	AX ON RED 80	
EASTBOUND	0		0		0		0	
NORTHBOUND			1160		180		Ö	
SOUTHBOUND			750		0		ŏ	
							•	
		**	NUMBER	OF LANES	; **			
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	1	0	0	0	1	0	2	
EASTBOUND	0	0	0	0	0	0	0	
NORTHBOUND		0	1	1	0	0	2	
SOUTHBOUND	1	0	2	0	0	.0	3	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHAREI			HARED	ONLY	SHARED	
WESTBOUND	60	N/A	N	/A	N/A	500	N/A	
EASTBOUND	N/A	N/A	N	/A	N/A	N/A	N/A	
NORTHBOUND	N/A	N/A	6	70	670	N/A	N/A	
SOUTHBOUND	160	N/A	3	75	N/A	N/A	N/A	
		r CRITICAL			• • • • • • •	500		
	NORTH-SOU	JTH CRITIC	'AL VOLU	MES	• • • • • • •	830		
	THE SUM (OF CRITICA	L VOLUM	ES	• • • • • • •	1330		
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*		
	CMA VALUE	3	• • • • • • •		• • • • • • • •	0.831		
	LEVEL OF	SERVICE .				D		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION:	3,	Northpark	Drive	and Oxna	rd I	Boulev	ard
DATE: 10-16-200		INITIALS:		PERIOD:			

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND	LEFT 30 10	TH	HROUGH 30 20 60	* * M3	IN ON G 0 40 35	-	X ON RED 10 0 15		
SOUTHBOUND	30		190		10		0		
		** 1	NUMBER (OF LANES	3 **				
APPROACH	LEFT ONLY	LEFT TH	IROUGH ONLY	RIGHT SHARED	RIGHT ONLY	• •	TOTAL LANES		
WESTBOUND	1	0	1	0	1	0	3		
EASTBOUND	1	0	0	1	0	0	2		
NORTHBOUND	1	0	1	0	1	0	3		
SOUTHBOUND	1	0	0	1	0	0	2		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT ONLY	LEFT SHARED	THRO		RIGHT SHARED	RIGHT ONLY	L/T/R SHARED		
WESTBOUND	30	N/A		30	N/A	0	N/A		
EASTBOUND	10	N/A		/A	60	N/A	N/A		
NORTHBOUND	10	N/A		60	N/A	35	N/A		
SOUTHBOUND	30	N/A	N,	/A	200	N/A	N/A		
		CRITICAL TH CRITICA							
	THE SUM O	F CRITICAI	L VOLUM	ES		300			
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS	2*			
	CMA VALUE					0.188			
	LEVEL OF	SERVICE				А			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 3, Northpark Drive and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	F	IGHT TURNS	5 **
	LEFT	T	HROUGH	MI	N ON GR	EEN MA	AX ON RED
WESTBOUND	40		20		0		10
EASTBOUND	10		20		30		0
NORTHBOUND	10		70		10		20
SOUTHBOUND	30		160		10		0
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	_ 1	Ö	ō	í	Ō	Ö	2
NORTHBOUND	_	Ö	1	ō	1	ŏ	3
SOUTHBOUND		Ö	ō	ĭ	Ô	ñ	2
	_	ŭ	Ū	-	v	J	2
		** ASSIG	NED LAN	IE VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	NGH .	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	40	N/A		20	N/A	0	N/A
EASTBOUND	10	N/A	N	I/A	50	N/A	N/A
NORTHBOUND		N/A	•	70	N/A	10	N/A
SOUTHBOUND		N/A	N	I/A	170	N/A	N/A
		,	<u>-</u> ,	-,		21,722	217 22
	EAST-WEST	CRITICAL	. VOLUME	· c		90	
		TH CRITIC					
	11011111 500	in chilic	AL VOLU	rings	• • • • • • •	100	
	THE SUM O	F CRITICA	L VOLUM	ES		270	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*	
	CMA VALUE		• • • • • • • •			0.169	
	LEVEL OF	SERVICE .				A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 3, Northpark Drive and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 20 10 20 20	тн	ROUGH 40 20 280 90	** MIN		IGHT TURNS EEN MA	X ON RED 10 0 10	
SOUTHBOUND	20				10		U	
		** N	UMBER OF	LANES	**			
APPROACH WESTBOUND EASTBOUND NORTHBOUND	LEFT ONLY 1 1 1			RIGHT HARED 0 1	RIGHT ONLY 1 0	L/T/R SHARED 0 0 0	TOTAL LANES 3 2 3	
SOUTHBOUND	1	. 0	ō	1	Ō	ŏ	2	
** ASSIGNED LANE VOLUMES **								
APPROACH WESTBOUND	LEFT ONLY 20	LEFT SHARED N/A	THROUG ONLY 40	SH	IGHT ARED N/A	RIGHT ONLY 10	L/T/R SHARED N/A	
EASTBOUND NORTHBOUND SOUTHBOUND	10 20 20	N/A N/A N/A	N/A 280 N/A		50 N/A 100	N/A 150 N/A	N/A N/A N/A	
		CRITICAL TH CRITICAL		 S		• •		
	THE SUM O	F CRITICAL	VOLUMES			370		
	NUMBER OF	CRITICAL (CLEARANC	E INTER	VALS	2*		
	CMA VALUE	• • • • • • •				0.231		
	LEVEL OF	SERVICE				A		

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7 10-16-2001, 9:33 AM

Capacity assumed = 1600.

INTERSECTION: 3, Northpark Drive and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				* *	•	RIGHT TURN	s **	
	LEFT	T	HROUGH	M I	N ON	GREEN M	AX ON RED	
WESTBOUND	60		30			5	5	
EASTBOUND	10		20		3(כ	0	
NORTHBOUND	20		240		100	כ	30	
SOUTHBOUND	10		100		10	ס	0	
		**	NUMBER	OF LANES	; **			
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	r L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONL	Y SHARED	LANES	
WESTBOUND	1	0	1	0	1	0	3	
EASTBOUND	1	0	0	1	0	0	2	
NORTHBOUND	1	0	1	0	1	0	3	
SOUTHBOUND	1	0	0	1	0	0	2	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHARED			HARED	ONLY	SHARED	
WESTBOUND	60	N/A		30	N/A	5	N/A	
EASTBOUND	10	N/A	N	/A	50	N/A	N/A	
NORTHBOUND	20	N/A		40	N/A	100	N/A	
SOUTHBOUND	10	N/A	N	I/A	110	N/A	N/A	
		CRITICAL						
	THE SUM C	F CRITICA	L VOLUM	ES		360		
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	2 [.]	*	
	CMA VALUE					0.225		
	T EUTEL OF	00011100				_		
	LEVEL OF	SERVICE .	• • • • • • •	• • • • • • • •	• • • • •	A		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 4, Northpark Drive and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND	LEFT 20 160	TI	HROUGH 10 10	** MI:	R N ON GR 40 30	IGHT TURNS EEN MA	** XX ON RED 30 10
NORTHBOUND SOUTHBOUND	20 10		960 1090		10 30		0 80
		** 1	NUMBER	OF LANES	**		
APPROACH WESTBOUND	LEFT ONLY 1	LEFT TH SHARED 0	HROUGH ONLY 0	RIGHT SHARED 1	RIGHT ONLY 1	L/T/R SHARED 0	TOTAL LANES 3
EASTBOUND NORTHBOUND SOUTHBOUND	1 1 1	0 0 0	0 2 3	1 1 0	1 0 1	0 0 0	3 4 5
		** ASSIGN	NED LAN	E VOLUME	S **	•	
APPROACH	LEFT ONLY	LEFT SHARED	THRO ON	LY S	RIGHT HARED	RIGHT ONLY	L/T/R SHARED
WESTBOUND EASTBOUND NORTHBOUND	20 160 20	N/A N/A N/A	N	/A /A 23	25 20 323	25 20 N/A	N/A N/A N/A
SOUTHBOUND	10	N/A	3	63	N/A	30	N/A
		CRITICAL TH CRITICA					
	THE SUM C	F CRITICAL	L VOLUM	ES		568	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	0*	•
	CMA VALUE					0.473	
	LEVEL OF	SERVICE .				А	

^{*} Capacity assumed = 1200.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 4, Northpark Drive and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH	LEFT	יידי	HROUGH	** MT	R: N ON GRI	GHT TURNS	** AX ON RED
WESTBOUND	20		10	• • •	40		30
EASTBOUND	160		10		30		10
NORTHBOUND			960		10		0
SOUTHBOUND			1090		30		80
		**]	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	1	1	0	3
EASTBOUND	1	0	0	1	1	0	3
NORTHBOUND		0	2	1	0	0	4
SOUTHBOUND	1	• 0	3	0	1	0	5
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	20	N/A	N	/A	25	25	N/A
EASTBOUND	160	N/A		/A	20	20	N/A
NORTHBOUND		N/A		23	323	N/A	N/A
SOUTHBOUND	10	N/A	3	63	N/A	30	N/A
	DACE MEGE	L CD TEST CAL		0		105	
		CRITICAL TH CRITIC					
	THE SUM C	F CRITICAL	L VOLUM	es		568	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	0*	•
	CMA VALUE		• • • • • •	• • • • • • •		0.473	
	LEVEL OF	SERVICE	• • • • • • •	• • • • • • • • •	• • • • • • • •	A	

^{*} Capacity assumed = 1200.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR4
10-16-2001, 9:33 AM

INTERSECTION: 4, Northpark Drive and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 10 130 10	TH	IROUGH 10 10 940 920	** MI		IGHT TURNS	** X ON RED 5 10 0 65
		** <i>I</i> /	UMBER (OF LANES	; **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 1 1	LEFT TH SHARED 0 0 0 0	IROUGH ONLY 0 0 2 3	RIGHT SHARED 1 1 0	RIGHT ONLY 1 1 0	L/T/R SHARED 0 0 0 0	TOTAL LANES 3 3 4 5
		** ASSIGN	ED LAN	E VOLUME	ES **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 10 130 10	LEFT SHARED N/A N/A N/A	N/ 31		RIGHT SHARED 38 30 317 N/A	RIGHT ONLY 38 30 N/A 45	L/T/R SHARED N/A N/A N/A N/A
	NORTH-SOU	CRITICAL TH CRITICAL OF CRITICAL	AL VOLUM L VOLUMI CLEARAI	MES		495	•
	LEVEL OF	SERVICE			. .	A	

^{*} Capacity assumed = 1200.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 4, Northpark Drive and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	ŗ	THROUGH		* R	IGHT TURNS	X ON RED
WESTBOUND	10	•	10	[4]	IN ON GR	EEN PL	25
EASTBOUND	220		20		43		27
NORTHBOUND			1050		50		0
SOUTHBOUND	50		1090		0		110
		**	NUMBER	OF LANE	S **		
APPROACH	LEFT	LEFT T	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	1	1	0	3
EASTBOUND	1	0	0	1	1	0	3
NORTHBOUND		0	2	1	0	0	4
SOUTHBOUND	1	0	3	0	1	0	5
		** ASSIC	ened Lan	E VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHAREI			SHARED	ONLY	SHARED
WESTBOUND	10	N/A		/A	12	12	N/A
EASTBOUND	220	N/A		/A	32	32	N/A
NORTHBOUND		N/A		67	367	N/A	N/A
SOUTHBOUND	50	N/A	3	63	N/A	Ο .	N/A
	EAST-WEST	CRITICAL	. VOLUME	Q		232	
		TH CRITIC					
	THE SUM C	F CRITICA	L VOLUM	ES	• • • • • • • • • • • • • • • • • • • •	649	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS .	0*	
	CMA VALUE		• • • • • • •	• • • • • • •	• • • • • • •	0.541	
	LEVEL OF	SERVICE .	• • • • • •	• • • • • • •	• • • • • • • • • • • • • • • • • • •	А	

^{*} Capacity assumed = 1200.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 4, Northpark Drive and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH	T 13 1307	TT.	HROUGH	** MT	R N ON GR	IGHT TURNS	x **
tinompoining	LEFT	1	10	MI	N ON GR	LEEN MA	25
WESTBOUND	10		20		43		25 27
EASTBOUND	220		1050		50		0
NORTHBOUND	50 50		1090		0		110
SOUTHBOUND	50		1090		U		110
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	1	1	0	3
EASTBOUND	1	0	0	1	1	0	3
NORTHBOUND	1	0	2	1	0	0	4
SOUTHBOUND	1	0	3	0	1	0	5
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	10	N/A	N	I/A	12	12	N/A
EASTBOUND	220	N/A	N	/A	32	32	N/A
NORTHBOUND	50	N/A	3	67	367	N/A	N/A
SOUTHBOUND	50	N/A	3	63	N/A	0	N/A
	EAST-WEST	CRITICAL	VOLUME	S		232	
	NORTH-SOU	TH CRITIC	AL VOLU	MES		417	
	THE SUM C	F CRITICA	L VOLUM	ies		649	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	0*	•
	CMA VALUE	·		• • • • • • •		0.541	
	LEVEL OF	SERVICE .				A	

^{*} Capacity assumed = 1200.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR8
10-16-2001, 9:33 AM

INTERSECTION: 4, Northpark Drive and Vineyard Avenue DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND	LEFT 10	TH	IROUGH 10	* * MI	RI IN ON GRI 8	IGHT TURNS EEN MA	X ON RED
EASTBOUND	170		10		25		25
NORTHBOUND			830		70		0
SOUTHBOUND			940		45		85
		** 1	IIMBER	OF LANES	**		
		-					
APPROACH	LEFT		IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	1	1	0	3
EASTBOUND	1	0	0	1	1	0	3
NORTHBOUND		0	2	1	0	0	4
SOUTHBOUND	1	0	3	0	1	0	5
		** ASSIGN	NED LAN	E VOLUME	IS **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	10	N/A		10	N/A	8	N/A
EASTBOUND	170	N/A	N	/A	18	18	N/A
NORTHBOUND	50	N/A		00	300	N/A	N/A
SOUTHBOUND	40	N/A	3	13	N/A	45	N/A
		CRITICAL TH CRITICA			• • • • • • •		
	THE SUM C	F CRITICAL	VOLUM	ES	• • • • • • •	543	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	0*	
	CMA VALUE	١			• • • • • • •	0.452	
	LEVEL OF	SERVICE				A	

^{*} Capacity assumed = 1200.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 5, Oxnard Boulevard and Southpark Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	uh.	HROUGH	** MI	- -	IGHT TURNS	X ON RED
WESTBOUND	200	•	30	• • • • • • • • • • • • • • • • • • • •	0		10
EASTBOUND	20		50		10		0
NORTHBOUND	10		90		90		Ö
SOUTHBOUND	10		250		20		Ö
000111200112							
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	0	1	0	0	2
NORTHBOUND	1	Q	1	1	0	0	3
SOUTHBOUND	1	0	1	1	0	0	3
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH :	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	200	N/A		30	N/A	0	N/A
EASTBOUND	20	N/A	N	I/A	60	N/A	N/A
NORTHBOUND	10	N/A		90	90	N/A	N/A
SOUTHBOUND	10	N/A	1	.35	135	N/A	N/A
		CRITICAL TH CRITIC					
	THE SUM C	F CRITICA	L VOLUM	ies		405	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*	•
	CMA VALUE					0.253	
	LEVEL OF	SERVICE .				А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3 10-16-2001, 9:33 AM

INTERSECTION: 5, Oxnard Boulevard and Southpark Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**		RIGHT TURNS	
	LEFT	•	THROUGH	MI	N ON G	REEN MA	X ON RED
WESTBOUND	170		60		0		10
EASTBOUND	30		70		10		0
NORTHBOUND	10		60		60		0
SOUTHBOUND	10		220		20		0
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT '	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	, ,	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	Ö	0	1	0	0	2
NORTHBOUND	ī	Õ	1	ī	Ö	Ö	3
SOUTHBOUND	ī	Ö	1	1	Ō	0	3
		** ASSI	GNED LAN	E VOLUME	ls **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE			HARED	ONLY	SHARED
WESTBOUND	170	N/A		60	N/A	0	N/A
EASTBOUND	30	N/A		/A	80	N/A	N/A
NORTHBOUND	10	N/A		60	60	N/A	N/A
SOUTHBOUND	10	n/A		20	120	N/A	N/A
	EAST-WEST				• • • • • •	230	
	THE SUM O	F CRITIC	AL VOLUM	ES	• • • • •	380	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS	2*	
	CMA VALUE					0.237	
	LEVEL OF	SERVICE				A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 5, Oxnard Boulevard and Southpark Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	T 2200		mun ollali	**	F N ON GF	RIGHT TURNS	** X ON RED
	LEFT		THROUGH	(V 1 ⊥		CEEM MA	
WESTBOUND	60		20		10		10
EASTBOUND	30		40		10		0
NORTHBOUND	10		400		240		0
SOUTHBOUND	20		100		30		0
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	Ō	0	1	0	0	2
NORTHBOUND	1	Ö	1	1	Ō	Ō	3
SOUTHBOUND	1	Ö	ī	ī	Ö	Ö	3
	_						
		** ASSI	GNED LAN	IE VOLUME	S **		
APPROACH	LEFT	LEFT	' THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	60	N/A	L	20	N/A	10	N/A
EASTBOUND	30	N/A	. N	I/A	50	N/A	N/A
NORTHBOUND	10	N/A	. 3	20	320	N/A	N/A
SOUTHBOUND	20	N/A		65	65	N/A	N/A
	EAST-WEST						
	NORTH-SOC	In CRIII	CAL VOLC	כפויונ	• • • • • •	540	
	THE SUM C	F CRITIC	AL VOLUM	ies		450	
	NUMBER OF	CRITICA	L CLEAR	NCE INTE	RVALS	2*	
	CMA VALUE	3				0.281	
	LEVEL OF	SERVICE		· • • • • • • • • • • • • • • • • • • •		A	
	LEVEL OF	SERVICE		· • • • • • • •		A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

CMA CALCULATIONS

INTERSECTION: 5, Oxnard Boulevard and Southpark Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT	ਧਾਮ	ROUGH	** MTN (RIG	HT TURNS	** X ON RED
WESTBOUND	70	111	50		10		10
EASTBOUND	60		110		10		0
NORTHBOUND	10		320		170		0
SOUTHBOUND	20		110		80		0
		** N	UMBER OF	LANES *	k *		
APPROACH	LEFT	LEFT TH	ROUGH R	IGHT RI	IGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY SH	ARED (ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	0	1	0	0	2
NORTHBOUND	1	0	1	1	0	0	3
SOUTHBOUND	1	0	1	1	0	0	3
		** ASSIGN	ED LANE V	OLUMES	**		
APPROACH	LEFT	LEFT	THROUGH	RIC	GHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHAF	RED	ONLY	SHARED
WESTBOUND	70	N/A	50	•	/A	10	N/A
EASTBOUND	60	N/A	N/A		20	N/A	N/A
NORTHBOUND		N/A	245		45	N/A	N/A
SOUTHBOUND	20	N/A	95	9	95	N/A	N/A
		CRITICAL TTH CRITICA					
	THE SUM C	F CRITICAL	VOLUMES			. 455	
	NUMBER OF	CRITICAL	CLEARANCE	INTERV	ALS	. 2*	
	CMA VALUE					. 0.284	
	LEVEL OF	SERVICE				. А	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7 10-16-2001, 9:46 AM

Intersection #6
Santa Clara River Boulevard and Oxnard Boulevard
Traffic Circle Capacity Calculations

						Single-Lane Roundabout	Roundabor		Double-Lane Roundabout	Rounda	ont
	LEFT	THRU	RITE	Q(e)	<u>a(c)</u>	Q(e)max*	NC FC	SOT	Q(e)max*	N/C	SOT
AM PEAK HOUR											
WESTBOUND	250	06	10	350	220	1092	0.321	∢	2267	0.154	∢
EASTBOUND	20	40	100	160	630	869	0.184	∢	1973	0.081	∢
NORTHBOUND	30	170	290	490	70	1174	0.417	∢	2374	0.206	∢
SOUTHBOUND	10	370	80	460	370	1010	0.455	∢	2159	0.213	∢
PM PEAK HOUR											
WESTBOUND	80	100	9	190	680	842	0.226	∢	1937	0.098	∢
EASTBOUND	130	210	20	390	210	1098	0.355	∢	2274	0.172	∢
NORTHBOUND	30	520	380	930	350	1021	0.911	ш	2173	0.428	∢
SOUTHBOUND	9	120	30	160	210	1098	0.146	∢	2274	0.070	∢

^{*} Q(e)max based on formulas in Transportation Research Circular E-C018.

Intersection #6
Santa Clara River Boulevard and Oxnard Boulevard
Traffic Circle Capacity Calculations
(With Santa Clara River Bridge)

						Single-Lane Roundabout	Roundabo		Double-Lane Roundabout	e Roundat	pont
	LEFT	THRU	RITE	(a)(c)	<u>Q(c)</u>	Q(e)max*	N/C	<u>108</u>	Q(e)max*	N/C	TOS
AM PEAK HOUR											
WESTBOUND	170	130	10	310	250	1076	0.288	∢	2245	0.138	∢
EASTBOUND	10	210	250	470	440	972	0.484	∢	2109	0.223	∢
NORTHBOUND	110	130	260	200	230	1087	0.460	∢	2259	0.221	∢
SOUTHBOUND	10	260	120	390	410	686	0.394	∢	2130	0.183	∢
PM PEAK HOUR											
WESTBOUND	70	120	10	200	940	700	0.286	∢	1751	0.114	∢
EASTBOUND	06	380	300	770	210	1098	0.701	ပ	2274	0.339	∢
NORTHBOUND	440	410	300	1150	480	951	1.209	ш	2080	0.553	∢
SOUTHBOUND	10	130	40	180	630	698	0.207	∢	1973	0.091	∢

^{*} Q(e)max based on formulas in Transportation Research Circular E-C018.

INTERSECTION: 7, Southpark Dr/Myrtle St and Santa Clara River Blvd DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				**	ī	RIGHT TURNS	**
AFFROACII	LEFT	T	HROUGH	MI	n on Gi		XX ON RED
WESTBOUND	60	••	210	• • • •	150		0
EASTBOUND	10		190		80		Ö
NORTHBOUND	10		10		0		20
SOUTHBOUND	140		40		5		5
		**]	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	1	0	0	4
EASTBOUND	1	0	2	1	0	0	4
NORTHBOUND	1	0	0	1	0	0	2
SOUTHBOUND	1	0	0	1	0	0	2
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	60	N/A	1	.05	N/A	150	N/A
EASTBOUND	10	N/A		90	90	N/A	N/A
NORTHBOUND	10	N/A	N	I/A	10	N/A	N/A
SOUTHBOUND	140	N/A	N	I/A	45	N/A	N/A
		CRITICAL TH CRITIC					
	THE SUM C	F CRITICAL	L VOLUM	ies	• • • • • •	310	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*	•
	CMA VALUE			• • • • • • •		0.194	
	LEVEL OF	SERVICE .				A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3 10-16-2001, 9:33 AM

INTERSECTION: 7, Southpark Dr/Myrtle St and Santa Clara River Blvd

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	R	GHT TURNS	3 **	
ALLKOACH	LEFT	T	HROUGH	MI	N ON GRI		XX ON RED	
WESTBOUND	50		150		150		0	
EASTBOUND	10		280		90		0	
NORTHBOUND	20		10		0		10	
SOUTHBOUND	170		20		5		5	
		**]	NUMBER	OF LANES	**			
APPROACH	LEFT		HROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	1	0	2	1	0	0	4	
EASTBOUND	1	0	2	1	0	0	4	
NORTHBOUND		0	0	1	0	0	2	
SOUTHBOUND	1	0	0	1	0	0	2	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R	
	ONLY	SHARED	ON		HARED	ONLY	SHARED	
WESTBOUND	50	N/A		75	N/A	150	N/A	
EASTBOUND	10	N/A		.23	123	N/A	N/A	
NORTHBOUND		N/A		I/A	10	N/A	N/A	
SOUTHBOUND	170	N/A	N	I/A	25	N/A	N/A	
		CRITICAL						
	NORTH-SOU	TH CRITICA	AL VOLU	MES		180		
	THE SUM C	F CRITICAL	r Aoraw	ES		353		
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	2*	•	
	CMA VALUE				• • • • • • • •	0.221		
	LEVEL OF	SERVICE .				A		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 7, Southpark Dr/Myrtle St and Santa Clara River Blvd

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

			1111 01 1	OBOMBO				
APPROACH	LEFT		THROUGH	* * MT	R N ON GR	IGHT TURNS	X ON RED	
······································				1417	190	.een in	O RED	
WESTBOUND	40		200					
EASTBOUND	10		550		100		0	
NORTHBOUND	40		20		70		20	
SOUTHBOUND	220		10		5		5	
		**	NUMBER	OF LANES	**			
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	1	0	2	1	0	0	4	
EASTBOUND	1	0	2	1	0	0	4	
NORTHBOUND	1	0	0	1	0	0	2	
SOUTHBOUND	1	0	0	1	0	0	2	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHARE	D ON	ILY S	HARED	ONLY	SHARED	
WESTBOUND	40	N/A	. 1	.00	N/A	190	N/A	
EASTBOUND	10	N/A	. 2	17	217	N/A	N/A	
NORTHBOUND	40	N/A	. N	I/A	90	N/A	N/A	
SOUTHBOUND	220	N/A		ľ/A	15	N/A	N/A	
	EAST-WEST							
	THE SUM C	F CRITIC	AL VOLUM	IES				
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	2*	•	
	CMA VALUE	l				0.354		
	LEVEL OF	SERVICE				A		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 7, Southpark Dr/Myrtle St and Santa Clara River Blvd DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

DATE: 10-16-2001

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**		IGHT TURNS		
	LEFT	TH	IROUGH	MI	N ON GR	een ma	X ON RED	
WESTBOUND	30		120		85		95	
EASTBOUND	10		560		100		0	
NORTHBOUND	70		30		80		0	
SOUTHBOUND	190		10		10		0	
		** N	IUMBER	OF LANES	**			
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	1	0	2	1	0	0	4	
EASTBOUND	1	0	2	1	0	. 0	4	
NORTHBOUND	1	0	0	1	0	0	2	
SOUTHBOUND	ī	0	0	1	0	0	2	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED	
WESTBOUND	30	N/A		60	N/A	85	N/A	
EASTBOUND	10	N/A		20	220	N/A	N/A	
NORTHBOUND	70	N/A		/A	110	N/A	N/A	
SOUTHBOUND	190	N/A		/A	20	N/A	N/A	
		CRITICAL TH CRITICA				300		
	THE SUM C	F CRITICAL	. VOLUM	ES		550		
			~					
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*		
	CMA VALUE					0.344		
	LEVEL OF	SERVICE				A		

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7 10-16-2001, 9:46 AM

INTERSECTION: 8, Vineyard Avenue and Santa Clara River Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				**		RIGHT TURNS	s **	
	LEFT	T	HROUGH	MI	N ON G		X ON RED	
WESTBOUND	0		0		0		0	
EASTBOUND	200		0		80		70	
NORTHBOUND	140		800		0		0	
SOUTHBOUND	0		860		225		55	
		**	NUMBER	OF LANES	**			
APPROACH	LEFT		HROUGH	RIGHT	RIGHT		TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	•	LANES	
WESTBOUND	0	0	0	0	0	0	0	
EASTBOUND	2	0	0	0	2	0	4	
NORTHBOUND	1	0	3	0	0	0	4	
SOUTHBOUND	0	0	3	0	1	0	4	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED	
WESTBOUND	N/A	N/A	N	/A	N/A	N/A	N/A	
EASTBOUND	110	N/A		/A	N/A	40	N/A	
NORTHBOUND	140	N/A		67	N/A	N/A	N/A	
SOUTHBOUND	N/A	N/A	2	87	N/A	225	N/A	
	EAST-WEST	CRITICAL	VOLUME	s		110		
	NORTH-SOU	TH CRITIC	AL VOLU	MES		427		
	THE SUM O	F CRITICA	L VOLUM	ES		537		
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	2*	•	
	CMA VALUE					0.336		
	LEVEL OF	SERVICE .				A		

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3 10-16-2001, 9:33 AM

INTERSECTION:	8,	Vineyard	Avenue	and	Santa	Clara	River	Boulevard

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

7 DDD 0 7 CH				**		RIGHT TURI	MC **		
APPROACH	LEFT	1	THROUGH		N ON G		MAX ON RED		
WESTBOUND	0		0	• • •			0		
EASTBOUND	200		Ö		80		70		
NORTHBOUND	140		800		C)	0		
SOUTHBOUND	0		860		225	i	55		
		**	NUMBER	OF LANES	; **				
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
AL LICACII	ONLY	SHARED	ONLY	SHARED	ONLY	• •			
WESTBOUND	0	0	0	0	0	0	0		
EASTBOUND	2	0	0	0	2	0	4		
NORTHBOUND	1	0	3	0	0	0	4		
SOUTHBOUND	0	0	3	0	1	0	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT			RIGHT	RIGHT	L/T/R		
	ONLY	SHARE			HARED	ONLY	SHARED		
WESTBOUND	N/A	N/A		I/A	N/A	N/A	N/A		
EASTBOUND	110	N/A		I/A	N/A	40	N/A		
NORTHBOUND SOUTHBOUND	140 N/A	N/A N/A		267 287	N/A N/A	N/A 225	N/A N/A		
SOUTHBOOMD	N/A	N/A	4	20 /	N/A	225	N/A		
	EAST-WEST	CRITICA	L VOLUME	s		110	0		
	NORTH-SOU	TH CRITI	CAL VOLU	MES	• • • • • •	427	7		
	THE SUM C	F CRITIC	AL VOLUM	mes		537	- 7		
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS	2	2*		
	CMA VALUE					0.336	5		
	LEVEL OF	SERVICE		• • • • • • • • •			7		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR4
10-16-2001, 9:33 AM

INTERSECTION: 8, Vineyard Avenue and Santa Clara River Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	,	RIGHT TURN	s **		
AFFROACH	LEFT	tı.	HROUGH	MI			AX ON RED		
WESTBOUND	0	***	0	• • • • • • • • • • • • • • • • • • • •	0		0		
EASTBOUND	230		Ŏ		160		80		
NORTHBOUND	160		760		0		0		
SOUTHBOUND	0		820		127		63		
		** 1	NIMBER	OF LANES	**				
		•							
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	0	0	0	0	0	0	0		
EASTBOUND	2	0	0	0	2	0	4		
NORTHBOUND	1	0	3	0	0	0	4		
SOUTHBOUND	0	0	3	0	1	0	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON.	ILY S	HARED	ONLY	SHARED		
WESTBOUND	N/A	N/A	N	I/A	N/A	N/A	N/A		
EASTBOUND	126	N/A	N	I/A	N/A	80	N/A		
NORTHBOUND		N/A		253	N/A	N/A	N/A		
SOUTHBOUND	N/A	N/A	2	273	N/A	127	N/A		
		CRITICAL TH CRITICA		-					
	THE SUM C	OF CRITICAL	L VOLUM	ies	• • • • • •	559			
·	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	2	*		
	CMA VALUE					0.349			
	LEVEL OF	SERVICE .				A			

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3 10-16-2001, 9:46 AM

INTERSECTION: 8, Vineyard Avenue and Santa Clara River Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * M7	R N ON GR	IGHT TURNS	X ON RED		
WESTBOUND EASTBOUND	0 550		0 0	1417	0 200	EEN ME	0 100		
NORTHBOUND SOUTHBOUND			750 890		0 79		0 151		
		**	NUMBER	OF LANES	; **				
APPROACH	LEFT ONLY	LEFT SHARED	THROUGH ONLY	RIGHT SHARED	RIGHT ONLY	L/T/R SHARED	TOTAL LANES		
WESTBOUND	0	0	0	0	0	0	0		
EASTBOUND	2	0	0	0	2	Ō	4		
NORTHBOUND		Ö	3	ŏ	ō	Ö	4		
SOUTHBOUND	ō	Ö	3	Ŏ	í	Ŏ	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT			RIGHT	RIGHT	L/T/R		
LIE CEROCIA E	ONLY	SHARE			HARED	ONLY	SHARED		
WESTBOUND	N/A	N/A		/A	N/A	N/A	N/A		
EASTBOUND	302	N/A		/A	N/A	100	N/A		
NORTHBOUND		N/A		50	N/A	N/A	N/A		
SOUTHBOUND	N/A	N/A	. 2	97	N/A	79	N/A		
	EAST-WEST								
	THE SUM (F CRITIC	AL VOLUM	ES		799			
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	2*			
	CMA VALUE	3			• • • • • • •	0.499			
	LEVEL OF	SERVICE				A			

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7 10-16-2001, 9:33 AM

INTERSECTION: 8, Vineyard Avenue and Santa Clara River Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH				**	F	RIGHT TURNS	3 **
AFFROACH	LEFT	T	HROUGH	MI			AX ON RED
WESTBOUND	0		0		0		0
EASTBOUND	550		0		200		100
NORTHBOUND	200		750		0		0
SOUTHBOUND	0		890		79		151
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT I	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
APPROACH	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	2	0	0	0	2	0	4
NORTHBOUND	1	0	3	0	0	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSIG	ENED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHAREI			HARED	ONLY	SHARED
WESTBOUND	N/A	N/A		I/A	N/A	N/A	N/A
EASTBOUND	302	N/A		/A	N/A	100	N/A
NORTHBOUND	200	N/A		50	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	2	97	N/A	79	N/A
						200	
	EAST-WEST						
	THE SUM C	F CRITICA	AL VOLUM	ies		799	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	2	*
	CMA VALUE				• • • • •	0.499	

LEVEL OF SERVICE

K:\ICAP5\RIVERPRK\10-01\TOT33 RR8 10-16-2001, 9:33 AM

Capacity assumed = 1600.

INTERSECTION: 8, Vineyard Avenue and Santa Clara River Boulevard

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				*	*	RIGHT TURN	S **	
	LEFT	T	HROUGH	M:	IN ON G	REEN M	AX ON RED	
WESTBOUND	0		0		C)	0	
EASTBOUND	470		0		235	;	105	
NORTHBOUND	210		670		0)	0	
SOUTHBOUND	0		830		1	•	129	
		**]	NUMBER	OF LANES	S **			
APPROACH	LEFT		HROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	0	0	0	0	0	0	0	
EASTBOUND	2	0	0	0	2	0	4	
NORTHBOUND		0	3	0	0	0	4	
SOUTHBOUND	0	0	3	0	1	0	4	
** ASSIGNED LANE VOLUMES **								
* * * * * * * * * * * * * * * * * * * *								
APPROACH	LEFT ONLY	LEFT SHARED	THRO		RIGHT	RIGHT	L/T/R	
WESTBOUND	N/A	N/A		ILY S	SHARED	ONLY	SHARED	
EASTBOUND	258	N/A N/A		i/A i/A	N/A	N/A	N/A	
NORTHBOUND	210	N/A		23	N/A N/A	118 N/A	N/A	
SOUTHBOUND	N/A	N/A		77	N/A N/A	N/A 1	N/A N/A	
500111500115	21/ #2	N/A	2	, ,	IV/ A	1	N/A	
	EAST-WEST	CRITICAL	VOLUME	· C		258		
		TH CRITICAL			· • • • • • • •			
			1010		• • • • • •			
	THE SUM O	F CRITICAL	L VOLUM	ES		745		
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS	2*	•	
	CMA VALUE	• • • • • • • •	• • • • • • •		• • • • • •	0.466		
	LEVEL OF	SERVICE				A		

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7 10-16-2001, 9:46 AM

INTERSECTION: 9, Vineyard Avenue and Stroube Street DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				**		IGHT TURNS		
	LEFT	TH	ROUGH	MI		sen ma	X ON RED	
WESTBOUND	105		17		27		0	
EASTBOUND	125		30		22		0	
NORTHBOUND	24		866		56		0	
SOUTHBOUND	39		1188		65		0	
		** N	UMBER	OF LANES	**			
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	1	0	0	1	0	0	2	
EASTBOUND	1	0	0	1	0	0	2	
NORTHBOUND	1	0	1	1	0	0	3	
SOUTHBOUND	1	0	1	1	0	0	3	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED	
WESTBOUND	105	N/A	N	/A	44	N/A	N/A	
EASTBOUND	125	N/A	N	/A	52	N/A	N/A	
NORTHBOUND	24	N/A	4	61	461	N/A	N/A	
SOUTHBOUND	39	N/A	6	26	626	N/A	N/A	
		CRITICAL TH CRITICA						
	THE SUM C	F CRITICAL	r vorum	ES		819		
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	21	r	
	CMA VALUE					0.512		
	LEVEL OF	SERVICE				A		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 9, Vineyard Avenue and Stroube Street DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	TH	ROUGH	** H	RIGHT TURNS	** X ON RED			
WESTBOUND	230		10	0		10			
EASTBOUND	10		10	0		10			
NORTHBOUND	20		960	0		10			
SOUTHBOUND	40		1080	0		10			
		** N	UMBER OF LA	NES **					
APPROACH	LEFT ONLY		ROUGH RIG ONLY SHAR		L/T/R SHARED	TOTAL LANES			
WESTBOUND	1	0	1 0	1	0	3			
EASTBOUND	2	0	1 0	1	0	4			
NORTHBOUND		0	3 0		. 0	5			
SOUTHBOUND	1	0	3 0	1	0	5			
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R			
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED			
WESTBOUND	230	N/A	10	N/A	0	N/A			
EASTBOUND	6	N/A	10	N/A	0	N/A			
NORTHBOUND		N/A	320	N/A	0	N/A			
SOUTHBOUND	40	N/A	360	N/A	0	N/A			
	EAST-WEST	CRITICAL	VOLUMES		240				
	NORTH-SOU	TH CRITICAL	L VOLUMES .	• • • • • • • • • • • • • • • • • • • •	380				
	THE SUM C	F CRITICAL	VOLUMES		620				
	NUMBER OF	CRITICAL O	CLEARANCE I	NTERVALS .	2*				
	CMA VALUE		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	0.387				
	LEVEL OF	SERVICE	• • • • • • • • • • • • • • • • • • • •		A				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 9, Vineyard Avenue and Stroube Street DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	т	HROUGH	** MI	R: N ON GRI	IGHT TURNS	** X ON RED				
WESTBOUND	200	-	20		42		28				
EASTBOUND	10		10		5		5				
NORTHBOUND	10		900		0		10				
SOUTHBOUND	50		1040		0		20				
		**	NUMBER	OF LANES	**						
APPROACH	LEFT		HROUGH	RIGHT	RIGHT	L/T/R	TOTAL				
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES				
WESTBOUND	1	0	1	0	1	0	3				
EASTBOUND	2	0	1	0	1	0	4				
NORTHBOUND	1	0	3	0	1	0	5 5				
SOUTHBOUND	1	0	3	0	1	0	5				
** ASSIGNED LANE VOLUMES **											
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R				
	ONLY	SHARED	ON	ILY S	HARED	ONLY	SHARED				
WESTBOUND	200	N/A		20	N/A	42	N/A				
EASTBOUND	6	N/A		10	N/A	5	N/A				
NORTHBOUND	10	N/A	3	00	N/A	0	N/A				
SOUTHBOUND	50	N/A	3	47	N/A	0	N/A				
	EAST-WEST	CRITICAL	. VOLUME	s		210					
	NORTH-SOUTH CRITICAL VOLUMES 357										
	THE SUM OF CRITICAL VOLUMES 567										
	NUMBER OF CRITICAL CLEARANCE INTERVALS 2*										
	CMA VALUE 0.354										
	LEVEL OF SERVICE A										

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 9, Vineyard Avenue and Stroube Street DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT	7	THROUGH	*: M:	* RI	IGHT TURNS	** AX ON RED				
WESTBOUND	190	•	20	M.	23	DEIN PIE	37				
EASTBOUND	10		10		5		5				
NORTHBOUND			880		0		10				
SOUTHBOUND	60		1070		0		20				
** NUMBER OF LANES **											
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL				
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES				
WESTBOUND	1	0	1	0	1	0	3				
EASTBOUND	2	0	1	0	1	0	4				
NORTHBOUND	_	0	3	0	1	0	5				
SOUTHBOUND	1	0	3	0	1	0	5				
** ASSIGNED LANE VOLUMES **											
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R				
	ONLY	SHAREI	ON ON	ILY S	SHARED	ONLY	SHARED				
WESTBOUND	190	N/A		20	N/A	23	N/A				
EASTBOUND	6	N/A		10	N/A	5	N/A				
NORTHBOUND		N/A		93	N/A	0	N/A				
SOUTHBOUND	60	N/A	3	57	N/A	0	N/A				
EAST-WEST CRITICAL VOLUMES 200											
	NORTH-SOUTH CRITICAL VOLUMES 367										
THE SUM OF CRITICAL VOLUMES 567											
	NUMBER OF CRITICAL CLEARANCE INTERVALS 2*										
	CMA VALUE 0.354										
	LEVEL OF SERVICE A										

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3 10-16-2001, 9:46 AM

INTERSECTION: 9, Vineyard Avenue and Stroube Street DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

LEFT 190 90 190 40		150 30 970	** MI			X ON RED 20 30 10 35			
	** N	UMBER O	F LANES	**					
LEFT ONLY 1 2 1			RIGHT SHARED 0 0 0 0	RIGHT ONLY 1 1 1	L/T/R SHARED 0 0 0	TOTAL LANES 3 4 5 5			
** ASSIGNED LANE VOLUMES **									
LEFT ONLY 190 50 190 40	LEFT SHARED N/A N/A N/A N/A	ONL: 150 30 32:	Y S1 0 0 3		RIGHT ONLY 0 0 0 215	L/T/R SHARED N/A N/A N/A N/A			
NORTH-SOU THE SUM C	TH CRITICAL F CRITICAL CRITICAL	L VOLUMI VOLUME: CLEARAN	ES S CE INTE	RVALS .	543				
	190 90 190 40 LEFT ONLY 1 2 1 1 LEFT ONLY 190 50 190 40 EAST-WEST NORTH-SOU THE SUM O	190 90 190 40 ** NO LEFT LEFT THE ONLY SHARED 1 0 2 0 1 0 1 0 ** ASSIGN LEFT LEFT ONLY SHARED 190 N/A 190 N/A 190 N/A 190 N/A 190 N/A 190 N/A THE SUM OF CRITICAL NUMBER OF CRITICAL	190	LEFT THROUGH MINES 90 30 190 970 40 1060 *** NUMBER OF LANES LEFT LEFT THROUGH RIGHT ONLY SHARED ONLY SHARED 1 0 1 0 2 0 1 0 1 0 3 0 1 0 3 0 *** ASSIGNED LANE VOLUMES LEFT LEFT THROUGH SIGHT ONLY SHARED ONLY SHARED 1 0 3 0 1 0 3 0 ** ASSIGNED LANE VOLUMES LEFT LEFT THROUGH SIGHT ONLY SHARED ONLY SI 190 N/A 150 50 N/A 30 190 N/A 323 40 N/A 353 EAST-WEST CRITICAL VOLUMES NORTH-SOUTH CRITICAL VOLUMES THE SUM OF CRITICAL CLEARANCE INTER	LEFT THROUGH MIN ON GR 190 150 0 90 30 0 190 970 0 40 1060 215 ** NUMBER OF LANES ** LEFT LEFT THROUGH RIGHT RIGHT ONLY SHARED ONLY SHARED ONLY 1 0 1 0 1 2 0 1 0 1 1 0 1 1 0 3 0 1 1 0 1 1 0 3 0 1 1 0 1 ** ASSIGNED LANE VOLUMES ** LEFT LEFT THROUGH RIGHT ONLY SHARED ONLY SHARED 190 N/A 150 N/A 190 N/A 30 N/A 190 N/A 323 N/A 40 N/A 353 N/A EAST-WEST CRITICAL VOLUMES	LEFT THROUGH MIN ON GREEN MY 190 150 0 90 30 0 190 970 0 40 1060 215 ** NUMBER OF LANES ** LEFT LEFT THROUGH RIGHT RIGHT L/T/R ONLY SHARED ONLY SHARED ONLY SHARED 1 0 1 0 1 0 2 0 1 0 1 0 1 0 1 0 1 1 0 3 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1			

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 9, Vineyard Avenue and Stroube Street DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT	,	THROUGH	* * MI	N ON GRE	IGHT TURNS	X ON RED		
WESTBOUND	125		46		31		0		
EASTBOUND	129		55 735		21 72		0 0		
NORTHBOUND SOUTHBOUND	26 36		856		62		0		
SOUTHBOOKD	30		050		02		J		
		**	NUMBER	OF LANES	; **				
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	0	1	0	0	2		
EASTBOUND	1	0	0	1	0	0	2		
NORTHBOUND	1	0	1	1	0	0	3		
SOUTHBOUND	1	0	1	1	0	0	3		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARE	D ON	LY S	HARED	ONLY	SHARED		
WESTBOUND	125	N/A		/A	77	N/A	N/A		
EASTBOUND	129	N/A		•	76	N/A	N/A		
NORTHBOUND		N/A		04	404	N/A	N/A		
SOUTHBOUND	36	N/A	. 4	59	459	N/A	N/A		
	EAST-WEST					-			
	NORTH-SOU	TH CRITI	CAL VOLU	MES		485			
	THE SUM O	F CRITIC	AL VOLUM	ES	• • • • • • •	691			
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS	2*	,		
	CMA VALUE			• • • • • • • •		0.432			
	LEVEL OF	SERVICE				A			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 9, Vineyard Avenue and Stroube Street DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND	LEFT 210 10 50	TF	IROUGH 10 10	** MI	N ON G 125 0 0		MAX ON RED 25 10 60
SOUTHBOUND	50		970		0		10
		** 1	TUMBER (OF LANES	**		
APPROACH	LEFT ONLY	LEFT TH SHARED	ROUGH ONLY	RIGHT SHARED	RIGHT ONLY	, ,	
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	2	0	1	0	1	0	4
NORTHBOUND	1	0	3	0	1	0	5
SOUTHBOUND	1	0	3	0	1	0	5
		** ASSIGN	ED LAN	E VOLUME	S **		
APPROACH	LEFT ONLY	LEFT SHARED	THROU ONI		RIGHT HARED	RIGHT ONLY	L/T/R SHARED
WESTBOUND	210	N/A		LO	N/A	125	N/A
EASTBOUND	6	N/A		10	N/A	0	N/A
NORTHBOUND	50	N/A		50	N/A	0	N/A
SOUTHBOUND	50	N/A	32	23	N/A	0	N/A
		CRITICAL TH CRITICA			• • • • • •		
		F CRITICAL			• • • • •		0
		CRITICAL					2*
	CMA VALUE						7 A

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6 10-16-2001, 9:33 AM

INTERSECTION: 9, Vineyard Avenue and Stroube Street DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	T	HROUGH	* M	* RI	GHT TURNS	** AX ON RED
WESTBOUND	170	-	10	•••	176		74
EASTBOUND	10		10		0		10
NORTHBOUND			810		0		40
SOUTHBOUND	100		1100		7		3
		**	NUMBER	OF LANE	S **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT			
	ONLY	SHARED	ONLY	SHARED		SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	2	0	1	0	1	0	4
NORTHBOUND		0	3	0	1	0	5 5
SOUTHBOUND	1	0	3	0	1	0	5
		** ASSIG	NED LAN	E VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	ILY :	SHARED	ONLY	SHARED
WESTBOUND	170	N/A		10	N/A	176	N/A
EASTBOUND	6	N/A			N/A	0	N/A
NORTHBOUND		N/A	2		N/A	0	N/A
SOUTHBOUND	100	N/A	3	67	N/A	7	N/A
		T CRITICAL UTH CRITIC					
	THE SUM	OF CRITICA	L VOLUM	ES		599	
	NUMBER O	F CRITICAL	CLEARA	NCE INT	ERVALS	2*	•
	CMA VALU	E		• • • • • • •	• • • • • • • • • • • •	0.374	
	LEVEL OF	SERVICE .		• • • • • • •		A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 9, Vineyard Avenue and Stroube Street
DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	ī	RIGHT TURNS	**
AFFROACH	LEFT	T	HROUGH		N ON G		XX ON RED
WESTBOUND	140	-	10	• • •	178	CDDIA PP	82
EASTBOUND	10		10		0		10
NORTHBOUND	50		700		Ö		30
SOUTHBOUND	100		1040		7		3
		**]	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	, 3
EASTBOUND	2	0	1	0	1	0	4
NORTHBOUND	1	0	3	0	1	0	5
SOUTHBOUND	1	0	3	0	1	0	5
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	140	N/A		10	N/A	178	N/A
EASTBOUND	6	N/A		10	N/A	0	N/A
NORTHBOUND	50	N/A		33	N/A	0	N/A
SOUTHBOUND	100	N/A	3	47	N/A	7	N/A
	FAST-WEST	' CRITICAL	VOLUME	c		184	
		TH CRITICAL					
	THE SUM C	F CRITICAL	L VOLUM	ES	• • • • • • •	581	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*	
	CMA VALUE					0.363	
	LEVEL OF	SERVICE .	• • • • • •	• • • • • • • •		A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 9, Vineyard Avenue and Stroube Street DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 160 490 180 50	тн	ROUGH 150 120 820 810	** MI		GHT TURNS EN MA	** X ON RED 88 90 20
		** N	UMBER O	F LANES	**		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 2 1		ROUGH ONLY 1 1 3	RIGHT SHARED 0 0 0	RIGHT ONLY 1 1 1	L/T/R SHARED 0 0 0	TOTAL LANES 3 4 5 5
		** ASSIGN	ED LANE	VOLUME	S **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 160 269 180 50	LEFT SHARED N/A N/A N/A	THROU ONL 15 12 27	JGH JY S JO JO JO	RIGHT HARED N/A N/A N/A N/A	RIGHT ONLY 62 530 0	L/T/R SHARED N/A N/A N/A N/A
	NORTH-SOU	CRITICAL TH CRITICA F CRITICAL	L VOLUME	es		450	
1	NUMBER OF	CRITICAL	CLEARAN	CE INTE	RVALS	2*	
	CMA VALUE					0.712	
	LEVEL OF	SERVICE				C	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 10, Ventura Road and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURNS	5 **		
	LEFT	•	THROUGH	MI	N ON GR	EEN MA	AX ON RED		
WESTBOUND	208		0		19		6		
EASTBOUND	0		0		0		0		
NORTHBOUND	0		140		70		930		
SOUTHBOUND	11		4		0		0		
		**	NUMBER	OF LANES	**				
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	0	0	2	0	4		
EASTBOUND	0	0	0	0	0	0	0		
NORTHBOUND	0	0	2	1	0	0	3		
SOUTHBOUND	1	0	2	0	0	0	3		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARE	D ON	LY S	HARED	ONLY	SHARED		
WESTBOUND	114	N/A	N	/A	N/A	10	N/A		
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A		
NORTHBOUND	N/A	N/A		70	N/A	70	N/A		
SOUTHBOUND	11	N/A		2	N/A	N/A	N/A		
				_					
	EAST-WEST	-							
	NORTH BOO	III CKIII	CAL VOIO	MIIG	• • • • • •				
	THE SUM C	F CRITIC	AL VOLUM	ES	• • • • • • •	195			
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	3*	•		
	CMA VALUE					0.122			
	LEVEL OF	SERVICE	• • • • • • • •			A			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 10, Ventura Road and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**	k	RIGHT	TURNS	**
	LEFT		THROUGH	M	IN ON	GREEN	MAX	ON RED
WESTBOUND	320		0			5		5
EASTBOUND	0		0			0		0
NORTHBOUND	0		40			0		460
SOUTHBOUND	10		10			0		0
		**	NUMBER	OF LANES	S **			
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGH	T L/	T/R '	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONL	Y SHA	RED	LANES
WESTBOUND	2	0	0	0	1		0	3
EASTBOUND	0	0	0	0	0		0	0
NORTHBOUND	0	0	3	0	1		0	4
SOUTHBOUND	1	0	3	0	0		0	4
		** A99	CMED I.AM	NE VOLUME	RS **			
		ADDI	GNED EM	IB VOLICIA				
APPROACH	LEFT	LEFT	THRO	OUGH	RIGHT	RIG	HT	L/T/R
	ONLY	SHARE			SHARED	ON	LY	SHARED
WESTBOUND	176	N/A	. 1	A/I	N/A		5	N/A
EASTBOUND	N/A	N/A		I/A	N/A	N	/A	N/A
NORTHBOUND	•	N/A		13	N/A		0	N/A
SOUTHBOUND	10	N/A	•	3	N/A	N	/A	N/A
	EAST-WEST	CRITICA	L VOLUME	3S			176	
	NORTH-SOU	JTH CRITI	CAL VOLU	JMES			23	
	THE SUM (AD COTOTO		ATO C		-	100	
	THE SUM (OF CRITIC	AL AOTOR	ILS	• • • • • •	• • • • •	199	
	NUMBER OF	CRITICA	L CLEAR	ANCE INTE	ERVALS		3*	
	CMA VALUE	· · · · · · · · · · · · · · · · · · ·	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • •	0	.124	
	LEVEL OF	SERVICE		· • • • • • • • •			A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 10, Ventura Road and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	-	THROUGH	** MT	R N ON GR	IGHT TURNS	** X ON RED
WESTBOUND	210		0	1.1.7.	5	7114 1.M-	5
EASTBOUND	0		0		0		0
NORTHBOUND	0		360		0		400
SOUTHBOUND	10		350		O		0
		**	NUMBER	OF LANES	; **		
APPROACH	LEFT	LEFT :	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	0	1	0	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	3	0	1	0	4
SOUTHBOUND	1	0	3	0	0	0	4
		** ASSI	GNED LAN	E VOLUME	s **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHAREI			HARED	ONLY	SHARED
WESTBOUND	116	N/A		I/A	N/A	5	N/A
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A
NORTHBOUND		N/A		.20	N/A	0	N/A
SOUTHBOUND	10	N/A	1	.17	N/A	N/A	N/A
,							
	EAST-WEST						
	NORTH-SOU	IN CRITIC	CALL VOLIC	MES	• • • • • •		
	THE SUM O	F CRITIC	AL VOLUM	ies	• • • • • •	246	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	3*	
	CMA VALUE		• • • • • • •			0.154	
	LEVEL OF	SERVICE				A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 10, Ventura Road and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT	mt.	ROUGH	** R MIN ON GR	IGHT TURNS	** X ON RED
WESTBOUND	190	In.	0 0	MIN ON GR	een Ma	30 XED
EASTBOUND	0		Ö	Ō		0
NORTHBOUND			540	Ō		310
SOUTHBOUND	10		770	0		0
		** N	UMBER OF LA	ANES **		
APPROACH	LEFT	LEFT TH	ROUGH RIC	HT RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY SHAP	RED ONLY	SHARED	LANES
WESTBOUND	2	0	0 (1	0	3
EASTBOUND	0	0	0 (-	0	0
NORTHBOUND		0	3 (0	4
SOUTHBOUND	1	0	3 (0	0	4
		** ASSIGN	ED LANE VOI	LUMES **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED
WESTBOUND	104	N/A	N/A	N/A	.0	N/A
EASTBOUND	N/A		N/A		N/A	N/A
NORTHBOUND		N/A	180	N/A	0	N/A
SOUTHBOUND	10	N/A	257	N/A	N/A	N/A
	EAST-WEST	CRITICAL	VOLUMES	• • • • • • • • • • • • • • • • • • • •	104	
	NORTH-SOC	TH CRITICA.	L VOLUMES .	• • • • • • • • • •	257	
	THE SUM C	F CRITICAL	VOLUMES			
	NUMBER OF	'CRITICAL	CLEARANCE I	INTERVALS .	3*	
	CMA VALUE		• • • • • • • • • • • • • • • • • • • •		0.226	
	LEVEL OF	SERVICE	• • • • • • • • • • • • • • • • • • • •		А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 10, Ventura Road and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				* 1	·]	RIGHT TURNS	3 **
	LEFT	TH	IROUGH	M I	IN ON G	REEN MA	AX ON RED
WESTBOUND	90		0		5		5
EASTBOUND	0		0		0		0
NORTHBOUND			350		0		600
SOUTHBOUND	10		190		0		0
		** N	TUMBER	OF LANES	3 **		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	0	1	0	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND		0	3	0	1	0	4
SOUTHBOUND	1	0	3	0	0	0	4
		** ASSIGN	ED LAN	E VOLUME	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	50	N/A	N	/A	N/A	5	N/A
EASTBOUND	N/A	N/A	N	/A	N/A	N/A	N/A
NORTHBOUND	•	N/A		17	N/A	0	N/A
SOUTHBOUND	10	N/A	,	63	N/A	N/A	N/A
	EAST-WEST	CRITICAL	VOLUME	s		50	
	NORTH-SOU	TH CRITICA	T AOTA	MES	• • • • •		
	THE SUM C	F CRITICAL	VOLUM	ES		177	
-	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*	•
	CMA VALUE	3	••••			0.111	
	LEVEL OF	SERVICE				A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 10, Ventura Road and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* *	RI	IGHT TURNS	X ON RED
WESTBOUND	492		0		0		6
EASTBOUND	0		0		0		0
NORTHBOUND	0		24		12		604
SOUTHBOUND	11		69		0		0
		**	NUMBER	OF LANES	5 **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHARED	ONLY	SHARED	ONLY		
WESTBOUND	2	0	0	0	2	0	4
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	-	0	2	1	0	0	3
SOUTHBOUND	1	0	2	0	0	0	3
		** ASSI	GNED LAN	NE VOLUMI	ES **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY				SHARED	ONLY	SHARED
WESTBOUND	271	•			N/A	0	N/A
EASTBOUND	N/A				N/A	N/A	N/A
NORTHBOUND	•			12	N/A	12	N/A
SOUTHBOUND	11	N/A		34	N/A	N/A	N/A
		r CRITICA UTH CRITI					
	THE SUM	OF CRITIC	AL VOLUM	MES		305	
	NUMBER O	F CRITICA	L CLEARA	NCE INTE	ERVALS .	3*	•
	CMA VALU	E	• • • • • • • •	• • • • • • • •		0.191	
	LEVEL OF	SERVICE				A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5 10-16-2001, 9:33 AM

INTERSECTION: 10, Ventura Road and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	ਜਾਪ	ROUGH	** MT?	R: N ON GRI	IGHT TURNS	** X ON RED
MECHED OF THE	160	·	0	MIL	5	31114 1117	5
WESTBOUND EASTBOUND	160		0		0		Õ
NORTHBOUND	0		10		0		610
SOUTHBOUND	10		10		0		0
SOUTHBOOMD	10		10		U		J
		** N	UMBER OF	LANES	**		
APPROACH	LEFT		ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	-		SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	0	1	0	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	3	0	1	0	4
SOUTHBOUND	1	0	3	0	0	0	4
		** ASSIGN	ED LANE	VOLUMES	s **		
APPROACH	LEFT	LEFT	THROUG		RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONL	-	HARED	ONLY	SHARED
WESTBOUND	88	N/A	N/A		N/A	. , 5	N/A
EASTBOUND	N/A	N/A	N/A		N/A	N/A	N/A
NORTHBOUND	•	N/A	3		N/A	0	N/A
SOUTHBOUND	10	N/A	3	3	N/A	N/A	N/A
		CRITICAL TH CRITICA					
	THE SUM C	F CRITICAL	VOLUMES	3	· · · · · · ·	101	
	NUMBER OF	CRITICAL	CLEARAN	CE INTE	RVALS .	3*	
	CMA VALUE					0.063	
	LEVEL OF	SERVICE				А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 10, Ventura Road and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				* *	r R	IGHT TURNS	5 **
111 1 11011011	LEFT	T	HROUGH	M)	N ON GRI		AX ON RED
WESTBOUND	500		0		15		5
EASTBOUND	0		0		0		0
NORTHBOUND	0		780		0		510
SOUTHBOUND	10		620		0		0
		**	NUMBER	OF LANES	; **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	0	1	0	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	3	0	1	0	4
SOUTHBOUND	1	0	3	0	0	0	4
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	275	N/A		/A	N/A	15	N/A
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	2		N/A	.0	N/A
SOUTHBOUND	10	N/A	2	07	N/A	N/A	N/A
	EAST-WEST	CRITICAL	VOLUME	S		275	
		TH CRITIC				-	
	THE CIM C	F CRITICA	T. VOLUM	TC.		545	
	THE SOM C	T CRITICA		باشد	• • • • • • •	545	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*	r
	CMA VALUE	3			• • • • • • •	0.341	
	LEVEL OF	SERVICE .			• • • • • • •	А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 10, Ventura Road and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**		GHT TURNS	
	LEFT	TH	ROUGH	MII	N ON GRE	en ma	X ON RED
WESTBOUND	450		0		45		5
EASTBOUND	0		0		0		0
NORTHBOUND	0		1110		0		380
SOUTHBOUND	10		890		0		0
		** N	UMBER O	F LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	0	1	0	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	3	0	1	0	4
SOUTHBOUND	1	0	3	0	0	0	4
		** ASSIGN	ED LANE	VOLUME	S **		
APPROACH	LEFT	LEFT	THROU	GH 1	RIGHT	RIGHT	L/T/R
ALLKOACH	ONLY	SHARED	ONL		HARED	ONLY	SHARED
WESTBOUND	248	N/A	N/		N/A	45	N/A
EASTBOUND	N/A	N/A	N/		N/A	N/A	N/A
NORTHBOUND	N/A	N/A	37		N/A	0	N/A
SOUTHBOUND	10	N/A	29		N/A	N/A	N/A
	EAST-WEST	CRITICAL	VOLUMES			248	
	NORTH-SOU	TH CRITICA	L VOLUM	ES		380	
	THE SUM C	F CRITICAL	VOLUME	s		628	
	NUMBER OF	CRITICAL	CLEARAN	CE INTE	RVALS	3*	
	CMA VALUE				• • • • • • • • • • • • • • • • • • •	0.392	
	LEVEL OF	SERVICE				А	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 10, Ventura Road and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 770 0 0 10	тн	IROUGH 0 0 270 390	** MIN ON	RIGHT TURN GREEN M 0 0 0 0	S ** AX ON RED 10 0 600
		** N	UMBER OF	LANES **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 2 0 0			0 0		TOTAL LANES 3 0 4 4
		** ASSIGN	ED LANE V	OLUMES *	k	1
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 424 N/A N/A 10	N/A	THROUGH ONLY N/A N/A 90 130	SHAREI N/A N/A	O ONLY O N/A O	L/T/R SHARED N/A N/A N/A N/A
	NORTH-SOU	CRITICAL TTH CRITICA OF CRITICAL	L VOLUMES		130	
	NUMBER OF	CRITICAL	CLEARANCE	INTERVALS	3 · · · · 3 ·	*
	CMA VALUE			• • • • • • • • • • • • • • • • • • • •	0.346	
	LEVEL OF	SERVICE	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 11, Oxnard Boulevard and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**	_	RIGHT TURNS	**		
	LEFT	TH	ROUGH	MI	N ON G	reen ma	X ON RED		
WESTBOUND	10		10		0		10		
EASTBOUND	10		10		20		320		
NORTHBOUND	640		10		5		5		
SOUTHBOUND	10		10		10		0		
		** N	UMBER (OF LANES	**				
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY		ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	1	0	1	0	3		
EASTBOUND	1	0	0	1	1	0	3		
NORTHBOUND	1	0	2	0	1	0	4		
SOUTHBOUND	1	0	1	1	0	0	3		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED		
WESTBOUND	10	N/A		10	N/A	0	N/A		
EASTBOUND	10	N/A	N,	/A	15	15	N/A		
NORTHBOUND	640	N/A		5	N/A	5	N/A		
SOUTHBOUND	10	N/A	:	10	10	N/A	N/A		
		CRITICAL TH CRITICA					\$		
	THE SUM C	F CRITICAL	VOLUM	ES		675			
	NUMBER OF	CRITICAL	CLEARAI	NCE INTE	RVALS	2*	•		
	CMA VALUE					0.422			
	LEVEL OF	SERVICE				A			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 11, Oxnard Boulevard and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * MT	R N ON GR	IGHT TURNS	** X ON RED
WESTBOUND	10		10	1417	10	CIDIA INC	0
EASTBOUND	40		20		0		240
NORTHBOUND			1240		59		11
SOUTHBOUND			820		50		0
boothboons							
		**	NUMBER	OF LANES	; **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	2	0	1	0	2	0	5
NORTHBOUND	2	0	2	0	1	0	5
SOUTHBOUND	1	0	1	1	0	0	3
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	ED ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	6	N/A	A N	I/A	20	N/A	N/A
EASTBOUND	22	N/A		20	N/A	0	N/A
NORTHBOUND	291	N/A		20	N/A	59	N/A
SOUTHBOUND	10	N/A	4	35	435	N/A	N/A
	EAST-WEST	TH CRITI	CAL VOLU	MES		726	
	THE SUM C	F CRITIC	AL VOLUM	ies	• • • • • • • •	768	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	4*	
	CMA VALUE			• • • • • • • • •	• • • • • • • •	0.480	
	LEVEL OF	SERVICE	• • • • • • •	• • • • • • •	• • • • • • •	A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 11, Oxnard Boulevard and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	10	IGHT TURNS	· **
AFFROACII	LEFT	-	THROUGH		N ON GR		X ON RED
WESTBOUND	10	•	10	• • •	10		0
EASTBOUND	40		40		0		260
NORTHBOUND			1170		57		3
SOUTHBOUND			740		50		Ō
		**	NUMBER	OF LANES	**		
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	2	0	1	0	2	0	5
NORTHBOUND		0	2	0	1	0	5 3
SOUTHBOUND	1	0	1	1	0	0	3
		** ASSIC	GNED LAN	IE VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHAREI	ON C	ILY S	HARED	ONLY	SHARED
WESTBOUND	6	N/A		I/A	20	N/A	N/A
EASTBOUND	22	N/A		40	N/A	0	N/A
NORTHBOUND		N/A		85	N/A	57	N/A
SOUTHBOUND	10	N/A	3	195	395	N/A	N/A
	EAST-WEST						
	NORTH-SOU	TH CRITIC	CAL VOLU	MES	• • • • • •	681	
	THE SUM C	F CRITICA	AL VOLUM	ies		727	
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	RVALS .	4*	
	CMA VALUE					0.454	
		• • • • • • • • • • • • • • • • • •	· · · · · · ·			0.434	
	LEVEL OF	SERVICE .				A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 11, Oxnard Boulevard and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	ጥኒ	IROUGH	** MT	R: N ON GRI	GHT TURNS	** X ON RED
WESTBOUND	20	11.	140	1-17	90	2514 1.6-	0
EASTBOUND	140		100		0		420
NORTHBOUND			940		56		104
SOUTHBOUND	30		260		60		0
SOUTHBOOMD	30		200		80		U
		** 1/	TUMBER (OF LANES	**		
APPROACH	LEFT		IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	2	0	1	0	2	0	5
NORTHBOUND		0	2	0	1	0	5
SOUTHBOUND	1	0	1	1	0	0	3
		** ASSIGN	ED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	11	N/A	N	/A	230	N/A	N/A
EASTBOUND	77	N/A	1	00	N/A	0	N/A
NORTHBOUND	324	N/A	4	70	N/A	56	N/A
SOUTHBOUND	30	N/A	1	60	160	N/A	N/A
		CRITICAL					
	NORTH-SOU	TH CRITICA	TT AOTIO	MES	• • • • • • •	500	
	THE SUM C	F CRITICAL	VOLUM	ES		807	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	4*	
	CMA VALUE			• • • • • • • •	• • • • • • •	0.504	
	LEVEL OF	SERVICE			• • • • • •	А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 11, Oxnard Boulevard and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**		RIGHT T	URNS **
	LEFT	TH	ROUGH	MI	N ON	GREEN	MAX ON RED
WESTBOUND	10		10			0	10
EASTBOUND	10		60		72	5	65
NORTHBOUND	130		10		2	5	5
SOUTHBOUND	10		10		1	0	0
		** N	UMBER	OF LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGH	, ,	
	ONLY	SHARED	ONLY	SHARED	ONL	Y SHARE	ED LANES
WESTBOUND	1	0	1	0	1		3
EASTBOUND	1	0	0	1	1		3
NORTHBOUND	1	0	2	0	1		4
SOUTHBOUND	1	0	1	1	0	0	3
		** ASSIGN	ED LAN	E VOLUME	s **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	r L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	Y SHARED
WESTBOUND	10	N/A		10	N/A	(· · · · · · · · · · · · · · · · · · ·
EASTBOUND	10	N/A	N	/A	392	392	
NORTHBOUND	130	N/A		5	N/A	25	•
SOUTHBOUND	10	N/A		10	10	N/2	A N/A
		CRITICAL TTH CRITICA					402 140
	THE SUM C	OF CRITICAL	VOLUM	ES		5	542
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS		2*
	CMA VALUE	3				0.3	339
	LEVEL OF	SERVICE					A

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 11, Oxnard Boulevard and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				*1	k R	IGHT TURNS	; **
	LEFT	T	HROUGH	M:	IN ON GR	een ma	X ON RED
WESTBOUND	320		170		10		0
EASTBOUND	170		90		258		242
NORTHBOUND			1310		442		88
SOUTHBOUND	30		1200		170		0
		**]	NUMBER	OF LANES	3 **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
,	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	2	0	1	0	2	0	5
NORTHBOUND		0	2	0	1	0	5
SOUTHBOUND	1	0	1	1	0	0	3
		** ASSIG	NED LAN	E VOLUM	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	SHARED	ONLY	SHARED
WESTBOUND	176	N/A	N	/A	180	N/A	N/A
EASTBOUND	94	N/A		90	N/A	129	N/A
NORTHBOUND	121	N/A	6	55	N/A	442	N/A
SOUTHBOUND	30	N/A	6	85	685	N/A	N/A
	EAST-WEST	CRITICAL	VOLUME	s		305	
	NORTH-SOU	TH CRITICA	AL VOLU	MES			
	THE SUM C	F CRITICAL	L VOLUM	ES		1111	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	4*	
	CMA VALUE		• • • • • •			0.694	
	LEVEL OF	SERVICE .				в	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 11, Oxnard Boulevard and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURNS	5 **
	LEFT	Т	HROUGH	MI	N ON GR	een ma	AX ON RED
WESTBOUND	330		150		10		0
EASTBOUND	120		110		164		276
NORTHBOUND	250		1480		310		90
SOUTHBOUND	40		1180		150		0
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	2	Ō	i	Ō	2	Ō	5
NORTHBOUND		0	2	Ō	1	0	5
SOUTHBOUND	1	0	1	1	0	0	3
		** 10010	NTD1	IE VOLUME	C **		
		** ASSIG	משת תשמי	IE AOTOME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	-		HARED	ONLY	SHARED
WESTBOUND	181	N/A		I/A	160	N/A	N/A
EASTBOUND	66	N/A		.10	N/A	82	N/A
NORTHBOUND		N/A		40	N/A	310	N/A
SOUTHBOUND	40	N/A	6	65	665	N/A	N/A
		CRITICAL				291	
	NORTH-SOU	TH CRITIC	AL VOLU	MES		803	
		-					
	THE SUM C	F CRITICA	T AOLAW	ies	• • • • • •	1094	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	41	•
	CMA VALUE					0.684	
	LEVEL OF	SERVICE .				В	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 11, Oxnard Boulevard and Town Center Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	ሞ	ROUGH	* * MT	RI N ON GRE	GHT TURNS	** X ON RED
WESTBOUND	280		330		40		0
EASTBOUND	230		260		670		210
NORTHBOUND			970		649		81
SOUTHBOUND	210		930		200		0
		** N	UMBER C	OF LANES	; **		
APPROACH	LEFT		ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY		ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	2	0	1	0	2	0	5
NORTHBOUND		0	2	0	1	0	5
SOUTHBOUND	1	0	1	1	0	0	3
		** ASSIGN	ED LANE	VOLUME	IS **		
APPROACH	LEFT	LEFT	THROU	JGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONI	LY S	HARED	ONLY	SHARED
WESTBOUND	154	N/A	N/		370	N/A	N/A
EASTBOUND	127	N/A	26		N/A	335	N/A
NORTHBOUND		N/A	48		N/A	649	N/A
SOUTHBOUND	210	N/A	56	55	565	N/A	N/A
		CRITICAL				• • • • • • • • • • • • • • • • • • • •	
	NORTH-SOU	TH CRITICA	T AOTOM	ies	• • • • • • •	859	
	THE SUM O	F CRITICAL	VOLUME	ß		1356	
	NUMBER OF	CRITICAL	CLEARAN	ICE INTE	RVALS	4*	
	CMA VALUE	• • • • • • • • • •	• • • • • • •		• • • • • • • • • • • • • • • • • • • •	0.847	
	LEVEL OF	SERVICE	• • • • • •			D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 12, Vineyard Avenue and Ventura Blvd/Myrtle DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				**	R	GHT TURNS	; **
	LEFT	Ti	HROUGH	MI	N ON GRE	een ma	X ON RED
WESTBOUND	425		31		0		30
EASTBOUND	13		55		41		28
NORTHBOUND			871		15		114
SOUTHBOUND	15		1212		42		34
		**]	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT TI	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	1	0	0	1	0	3
EASTBOUND	0	1	0	0	1	0	2
NORTHBOUND	1	0	2	0	1	0	4
SOUTHBOUND	1	0	2	0	1	0	4
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	228	228		/A	N/A	0	N/A
EASTBOUND	N/A	68		/A	N/A	41	N/A
NORTHBOUND		N/A		36	N/A	15	N/A
SOUTHBOUND	15	N/A	6	06	N/A	42	N/A
		CRITICAL TH CRITIC					
	THE SUM C	F CRITICAL	L VOLUM	ES		958	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*	•
	CMA VALUE					0.599	
	LEVEL OF	SERVICE .				A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1 10-16-2001, 9:33 AM

INTERSECTION: 12, Vineyard Avenue and Ventura Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	7	HROUGH	* 1 M*	R IN ON GRI	IGHT TURNS	X ON RED
WESTBOUND	280	1	10	P1.	40	21314 1-12-	0
EASTBOUND	10		10		10		0
NORTHBOUND			1000		256		154
SOUTHBOUND	80		1420		10		0
		**	NUMBER	OF LANES	5 **		
APPROACH	LEFT	LEFT I	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND		0	3	0	1	0	6
SOUTHBOUND	1	0	2	1	0	0	4
		** ASSIG	NED LAN	IE VOLUMI	3S **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED	ONLY	SHARED
WESTBOUND	154	N/A		I/A	50	N/A	N/A
EASTBOUND	10	N/A		10	10	N/A	N/A
NORTHBOUND		N/A		33	N/A	256	N/A
SOUTHBOUND	80	N/A	4	177	477	N/A	N/A
		CRITICAL					
	NORTH-SOU	TH CRITIC	AL VOLU	MES		483	
	THE SUM C	F CRITICA	L VOLUM	ies	• • • • • • • •	647	r
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS	4*	•
	CMA VALUE				· · · · · · · · ·	0.404	
	LEVEL OF	SERVICE .	• • • • • •	• • • • • •	· • • • • • • •	А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 12, Vineyard Avenue and Ventura Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH		_		**		GHT TURNS	
	LEFT	7	THROUGH 40	MI	N ON GRE 20	SEN MA	X ON RED
WESTBOUND EASTBOUND	320 20		40		47		33
NORTHBOUND	120		870		264		176
SOUTHBOUND	40		1370		10		0
		**	NUMBER	OF LANES	**		
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	2	0	3	0	1	0	6
SOUTHBOUND	1	0	2	1	0	0	4
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	176	N/A	N	I/A	60	N/A	N/A
EASTBOUND	20	N/A		40	N/A	47	N/A
NORTHBOUND	66	N/A		90	N/A	264	N/A
SOUTHBOUND	40	N/A	4	60	460	N/A	N/A
	EAST-WEST						
	NORTH-SOU	TH CRITIC	CAL VOLU	MES		526	
	THE SUM C	F CRITIC	AL VOLUM	ies		749	
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	RVALS	4*	
	CMA VALUE					0.468	
	LEVEL OF	SERVICE				А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 12, Vineyard Avenue and Ventura Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**		RIGHT TURN	
	LEFT		THROUGH	MI	N ON G		IAX ON RED
WESTBOUND EASTBOUND	300 20		4 0 50		0 70		20 0
NORTHBOUND	120		850		265		165
SOUTHBOUND	50		1370		10		0
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY		LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	2	0	3	0	1	0	6
SOUTHBOUND	1	0	2	1	0	0	4
		** ASS	IGNED LAN	IE VOLUME	S **		
APPROACH	LEFT	LEF:	r THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARI	ED ON	TLY S	HARED	ONLY	SHARED
WESTBOUND	165	N/2		I/A	40	N/A	N/A
EASTBOUND	20	N/A		50	N/A	70	N/A
NORTHBOUND	66	N/A		283	N/A	265	N/A
SOUTHBOUND	50	N/A	A 4	60	460	N/A	N/A
	EAST-WEST						
	NORTH-500	In CKII.	CAL VOLC	MES	• • • • • •	520	
	THE SUM O	F CRITIC	CAL VOLUM	ies		761	
	NUMBER OF	CRITICA	AL CLEARA	NCE INTE	RVALS	4	*
	CMA VALUE			• • • • • • •		0.476	
	LEVEL OF	SERVICE	• • • • • • •			A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 12, Vineyard Avenue and Ventura Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURNS	S **
	LEFT	Ţ	THROUGH	MI			AX ON RED
WESTBOUND	310		10		40		0
EASTBOUND	10		10		10		Ö
NORTHBOUND	10		1130		230		170
SOUTHBOUND	60		1390		10		0
SOUTHBOOKD	80		1390		10		U
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
AFFROACH	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
MECADOIM							-
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	2	0	3	0	1	0	6
SOUTHBOUND	1	0	2	1	0	0	4
		** ASSIG	ENED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	170	N/A		I/A	50	N/A	N/A
EASTBOUND	10	N/A		10	10	N/A	N/A
NORTHBOUND	6	N/A		77	N/A	230	N/A
SOUTHBOUND	60	N/A		67	467	N/A	N/A
500111500115	00	21/22	•	. • 7	107	M/A	N/A
		CRITICAL TH CRITIC					
	THE SUM C	F CRITICA	L VOLUM	ES		653	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	41	·
	CMA VALUE					0.408	
	LEVEL OF	SERVICE .				А	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 12, Vineyard Avenue and Ventura Blvd/Myrtle DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT 579	נ	THROUGH 105	* * M3	RI IN ON GRI	GHT TURNS	3 ** AX ON RED 64
WESTBOUND EASTBOUND	18		33		131		22
NORTHBOUND			796		48		171
SOUTHBOUND	23		962		0		53
DOOTHDOOND	23		302		ŭ		33
		**	NUMBER	OF LANES	5 **		
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	1	0	0	1	0	3
EASTBOUND NORTHBOUND	0	1 0	0	0	1	0	2
SOUTHBOUND	1 1	0	2 2	0 0	1 1	0 0	4 4
SOUTHBOOMD	1	U	4	U	1	U	4
		** ASSIG	NED LAN	E VOLUME	ES **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHARED		_	HARED	ONLY	SHARED
WESTBOUND	342	342		/A	N/A	0	N/A
EASTBOUND	N/A	51		/A	N/A	131	N/A
NORTHBOUND	45	N/A		98	N/A	48	N/A
SOUTHBOUND	23	N/A	4	81	N/A	0	N/A
	EAST-WEST NORTH-SOU						
	THE SUM O	F CRITICA	L VOLUM	ES		999	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*	
	CMA VALUE	• • • • • • •				0.624	
	LEVEL OF	SERVICE .	• • • • • • •			в	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 12, Vineyard Avenue and Ventura Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURNS	3 **		
	LEFT	TH	IROUGH	MI			AX ON RED		
WESTBOUND	520		30		80		0		
EASTBOUND	10		10		10		0		
NORTHBOUND	30		1340		234		286		
SOUTHBOUND	130		1240		20		0		
		** N	TUMBER (OF LANES	**				
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
111 1 1(011011	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	0	1	0	0	3		
EASTBOUND	ī	Ö	ĺ	ī	Õ	Ö	3		
NORTHBOUND		Ō	3	ō	ĺ	Ö	6		
SOUTHBOUND	1	0	2	1	0	Ö	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED		
WESTBOUND	286	N/A	N,	/A	110	N/A	N/A		
EASTBOUND	10	N/A		10	10	N/A	N/A		
NORTHBOUND		N/A		47	N/A	234	N/A		
SOUTHBOUND	130	N/A	4:	20	420	N/A	N/A		
		CRITICAL			• • • • • • • •				
	THE SUM C	F CRITICAL	VOLUMI	ES	• • • • • •	873			
	NUMBER OF	CRITICAL	CLEARAI	NCE INTE	RVALS .	4*			
	CMA VALUE		• • • • • •	• • • • • • • • • •		0.546			
	LEVEL OF	SERVICE				А			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 12, Vineyard Avenue and Ventura Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * M1	RI IN ON GRI	GHT TURNS	S ** AX ON RED
WESTBOUND	620		110	141	60	31314 1-12-	0
EASTBOUND	10		30		205		85
NORTHBOUND	310		1070		269		341
SOUTHBOUND	130		1480		30		0
		**	NUMBER	OF LANES	S **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	2	0	3	0	1	0	6
SOUTHBOUND	1	0	2	1	0	0	4
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT			RIGHT	RIGHT	L/T/R
	ONLY	SHARE			SHARED	ONLY	SHARED
WESTBOUND	341	N/A		I/A	170	N/A	N/A
EASTBOUND	10	N/A		30	N/A	205	N/A
NORTHBOUND		N/A		57	N/A	269	N/A
SOUTHBOUND	130	N/A	. 5	03	503	N/A	N/A
	73.0m ::ma						
		r CRITICA UTH CRITI			• • • • • • • •		
	THE SUM	OF CRITIC	AL VOLUM	ES	•••••	1219	
	NUMBER O	F CRITICA	L CLEARA	NCE INTE	ERVALS	4*	•
	CMA VALUI	፯	• • • • • • • •			0.762	
	LEVEL OF	SERVICE	• • • • • • • • •			C	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 12, Vineyard Avenue and Ventura Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**		IGHT TURNS	
	LEFT		THROUGH	MI	N ON GR	EEN MA	X ON RED
WESTBOUND	580		110		60		0
EASTBOUND	10		40		152		88
NORTHBOUND SOUTHBOUND	320 160		940 1340		281 30		319 0
SOUTHBOOMD	160		1340		30		U
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	1	0	1	1	0	0	3
NORTHBOUND	2	0	3	0	1	0	6
SOUTHBOUND	1	0	2	1	0	0	4
		** ASSI	GNED LAN	IE VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	OUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE		ILY S	HARED	ONLY	SHARED
WESTBOUND	319	N/A		I/A	170	N/A	N/A
EASTBOUND	10	N/A		40	N/A	152	N/A
NORTHBOUND	176	N/A		313	N/A	281	N/A
SOUTHBOUND	160	N/A	4	157	457	N/A	N/A
	EAST-WEST						
	NORTH-SOU	JTH CRITI	CAL VOLU	MES		633	
	THE SUM (OF CRITIC	AL VOLUM	1ES	• • • • • •	1104	
	NUMBER O	F CRITICA	L CLEARA	NCE INTE	RVALS .	4*	
	CMA VALUI	3				0.690	
	LEVEL OF	SERVICE				в	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7 10-16-2001, 9:46 AM

INTERSECTION: 12, Vineyard Avenue and Ventura Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	· · · · · · · · · · · · · · · · · · ·	IROUGH	*	* RI	IGHT TURNS	•		
WESTBOUND	560	11	40	141	IN ON GR	TIM NIE	AX ON RED		
EASTBOUND	10		20		99		11		
NORTHBOUND			1230		242		308		
SOUTHBOUND			1660		20		0		
		**]	NUMBER	OF LANE	S **				
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	0	1	0	0	3		
EASTBOUND	1	0	1	1	0	0	3		
NORTHBOUND		0	3	0	1	0	6		
SOUTHBOUND	1	0	2	1	0	0	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON	LY S	SHARED	ONLY	SHARED		
WESTBOUND	308	N/A		/A	100	N/A	N/A		
EASTBOUND	10	N/A		20	N/A	99	N/A		
NORTHBOUND	 -	N/A		10	N/A	242	N/A		
SOUTHBOUND	150	N/A	5	60	560	N/A	N/A		
		CRITICAL							
	NORTH-SOC	JTH CRITICA	TT AOTO	MES	• • • • • • • •				
	THE SUM C	F CRITICAL	VOLUM	ES	• • • • • • • • •	989			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS	4*			
	CMA VALUE			• • • • • • • • •		0.618			
	LEVEL OF	SERVICE	• • • • • •	• • • • • • • • •		в			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 13, Oxnard Boulevard and US-101 Northbound Ramps

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				* *		RIGHT TURN				
	LEFT	TH	IROUGH	M	NO N	GREEN M	AX ON RED			
WESTBOUND	230		0			0	540			
EASTBOUND	0		0			0	0			
NORTHBOUND	1010		110			0	0			
SOUTHBOUND	0		20		(0	320			
		** 1	UMBER	OF LANES	; **					
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGH'	T L/T/R	TOTAL			
	ONLY	SHARED	ONLY	SHARED	ONL'	Y SHARED	LANES			
WESTBOUND	1	0	0	0	1	0	2			
EASTBOUND	0	0	0	0	0	0	0			
NORTHBOUND	2	0	2	0	0	0	4			
SOUTHBOUND	0	0	4	0	1	0	5			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R			
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED			
WESTBOUND	230	N/A	N	/A	N/A	0	N/A			
EASTBOUND	N/A	N/A	N,	/A	N/A	N/A	N/A			
NORTHBOUND	556	N/A		55	N/A	N/A	N/A			
SOUTHBOUND	N/A	N/A		5	N/A	0	N/A			
		CRITICAL TH CRITICA				561				
	THE SUM O	F CRITICAL	VOLUM	ES	• • • • •	791				
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3	*			
	CMA VALUE		• • • • •	• • • • • • •	• • • • •	0.494				
	LEVEL OF	SERVICE				A				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 13, Oxnard Boulevard and US-101 Northbound Ramps

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	,	THROUGH	* * MI	R IN ON GR	IGHT TURNS	X ON RED
WESTBOUND	270		0		0		800
EASTBOUND	0		0		0		0
NORTHBOUND	770		1030		0		0
SOUTHBOUND	0		410		0		660
		**	NUMBER	OF LANES	; **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	0	2
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	2	0	2	0	0	0	4
SOUTHBOUND	0	0	4	0	1	0	5
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT			RIGHT	RIGHT	L/T/R
	ONLY				SHARED	ONLY	SHARED
WESTBOUND	270	•		I/A	•	0	N/A
EASTBOUND	N/A			I/A	N/A	N/A	N/A
NORTHBOUND		,		15	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	. 1	.02	N/A	0	N/A
		r CRITICA UTH CRITI				525	
	THE SUM (OF CRITIC	AL VOLUM	ies		795	
	NUMBER O	F CRITICA	L CLEARA	NCE INTE	ERVALS .	3*	r
	CMA VALUI	3				0.497	
	LEVEL OF	SERVICE		• • • • • • •	• • • • • • •	А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 13, Oxnard Boulevard and US-101 Northbound Ramps

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT	TU	IROUGH	* * MT		RIGHT GREEN		** ON RED
WESTBOUND	270	111	0	141.1	.N ON	OKEEN 0	I*IA.	840
EASTBOUND	0		Ö			0		0
NORTHBOUND	780		920			0		Ö
SOUTHBOUND	0		630			Ô		370
	•					-		
		** N	UMBER (F LANES	**			
APPROACH	LEFT		ROUGH	RIGHT	RIGH		T/R	TOTAL
	ONLY		ONLY	SHARED	ONL		RED	LANES
WESTBOUND	1	0	0	0	1		0	2
EASTBOUND	0	0	0	0	0		0	0
NORTHBOUND	2	0	2	0	0		0	4
SOUTHBOUND	0	0	4	0	1		0	5
		** ASSIGN	ED LAN	VOLUME	S **			
APPROACH	LEFT	LEFT	THROU	JGH	RIGHT	RIG	HT	L/T/R
	ONLY	SHARED	ONI	_	HARED	ON	ΙLΥ	SHARED
WESTBOUND	270	N/A	N/		N/A		0	N/A
EASTBOUND	N/A	N/A	•	'A	N/A		I/A	N/A
NORTHBOUND	429	N/A	46		N/A	N	I/A	N/A
SOUTHBOUND	N/A	N/A	15	58	N/A		0	N/A
•		CRITICAL			• • • • •		270	
	NORTH-SOC	TH CRITICA	T AOTOR	1ES	• • • • •	• • • • •	587	
	THE SUM C	F CRITICAL	VOLUME	s			857	
	NUMBER OF	CRITICAL	CLEARAN	CE INTE	RVALS		3*	
	CMA VALUE			· • • • • • • •		0	.536	
	LEVEL OF	SERVICE		· • • • • • • •			A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 13, Oxnard Boulevard and US-101 Northbound Ramps

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH		<u>.</u>	mun ougu	**		RIGHT TURNS	
WESTBOUND	LEFT 320	`-	THROUGH 0	MI	N ON G	reen ma	X ON RED
EASTBOUND	0		Ö		0		0
NORTHBOUND	•		1020		Ö		Ö
SOUTHBOUND	0		270		0		430
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT 7	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	• •	LANES
WESTBOUND	1	0	0	0	1	0	2
EASTBOUND	. 0	Ō	Ō	Ö	0	Ö	Ō
NORTHBOUND	2	0	2	0	0	0	4
SOUTHBOUND	0	0	4	0	1	0	5
		** ASSIC	SNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHAREI			HARED	ONLY	SHARED
WESTBOUND	320	N/A		/A	N/A	0	N/A
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A
NORTHBOUND	495	N/A		10	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A		68	N/A	0	N/A
	EAST-WEST	CRITICAL	L VOLUME	s		320	
	NORTH-SOU	TH CRITIC	CAL VOLU	MES			
	THE SUM C	F CRITICA	T AOLAW	ES	• • • • • •	883	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*	
	CMA VALUE			• • • • • • • • •	• • • • • •	0.552	
	LEVEL OF	SERVICE .	• • • • • • • • •		• • • • • •	А	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 13, Oxnard Boulevard and US-101 Northbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURN	5 **
	LEFT	TH	ROUGH	MIN	ON GR	EEN M	AX ON RED
WESTBOUND	90		0		0		80
EASTBOUND	0		0		0		0
NORTHBOUND	1480		80		0		0
SOUTHBOUND	0		240		0		560
		** N	UMBER OF	LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH 1	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY S	HARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	0	2
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	2	0	2	0	0	0	4
SOUTHBOUND	0	0	4	0	1	0	5
		** ASSIGN	ED LANE	VOLUMES	**		
APPROACH	LEFT	LEFT	THROUG	H R	IGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SH	ARED	ONLY	SHARED
WESTBOUND	90	N/A	N/A		N/A	0	N/A
EASTBOUND	N/A	N/A	N/A		N/A	N/A	N/A
NORTHBOUND	814	N/A	40		N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	60		N/A	0	N/A
	73.00 M	n on terror					
		CRITICAL					
	NORTH-SO	JTH CRITICA	T AOPOME:	· · · · · ·	• • • • • •	874	
	THE SUM (OF CRITICAL	VOLUMES			964	
	NUMBER OF	? CRITICAL	CLEARANCI	E INTER	VALS .	3*	•
	CMA VALUE	3	• • • • • • •			0.602	

LEVEL OF SERVICE

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6 10-16-2001, 9:33 AM

Capacity assumed = 1600.

INTERSECTION: 13, Oxnard Boulevard and US-101 Northbound Ramps

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND	LEFT 80	ני	THROUGH 0	* * M]	IN ON GRI	IGHT TURNS EEN MA	AX ON RED 390
EASTBOUND NORTHBOUND SOUTHBOUND	0 1120 0		0 1670 980		0 0 0		0 0 1040
		**	NUMBER	OF LANES	S **		
APPROACH	LEFT ONLY	LEFT T	THROUGH ONLY	RIGHT SHARED	RIGHT ONLY	L/T/R SHARED	TOTAL LANES
WESTBOUND	1	0	0	0	1	0	2
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	2	0	2	0	0	0	4
SOUTHBOUND	0	0	4	0	1	0	5
3 DDD 03 GW				E VOLUME			7 /m /n
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
MICONOCINE	ONLY	SHAREI		_	SHARED	ONLY	SHARED
WESTBOUND	80	N/A		/A	N/A	0	N/A
EASTBOUND NORTHBOUND	N/A 616	N/A		/A	N/A	N/A	N/A
		N/A			N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	2	45	N/A	0	N/A
		r CRITICAL JTH CRITIC					
	THE SUM C	OF CRITICA	AL VOLUM	ES	• • • • • • • •	941	
	NUMBER OF	F CRITICAL	CLEARA	NCE INTE	RVALS	3*	•
	CMA VALUE	3	• • • • • •	• • • • • • •		0.588	
	LEVEL OF	SERVICE .	• • • • • • •			A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 13, Oxnard Boulevard and US-101 Northbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				*	*	RIGHT	TURNS	**
	LEFT	T	HROUGH	M	IN ON	GREEN	MAX	K ON RED
WESTBOUND	100		0			0		440
EASTBOUND	0		0			0		0
NORTHBOUND	1000		1690			Ō		0
SOUTHBOUND	0		1220			0		720
SOUTHBOOKE	U		1220			· ·		, 20
		**	NUMBER	OF LANE	S **			
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGH	ייי ד./	T/R	TOTAL
APPROACH	ONLY	SHARED	ONLY	SHARED		•	RED	LANES
WESTBOUND	1	0	0	0			0	2
		0	0	0			0	0
EASTBOUND	0		2				0	4
NORTHBOUND	2	0		0	(4 . 5
SOUTHBOUND	0	0	4	0	1	_	0	5
		** ASSIG	NED LAI	NE VOLUM	ES **	•		
APPROACH	LEFT	LEFT	THRO	OUGH	RIGHT	RIG	HT	L/T/R
	ONLY	SHARED	Oì	NLY	SHAREI	ON	ILY	SHARED
WESTBOUND	100	N/A	_	I/A	N/A		0	N/A
EASTBOUND	N/A	N/A		1/A	N/A	N	I/A	N/A
NORTHBOUND	550	N/A		345	N/A		/A	N/A
SOUTHBOUND	N/A	N/A		305	N/A	•	0	N/A
500111500115	21/ 22	21/ 22	•	, , ,			· ·	,
			***	7.0			100	
		CRITICAL					100	
	NORTH-SOU	TH CRITIC	AL VOLU	DMES	• • • • •		855	
	THE SUM C	F CRITICA	L VOLUM	MES		- · · · · · ·	955	
	NUMBER OF	CRITICAL	CLEAR	ANCE INT	ERVALS	S	3*	
	CMA VALUE					0	.597	
	LEVEL OF	SERVICE .					A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7 10-16-2001, 9:46 AM

INTERSECTION: 13, Oxnard Boulevard and US-101 Northbound Ramps

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	7	HROUGH		* IN ON	RIGHT TU	RNS ** MAX ON RED
WESTBOUND EASTBOUND	70 0	1	0 0	141	IIN ON	0 0	330 0
NORTHBOUND	1220		1560			0	0
SOUTHBOUND	0		940			0	1140
		**	NUMBER	OF LANE	S **		
APPROACH	LEFT		HROUGH	RIGHT			
WESTBOUND	ONLY 1	SHARED 0	ONLY 0	SHARED 0	ONL 1		D LANES 2
EASTBOUND	0	o	0	0	0		0
NORTHBOUND		ŏ	2	Ö	0		4
SOUTHBOUND		Ö	4	Ö	i		5
		** ASSIG	NED LAN	E VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED		SHARED
WESTBOUND	70	N/A		/A	N/A		N/A
EASTBOUND	N/A	N/A		/A	N/A		N/A
NORTHBOUND		N/A		80	N/A	•	N/A
SOUTHBOUND	N/A	N/A	2	35	N/A	0	N/A
	EAST-WEST	CRITICAL	VOLUME	s			70
	NORTH-SOU	TH CRITIC	AL VOLU	MES		90	06
	THE SUM O	F CRITICA	L VOLUM	ES		97	76
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS	• • • •	3*
	CMA VALUE	• • • • • • • •		• • • • • • • •	• • • • •	0.61	LO
	LEVEL OF	SERVICE .					В

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 14, Oxnard Boulevard and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**	ī	RIGHT TURNS	z **
APPROACH	LEFT	יייו	IROUGH	MT		· · · · · ·	AX ON RED
MECODO(IMI)	0	11	0	MI	0	KEELIN ME	0
WESTBOUND			0		0		10
EASTBOUND	70		_		0		10
NORTHBOUND	0		1050		0		0
SOUTHBOUND	0		250		U		U
		** 1	UMBER (OF LANES	**		
A DDD Ó A CIT	7 737300	राज्यका का	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
APPROACH	LEFT	LEFT TH	ONLY	SHARED	ONLY	SHARED	LANES
	ONLY						
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	2	0	0	0	2	0	4
NORTHBOUND	0	0	4	0	1	0	5
SOUTHBOUND	0	0	4	0	0	0	4
		** ASSIGN	ned lan	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH :	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY SI	HARED	ONLY	SHARED
WESTBOUND	N/A	N/A		/A	N/A	N/A	N/A
EASTBOUND	38	N/A		/A	N/A	Ó	N/A
NORTHBOUND	N/A	N/A		62	N/A	Ö	N/A
SOUTHBOUND	N/A	N/A		62	N/A	N/A	N/A
000111201112	21, 22			_	,	,	,
	DAGE WEGE	n antmiant	1207 1704	2		2.0	
		r CRITICAL JTH CRITICA					
	THE SUM (OF CRITICAL	L VOLUM	ES		300	
	NUMBER OF	CRITICAL	CLEARAI	NCE INTE	RVALS	3	t
	CMA VALUE	3		• • • • • • •	• • • • •	0.188	

LEVEL OF SERVICE

Α

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2 10-16-2001, 9:33 AM

Capacity assumed = 1600.

INTERSECTION: 14, Oxnard Boulevard and US-101 Southbound Ramps

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	-	THROUGH	* * M3	RI IN ON GRI	IGHT TURNS	X ON RED
WESTBOUND EASTBOUND	700	•	0 0	MI	0 0	2014	0 10
NORTHBOUND SOUTHBOUND			1100 690		0		10 0
		**	NUMBER	OF LANES	5 **		
APPROACH	LEFT ONLY	LEFT SHARED	THROUGH ONLY	RIGHT SHARED	ONLY	SHARED	TOTAL LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	2	0	0	0	2	0	4
NORTHBOUND	0	0	4	0	1	0	5
SOUTHBOUND	0	0	4	0	0	0	4
APPROACH	LEFT	** ASSIC	_	IE VOLUME	S ** RIGHT	RIGHT	L/T/R
APPROACH	ONLY	SHAREI			SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A			N/A	N/A	N/A
EASTBOUND	385	N/A		I/A	N/A	0	N/A
NORTHBOUND		N/A		75	N/A	Ŏ	N/A
SOUTHBOUND	•	N/A			N/A	N/A	N/A
	,	·			ŕ	·	·
	EAST-WEST						
	THE SUM C	F CRITICA	AL VOLUM	ies		660	
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	ERVALS .	2*	•
	CMA VALUE			• • • • • • •		0.412	
	LEVEL OF	SERVICE				А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 14, Oxnard Boulevard and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				•-	*	RIGHT		**
	LEFT	7	THROUGH	M	IN ON	GREEN	MAX	ON RED
WESTBOUND	0		0			0		0
EASTBOUND	460		0			0		10
NORTHBOUND	0		1240			0		10
SOUTHBOUND	0		910			0		0
		**	NUMBER	OF LANE	S **			
APPROACH	LEFT		THROUGH	RIGHT		•	T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED			ARED	LANES
WESTBOUND	0	0	0	0	C		0	0
EASTBOUND	2	0	0	0	2		0	4
NORTHBOUND	0	0	4	0	1		0	5
SOUTHBOUND	0	0	4	0	C)	0	4
		** ASSIG	NED LAN	E VOLUM	ES **	•		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIG	HT	L/T/R
	ONLY	SHAREI	_		SHAREL		ILY	SHARED
WESTBOUND	N/A	N/A		/A	N/A		I/A	N/A
EASTBOUND	253	N/A		/A	N/A		0	N/A
NORTHBOUND	N/A	N/A		10	N/A		Ō	N/A
SOUTHBOUND	N/A	N/A		28	N/A	N	I/A	N/A
	,						.,	,
	EAST-WEST	י כפדיידכאו	. VOLUME	g			253	
	NORTH-SOU	-					310	
	NORTH DOO	in cities	ALL 10110		• • • • •			
	THE SUM C	F CRITICA	L VOLUM	ES			563	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS	3	2*	
	CMA VALUE		• • • • • • •			0	.352	
	LEVEL OF	SERVICE .					A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3 10-16-2001, 9:46 AM

INTERSECTION: 14, Oxnard Boulevard and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH		_		*1		IGHT TURNS	=
_	LEFT		THROUGH	M	IN ON GR	een Ma	X ON RED
WESTBOUND	0		0		0		0
EASTBOUND	660		0		0		10
NORTHBOUND	0		1260		0		10
SOUTHBOUND	0		600		0		0
		**	NUMBER	OF LANES	3 **		
APPROACH	LEFT	LEFT :	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	2	0	Ö	Ö	2	Ö	4
NORTHBOUND	0	0	4	Ö	1	Ö	5
SOUTHBOUND	0	0	4	0	0	0	4
		** ASSI	GNED LAN	E VOLUME	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHAREI			HARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N	I/A	N/A	N/A	N/A
EASTBOUND	363	N/A	N	/A	N/A	Ó	N/A
NORTHBOUND	N/A	N/A		15	N/A	0	N/A
SOUTHBOUND	N/A	N/A	1	.50	N/A	N/A	N/A
		CRITICAI					
		OF CRITICA				678	
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	RVALS .	2*	
	CMA VALUE	3	• • • • • • •			0.424	
	LEVEL OF	SERVICE .		• • • • • • • •	• • • • • • •	A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3 10-16-2001, 9:42 AM

INTERSECTION: 14, Oxnard Boulevard and US-101 Southbound Ramps

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 0 60 0		ROUGH 0 0 1490 320	** R MIN ON GR 0 0 34 0	IGHT TURNS EEN MA	** X ON RED 0 10 16 0
		** N	UMBER OF L	ANES **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 0 2 0 0		ONLY SHALO 0 0 4	GHT RIGHT RED ONLY 0 0 0 2 0 1 0 0	L/T/R SHARED 0 0 0	TOTAL LANES 0 4 5 4
		** ASSIGN	ED LANE VO	LUMES **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY N/A 33 N/A N/A	LEFT SHARED N/A N/A N/A N/A	THROUGH ONLY N/A N/A 372 80	RIGHT SHARED N/A N/A N/A N/A	RIGHT ONLY N/A 0 34 N/A	L/T/R SHARED N/A N/A N/A N/A
	NORTH-SOU		L VOLUMES VOLUMES . CLEARANCE	INTERVALS .	372 405 3*	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 14, Oxnard Boulevard and US-101 Southbound Ramps

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				**	r R1	GHT TURNS	; **
	LEFT	7	THROUGH	MI	N ON GRE	en ma	X ON RED
WESTBOUND	0		0		0		0
EASTBOUND	1070		0		0		10
NORTHBOUND	0		1710		0		10
SOUTHBOUND	0		1050		0		0
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT 7	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	2	0	. 0	0	2	0	4
NORTHBOUND	0	0	4	0	1	0	5
SOUTHBOUND	0	0	4	0	0	0	4
		** ASSIC	ENED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHAREI			HARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N	I/A	N/A	N/A	N/A
EASTBOUND	588	N/A		/A	N/A	0	N/A
NORTHBOUND	N/A	N/A		28	N/A	0	N/A
SOUTHBOUND	N/A	N/A	2	62	N/A	N/A	N/A
	EAST-WEST	CRITICAI	L VOLUME	S		588	
	NORTH-SOU	TH CRITIC	CAL VOLU	MES	• • • • • • • • • • • • • • • • • • • •	·· 428	
	THE SUM O	F CRITICA	T AOLUM	ES		1016	
	NUMBER OF	CRITICAI	L CLEARA	NCE INTE	RVALS	2*	
	CMA VALUE					0.635	
	LEVEL OF	SERVICE .	· • • • • • • •			В	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7 10-16-2001, 9:33 AM

INTERSECTION: 14, Oxnard Boulevard and US-101 Southbound Ramps

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	raam	m	mondu	** MT		IGHT TURNS EEN MA	** X ON RED
WECHDOIME	LEFT O	Т	HROUGH 0	141 T	.N ON GRI	een Ma	ON RED
WESTBOUND EASTBOUND	760		0		0		10
NORTHBOUND	760		1920		0		10
SOUTHBOUND	0		1310		o ·		0
SOUTHDOUND	· ·		1310		ŭ		· ·
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	2	0	0	0	2	0	4
NORTHBOUND	0	0	4	0	1	0	5
SOUTHBOUND	0	0	4	0	0	0	4
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	N/A	N/A		/A	N/A	N/A	N/A
EASTBOUND	418	N/A		/A	N/A	0	N/A
NORTHBOUND	N/A	N/A		80	N/A	0	N/A
SOUTHBOUND	N/A	N/A	3	28	N/A	N/A	N/A
		CRITICAL					
	NORTH-SOU	TH CRITIC	AL VOLU	MES	• • • • • • •	480	
	THE SUM O	F CRITICA	L VOLUM	ES			·
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*	
	CMA VALUE					0.561	
	LEVEL OF	SERVICE .				А	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7 10-16-2001, 9:46 AM

INTERSECTION: 14, Oxnard Boulevard and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				*	*	RIGHT	TURNS	**
	LEFT	•	THROUGH	M	IN ON	GREEN	MAX	ON RED
WESTBOUND	0		0			0		0
EASTBOUND	1040		0			0		10
NORTHBOUND	0		1740			0		10
SOUTHBOUND	0		1020			0		0
		**	NUMBER	OF LANE	S **			
APPROACH	LEFT	LEFT 7	THROUGH	RIGHT	RIGH	T L/	T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED		•	RED	LANES
WESTBOUND	0	0	0	0	0		0	0
EASTBOUND	2	0	0	0	2		0	4
NORTHBOUND	0	0	4	0	1		0	5
SOUTHBOUND	0	0	4	0	0		0	4
		** ASSIG	SNED LAN	E VOLUM	ES **			
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIG	нт	L/T/R
	ONLY	SHAREI	ON ON	ГLY	SHARED		LY	SHARED
WESTBOUND	N/A	N/A	N	I/A	N/A	N	/A	N/A
EASTBOUND	572	N/A	N	/A	N/A		Ô	N/A
NORTHBOUND	N/A	N/A	4	35	N/A		0	N/A
SOUTHBOUND	N/A	N/A	2	55	N/A	N	/A	N/A
		CRITICAL					572	
	NORTH-SOU	TH CRITIC	AL VOLU	MES			435	
	THE SUM C	F CRITICA	L VOLUM	ES		-	1007	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS		2*	
	CMA VALUE			• • • • • • •		0	.629	
	LEVEL OF	SERVICE .	• • • • • • •	• • • • • • •	• • • • • •		В	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7 10-16-2001, 9:42 AM

INTERSECTION: 15, Vineyard Avenue and US-101 Northbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

DATE: 10-16-2001

CASE: EXISTING (2000)

INPUT VOLUMES **

APPROACH				**	R:	IGHT TURNS	
	LEFT		THROUGH	M	IN ON GR	een ma	X ON RED
WESTBOUND	467		0		170		1
EASTBOUND	0		0		0		0
NORTHBOUND	0		979		91		128
SOUTHBOUND	0		984		2		44
		**	NUMBER	OF LANES	5 **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
711 1 11011011	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	0	1	0	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	2	0	1	0	3
SOUTHBOUND	0	0	2	0	1	0	3
		** ASSI	GNED LAN	NE VOLUMI	3S **		
APPROACH	LEFT	LEFT	THRO	OUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE			SHARED	ONLY	SHARED
WESTBOUND	257	N/A		I/A	N/A	170	N/A
EASTBOUND	N/A	N/A		1/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/I		190	N/A	91	N/A
SOUTHBOUND	N/A	N/A	4	192	N/A	2	N/A
	EAST-WEST						
	NORTH-SOU	TH CRITI	CAL VOLU	DMES	• • • • • • •	492	
	THE SUM C	F CRITIC	CAL VOLUM	MES		749	
	NUMBER OF	CRITICA	AL CLEAR	ANCE INTE	ERVALS .	2*	•
	CMA VALUE	3				0.468	
	LEVEL OF	SERVICE				A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1 10-16-2001, 9:33 AM

INTERSECTION: 15, Vineyard Avenue and US-101 Northbound Ramps

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	•	THROUGH	* * MT	R IN ON GR	IGHT TURNS	X ON RED	
WESTBOUND	520	•	0	• • •	230		30	
EASTBOUND	0		0		0		0	
NORTHBOUND	-		1150		Ö		270	
SOUTHBOUND	0		1330		0		410	
SOUTHBOOMD	U		1330		U		410	
		**	NUMBER	OF LANES	**			
APPROACH	LEFT	LEFT :	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	1	0	0	0	1	1	3	
EASTBOUND	Ō	ŏ	Ŏ	Ö	ō	ō	Ö	
NORTHBOUND		ŏ	3	Ö	ĺ	Ŏ	4	
SOUTHBOUND	ŏ	Ŏ	3	ŏ	1	Ö	4	
DOUTIDOOND	· ·	Ū	3	Ŭ	-	v	-	
		** ASSI	GNED LAN	E VOLUME	S **			
APPROACH	LEFT	LEFT	THRO	IICH	RIGHT	RIGHT	L/T/R	
HI I KOHCII	ONLY	SHAREI			HARED	ONLY	SHARED	
WESTBOUND	260	260		I/A	N/A	230	N/A	
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A	
NORTHBOUND		N/A		83	N/A	0	N/A	
SOUTHBOUND	N/A	N/A		43	N/A	0	N/A	
SOUTHBOOM	11/21	14/12		43	11/12	· ·	N/A	
	77 CM 177 CM	COTOTON		· C		262		
	EAST-WEST				• • • • • •			
	NORTH-SOC	TH CRITIC	CAL VOLU	MES	• • • • • •			
	THE SUM C	F CRITICA	AL VOLUM	ES	• • • • • •	703		
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	RVALS .	2*		
	CMA VALUE					0.439		
	LEVEL OF	SERVICE .				A		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION:	15,	Vineyard	Avenue	and	US-101	Northbound	Ramps
---------------	-----	----------	--------	-----	--------	------------	-------

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				**		IGHT TURNS	
	LEFT	•	THROUGH	MI	N ON GR	een ma	X ON RED
WESTBOUND	490		0		330		40
EASTBOUND	0		0		0		0
NORTHBOUND	0		1110		0		370
SOUTHBOUND	0		1350		0		450
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	3	0	1	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSI	GNED LAI	NE VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	OUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	O 1	NLY S	HARED	ONLY	SHARED
WESTBOUND	273	N/A		N/A	N/A	273	273
EASTBOUND	N/A	N/A		N/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A		370	N/A	Ó	N/A
SOUTHBOUND	N/A	N/A		150	N/A	0	N/A
		•			•		•
	EAST-WEST	ר כים דיידכים	T. VOLUME	70		273	
	NORTH-SOU						
	NORTH-500	JIII CKIII	CAL VOL	JI-1110	• • • • • •		
	THE SUM C	OF CRITIC	AL VOLUM	MES		723	
	NUMBER OF	CRITICA	L CLEAR	ANCE INTE	RVALS .	2*	•
	CMA VALUE	3				0.452	
	7 DVD7 05	CEDUTOR				7	
	LEVEL OF	SERVICE			• • • • • •	A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 15, Vineyard Avenue and US-101 Northbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	*: M	* R	IGHT TURNS	** X ON RED
WESTBOUND	490		0	1.1.	322		48
EASTBOUND	0		Ö		0		0
NORTHBOUND	0		1090		0		260
SOUTHBOUND	0		1380		0		400
		**	NUMBER	OF LANES	S **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	3	0	1	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSI	GNED LAN	E VOLUMI	ES **		
APPROACH	LEFT	LEFT			RIGHT	RIGHT	L/T/R
	ONLY	SHARE			SHARED	ONLY	SHARED
WESTBOUND	271	N/A		/A	N/A	271	271
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A		63	N/A	0	N/A
SOUTHBOUND	N/A	N/A	4	60	N/A	0	N/A
ė	EAST-WEST						
	NORTH-SOU	TH CRITI	CAL VOLU	MES	• • • • • • • •		
	THE SUM C	F CRITIC	AL VOLUM	ES	• • • • • • • • •	731	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	ERVALS .	2*	
	CMA VALUE		• • • • • • • • •			0.457	
	LEVEL OF	SERVICE	• • • • • • • • •	• • • • • • •		А	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3 10-16-2001, 9:46 AM

INTERSECTION: 15, Vineyard Avenue and US-101 Northbound Ramps

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	**		IGHT TURNS	
WESTBOUND	700		1 TROUGH 0	141.1	IN ON GR 280	een Ma	AX ON RED
EASTBOUND	0		Ö		0		0
NORTHBOUND			1220		Ö		330
SOUTHBOUND			1340		ő		390
					•		3,0
		**	NUMBER	OF LANES	5 **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	\mathtt{ONLY}	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	1	. 3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	-	0	3	0	1	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	LY S	HARED	ONLY	SHARED
WESTBOUND	350	350	N	/A	N/A	280	N/A
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A		07	N/A	0	N/A
SOUTHBOUND	N/A	N/A	4	47	N/A	0	N/A
	EAST-WEST						
	NORTH-SOU	TH CRITI	CAL VOLU	MES	• • • • • • •	447	
	THE SUM C	F CRITIC	AL VOLUM	ES	• • • • • • •	797	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	2*	
	CMA VALUE					0.498	
	LEVEL OF	SERVICE	• • • • • • • •			А	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 15, Vineyard Avenue and US-101 Northbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				**		GHT TURNS	
	LEFT	T	HROUGH	MI	N ON GRI	een ma	X ON RED
WESTBOUND	634		0		80		62
EASTBOUND	0		0		0		0
NORTHBOUND			1204		0		157
SOUTHBOUND	0		1454		17		134
		**]	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	0	1	0	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	2	0	1	0	3
SOUTHBOUND	0	0	2	0	1	0	3
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	349	N/A	N	/A	N/A	80	N/A
EASTBOUND	N/A	N/A	N	/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	6	02	N/A	0	N/A
SOUTHBOUND	N/A	N/A	7	27	N/A	17	N/A
	FACT-WECT	CRITICAL	VOI.IIME	c		349	
		TH CRITIC					
	THE SUM C	F CRITICA	L VOLUM	ES	• • • • • • •	1076	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*	
	CMA VALUE		• • • • • • •			0.672	
	LEVEL OF	SERVICE .				в	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5 10-16-2001, 9:33 AM

INTERSECTION: 15, Vineyard Avenue and US-101 Northbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**	F	RIGHT TURNS	5 **
	LEFT	T	THROUGH	MI	N ON GE		X ON RED
WESTBOUND	460		0		310		0
EASTBOUND	0		0		0		Ö
NORTHBOUND	Ö		1710		Ō		680
SOUTHBOUND			1590		0		280
		**	NUMBER	OF LANES	**		
	* ****			D.T.GIIM	D.T.61100	r /m /n	
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND		0	3 3	0	1	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSIG	NED LAN	NE VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	OUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	257	N/A		I/A	N/A	257	257
EASTBOUND	N/A	N/A		Í/A	N/A	N/A	N/A
NORTHBOUND	•	N/A		570	N/A	0	N/A
SOUTHBOUND	N/A	N/A	5	530	N/A	0	N/A
	EAST-WEST	CRITICAL	. VOLUME	s		257	
	NORTH-SOU	TH CRITIC	AL VOLU	MES		570	
	THE SUM C	F CRITICA	L VOLUM	MES		827	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*	,
	CMA VALUE					0.517	
	LEVEL OF	SERVICE .				A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6 10-16-2001, 9:33 AM

INTERSECTION: 15, Vineyard Avenue and US-101 Northbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	יניים	ROUGH	** MT1	RI N ON GRE	GHT TURNS	** X ON RED
WESTBOUND	320	111	0	MIL	405	DN MM	95
EASTBOUND	0		0		0		0
NORTHBOUND			1420		0		960
SOUTHBOUND	0		1990		0 ,		480
		** N	UMBER O	F LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	-		SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND		0	3	0	1	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSIGN	ED LANE	VOLUME	S **		
APPROACH	LEFT	LEFT	THROUG	GH 1	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONL		HARED	ONLY	SHARED
WESTBOUND	242	N/A	N/2		N/A	242	242
EASTBOUND	N/A	N/A	N/2		N/A	N/A	N/A
NORTHBOUND	•	N/A	473		N/A	0	N/A
SOUTHBOUND	N/A	N/A	663	3	N/A	0	N/A
		CRITICAL TH CRITICA					
	THE SUM C	F CRITICAL	VOLUMES	3		905	
	NUMBER OF	CRITICAL	CLEARANC	CE INTER	RVALS	2*	
	CMA VALUE			• • • • • • •		0.566	
	LEVEL OF	SERVICE			• • • • • • • •	А	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7 10-16-2001, 9:33 AM

INTERSECTION: 15, Vineyard Avenue and US-101 Northbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND	LEFT 360 0	T	HROUGH 0 0	** MI	N ON GR 348 0	IGHT TURNS EEN MA	X ON RED 102 0
NORTHBOUND SOUTHBOUND	0 0		1340 1950		0		770 310
	·	**]		OF LANES	**		
APPROACH	LEFT ONLY	SHARED	HROUGH ONLY	RIGHT SHARED	RIGHT ONLY	L/T/R SHARED	TOTAL LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	3	0	1	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSIG	NED LAN	IE VOLUME	S **		
APPROACH	LEFT ONLY	LEFT SHARED	THRO		RIGHT HARED	RIGHT ONLY	L/T/R SHARED
WESTBOUND	236	N/A	N	I/A	N/A	236	236
EASTBOUND	N/A	N/A	N	I/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	4	47	N/A	0	N/A
SOUTHBOUND	N/A	N/A	6	50	N/A	0	N/A
		CRITICAL					
	NORTH-SOU	TH CRITIC	AL VOLU	MES	• • • • • •	650	
	THE SUM C	F CRITICA	L VOLUM	MES	• • • • • •	886	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*	•
	CMA VALUE					0.554	
	LEVEL OF	SERVICE .				A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7 10-16-2001, 9:46 AM

INTERSECTION: 15, Vineyard Avenue and US-101 Northbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	** MI	N ON GRI	IGHT TURNS EEN MA	X ON RED
WESTBOUND	410		0		292		78
EASTBOUND	0		0		0		0
NORTHBOUND	0		1490		0		930 450
SOUTHBOUND	0		1960		0		450
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	3	0	1	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	234	N/A	. N	I/A	N/A	234	234
EASTBOUND	N/A	N/A	N N	I/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A		:97	N/A	0	N/A
SOUTHBOUND	N/A	N/A	Y 6	553	N/A	0	N/A
	EAST-WEST			-			
	NORTH-SOU	TH CRITI	CAL VOLU	MES	• • • • • •		
	THE SUM C	F CRITIC	CAL VOLUM	ies		887	
	NUMBER OF	CRITICA	AL CLEARA	NCE INTE	ERVALS .	2*	
	CMA VALUE					0.554	
	LEVEL OF	SERVICE				А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7 10-16-2001, 9:42 AM

INTERSECTION: 16, Vineyard Avenue and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	** MT	RI N ON GRI	GHT TURNS	X ON RED
WESTBOUND	0		0	MI	0		ON RED
EASTBOUND	346		Ö		119		Ö
NORTHBOUND			1199		419		Ö
SOUTHBOUND	0		1030		739		116
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT '	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	1	0	0	0	0	1	2
NORTHBOUND		0	2	1	0	0	3
SOUTHBOUND	0	0	2	0	1	0	3
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT			RIGHT	RIGHT	L/T/R
	ONLY				HARED	ONLY	SHARED
WESTBOUND	N/A				N/A	N/A	N/A
EASTBOUND	232	•			N/A	N/A	
NORTHBOUND	•			39	539	N/A	•
SOUTHBOUND	N/A	N/A	5	15	N/A	739	N/A
				_			
	EAST-WEST						
	THE SUM C	F CRITIC	AL VOLUM	ES			
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS	2*	
	CMA VALUE					0.607	
	LEVEL OF	SERVICE				в	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1 10-16-2001, 9:33 AM

INTERSECTION: 16, Vineyard Avenue and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**	•	RIGHT	TURNS	**
	LEFT		THROUGH	MI	IN ON	GREEN	MAX	ON RED
WESTBOUND	0		0			0		0
EASTBOUND	180		0		19	0		0
NORTHBOUND			1230			0		420
SOUTHBOUND	0		1620			0		170
		**	NUMBER	OF LANES	; **			
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGH	IT L	/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONL			LANES
WESTBOUND	0	0	0	0	0)	0	0
EASTBOUND	1	0	0	0	0		1	2
NORTHBOUND		0	3	0	1	•	0	4
SOUTHBOUND	0	0	3	0	1	•	0	4
		** ASSI	GNED LAN	E VOLUME	ES **	•		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIC	SHT	L/T/R
	ONLY	SHARE	ED ON	ILY S	HARED	O	NLY	SHARED
WESTBOUND	N/A	N/A		I/A	N/A	1	N/A	N/A
EASTBOUND	180	N/A		I/A	N/A	1	L90	N/A
NORTHBOUND		N/A		10	N/A		0	N/A
SOUTHBOUND	N/A	N/A	A 5	40	N/A		0	N/A
	EAST-WEST NORTH-SOU	TH CRITI	CAL VOLU	MES	••••		190 540	
							730	
	NUMBER OF		LL CLEARA	NCE INTE	RVALS	• • • •	2*	
	CMA VALUE		• • • • • • • •	• • • • • • •	• • • • •	0	.456	
	LEVEL OF	SERVICE	• • • • • • • •			• • • • •	A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2 10-16-2001, 9:33 AM

INTERSECTION: 16, Vineyard Avenue and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	rp.	HROUGH	* * MT	RI N ON GRE	GHT TURNS	** X ON RED
MECEDOINE	O TELI	1	nkougn 0	MI	N ON GRI	PEM PER	0
WESTBOUND EASTBOUND	50		0		230		Ö
NORTHBOUND	0		1430		0		370
SOUTHBOUND	Ö		1570		Ö		230
5001111500112	· ·						
		**	NUMBER	OF LANES	**		
APPROACH	LEFT		HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	1	0	0	0	0	1	2
NORTHBOUND	0	0	3	0	1	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSIG	NED LAN	IE VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N	I/A	N/A	N/A	N/A
EASTBOUND	50	N/A	N	I/A	N/A	230	N/A
NORTHBOUND	N/A	N/A		·7·7	N/A	0	N/A
SOUTHBOUND	N/A	N/A	5	23	N/A	0	N/A
	FACT_WFCT	CRITICAL	VOLUME	22		230	
		TH CRITIC					
	noniii boc						
	THE SUM C	F CRITICA	L VOLUM	ies	• • • • • • • • • • • • • • • • • • • •	753	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*	•
	CMA VALUE	E				0.471	
	LEVEL OF	SERVICE .				А	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3 10-16-2001, 9:33 AM

INTERSECTION: 16, Vineyard Avenue and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND	LEFT 0 40 0	TH	0 0 1310	* M	IN ON GI 0 200 0	RIGHT TURNS REEN MA	X ON RED 0 0 380
SOUTHBOUND	0		1590		0		250
		** 1/	TUMBER	OF LANE	S **		
APPROACH	LEFT ONLY	SHARED	IROUGH ONLY	RIGHT SHARED	ONLY		TOTAL LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	1	0	0	0	0	1	2
NORTHBOUND	0	0	3	0	1	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSIGN	IED LAN	E VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON		SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A		/A	N/A	N/A	N/A
EASTBOUND	40	N/A	N		N/A	200	N/A
NORTHBOUND	N/A	N/A	4		N/A	0	N/A
SOUTHBOUND	N/A	N/A	5.	30	N/A	0	N/A
		'CRITICAL	WOLLDAN	C		200	
		TH CRITICAL					
	THE SUM C	F CRITICAL	VOLUM:	ES	• • • • • • •	730	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS	2*	
	CMA VALUE				• • • • • • •	0.456	
	LEVEL OF	SERVICE			• • • • • • •	A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3 10-16-2001, 9:46 AM

INTERSECTION: 16, Vineyard Avenue and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	זיד	HROUGH	* * M1	N ON G	RIGHT TURNS	** X ON RED
WESTBOUND	0		0		0		0
EASTBOUND	160		Ô		220		Ö
NORTHBOUND	0		1380		0		420
SOUTHBOUND	Ö		1820		Ō		170
500111200112	·						
		** 1	NUMBER (OF LANES	**		
APPROACH	LEFT		HROUGH	RIGHT	RIGHT	• •	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	-	LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	1	0	0	0	0	1	2
NORTHBOUND	0	0	3	0	1	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSIGN	NED LAN	E VOLUME	gs **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N	/A	N/A	N/A	N/A
EASTBOUND	160	N/A	N	/A	N/A	220	N/A
NORTHBOUND	N/A	N/A	4	60	N/A	0	N/A
SOUTHBOUND	N/A	N/A	6	07	N/A	0	N/A
		CRITICAL TH CRITIC					
	THE SUM C	F CRITICAL	L VOLUM	ES		827	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS	2*	
	CMA VALUE					0.517	
	LEVEL OF	SERVICE .				A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3 10-16-2001, 9:42 AM

INTERSECTION: 16, Vineyard Avenue and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				**		IGHT TURNS	
	LEFT	r	THROUGH	MI	n on gr	een Ma	X ON RED
WESTBOUND	0		0		0		0
EASTBOUND	490		0		154		0
NORTHBOUND	0		1633		260		0
SOUTHBOUND	0		1170		421		161
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT 1	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
AFFROACII	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	ĭ	ő	Ö	ŏ	Ö	i	2
NORTHBOUND	ō	Ö	2	i	Ŏ	ō	3
SOUTHBOUND	ŏ	ŏ	2	ō	1	Ö	3
		** ASSIG	ENED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHAREI	ON ON	LY S	HARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N	/A	N/A	N/A	N/A
EASTBOUND	322	N/A	N	/A	N/A	N/A	322
NORTHBOUND	N/A	N/A	6	31	631	N/A	N/A
SOUTHBOUND	N/A	N/A	5	85	N/A	421	N/A
	EAST-WEST						
	NORTH-SOU	TH CRITIC	CAL VOLU	MES		631	
	THE SUM C	OF CRITICA	T AOLOW	ES	• • • • • • •	953	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*	•
	CMA VALUE		· • • • • • • •	• • • • • • •		0.596	
	LEVEL OF	SERVICE .			• • • • • • •	А	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5 10-16-2001, 9:33 AM

INTERSECTION: 16, Vineyard Avenue and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**		RIGHT TURNS	s **
	LEFT	T	HROUGH	MI	N ON G	REEN MA	X ON RED
WESTBOUND	0		0		0		0
EASTBOUND	440		0		70		0
NORTHBOUND			1790		0		780
SOUTHBOUND	0		1560		0		200
		**]	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT TI	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	1	0	0	0	0	1	2
NORTHBOUND		0	3	0	1	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH 1	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY SI	HARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N	I/A	N/A	N/A	N/A
EASTBOUND	255	N/A		ī/A	N/A	N/A	255
NORTHBOUND	•	N/A		97	N/A	0	N/A
SOUTHBOUND	N/A	N/A	5	20	N/A	0	N/A
	PACT_WECT	CRITICAL	VOI.TIME	ıc.		255	
		TH CRITICAL					
	THE SUM C	F CRITICAL	L VOLUM	ES		852	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	2*	•
	CMA VALUE	l	• • • • • •			0.533	
	LEVEL OF	SERVICE .				A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6 10-16-2001, 9:33 AM

INTERSECTION: 16, Vineyard Avenue and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	-	THROUGH	* * M3	· I	RIGHT TURNS	** X ON RED
WESTBOUND	0	•	0	1-1.	011 01		0
EASTBOUND	370		Ŏ		140		0
NORTHBOUND			1870		0		790
SOUTHBOUND	0		1670		0		330
		**	>~~~	00 13370	Z **		
		**	NUMBER	OF LANES	> **		
APPROACH	LEFT		THROUGH	RIGHT	RIGHT		TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY		LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	1	0	0	0	0	1	2
NORTHBOUND		0	3	0	1	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSI	GNED LAN	E VOLUME	3S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	OI C	ILY S	SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N	I/A	N/A	N/A	N/A
EASTBOUND	255	N/A		I/A	N/A	N/A	255
NORTHBOUND		N/A		523	N/A	0	N/A
SOUTHBOUND	N/A	N/A	S	557	N/A	0	N/A
	EAST-WEST						
	,		CILL VOL		• • • • • • •		
	THE SUM O	F CRITICA	AL VOLUM	ies	· · · · · · · ·	878	
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	ERVALS	2*	
	CMA VALUE				· • • • • • • •	0.549	
	LEVEL OF	SERVICE		• • • • • • •	· • • • • • · ·	A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7 10-16-2001, 9:33 AM

INTERSECTION: 16, Vineyard Avenue and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

A DDDOAGU				**		RIGHT	THE TOTAL C	**
APPROACH	LEFT	יייני	IROUGH		N ON			X ON RED
WESTBOUND	0	11.	0	MI	_	OREEN O	IVIPA.	ON RED
EASTBOUND	160		0		23			22
NORTHBOUND			1810			0		810
SOUTHBOUND			1680			o O		330
	•					•		
		** <i>I</i> /	IUMBER	OF LANES	**			
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGH'	T L,	T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONL.	Y SHA	ARED	LANES
WESTBOUND	0	0	0	0	0		0	0
EASTBOUND	1	0	0	0	0		1	2
NORTHBOUND		0	3	0	1		0	4
SOUTHBOUND	0	0	3	0	1		0	4
		** ASSIGN	ED LAN	E VOLUME	S **			
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIC	HT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	O	1LY	SHARED
WESTBOUND	N/A	N/A	N	/A	N/A	1	I/A	N/A
EASTBOUND	160	N/A		/A	N/A	2	238	N/A
NORTHBOUND	•	N/A		03	N/A		0	N/A
SOUTHBOUND	N/A	N/A	5	60	N/A		0	N/A
		CRITICAL					238 603	
	THE SUM C	F CRITICAL	VOLUM	ES			841	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS		2*	
	CMA VALUE					c	.526	
	LEVEL OF	SERVICE					A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7 10-16-2001, 9:46 AM

INTERSECTION: 16, Vineyard Avenue and US-101 Southbound Ramps DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	rp.	HROUGH	* * M T	R IN ON GR	IGHT TURNS	** X ON RED
WESTBOUND	0	1	0	1417	0		0 00 0
EASTBOUND	360		Ō		160		Ö
NORTHBOUND	0		1900		0		820
SOUTHBOUND	0		1740		0		320
		**	NUMBER	OF LANES	; **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	0	. 0
EASTBOUND	1	0	0	0	0	1	2
NORTHBOUND		0	3	0	1	0	4
SOUTHBOUND	0	0	3	0	1	0	4
		** ASSIG	NED LAN	E VOLUME	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED		-	HARED	ONLY	SHARED
WESTBOUND	N/A	N/A		/A	N/A	N/A	N/A
EASTBOUND	260	N/A		/A	N/A	N/A	260
NORTHBOUND		N/A		33	N/A	0	N/A
SOUTHBOUND	N/A	N/A	5	80	N/A	0	N/A
,							
	EAST-WEST	CRITICAL	VOLUME	s		260	
	NORTH-SOU	TH CRITIC	AL VOLU	MES	• • • • • • •	633	
	THE SUM C	F CRITICA	L VOLUM	es	• • • • • •	893	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	2*	
	CMA VALUE			• • • • • • • •	• • • • • • •	0.558	
	LEVEL OF	SERVICE .			• • • • • • • •	А	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7 10-16-2001, 9:42 AM

INTERSECTION: 17, Ventura Road and Wagon Wheel Road DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT	Т	HROUGH	** MI	N ON GR	IGHT TURNS	X ON RED
WESTBOUND	285		0		161		2
EASTBOUND	0		0		0		0
NORTHBOUND	0		943		11		80
SOUTHBOUND	3		225		0		0
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	0	1.	0	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	1	0	1	0	2
SOUTHBOUND	1	0	1	0	0	0	2
		** ASSIG	NED LAN	IE VOLUME	'S **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	157	N/A		I/A	N/A	161	N/A
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A		43	N/A	11	N/A
SOUTHBOUND	3	N/A	2	25	N/A	N/A	N/A
		CRITICAL					
	NORTH-SOC	IN CRITIC	AL VOLC	MES	• • • • • •		
	THE SUM C	F CRITICA	L VOLUM	ies		1107	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*	•
	CMA VALUE				• • • • • • •	0.692	
	LEVEL OF	SERVICE .				В	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 17, Ventura Road and Wagon Wheel Road DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	iri.	HROUGH	* ·	* F	RIGHT TURNS	x on red
WESTBOUND	390	11	0	1*1.	0	CEEN MA	10
EASTBOUND	0	Ö			Ö		0
NORTHBOUND	0	610			193 107		
SOUTHBOUND	30	300			0		0
** NUMBER OF LANES **							
APPROACH	LEFT		IROUGH	RIGHT		L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	0	1	0	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	_	0	2	0	1	0	3
SOUTHBOUND	1	0	3	0	0	0	4
** ASSIGNED LANE VOLUMES **							
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON		SHARED	ONLY	SHARED
WESTBOUND	214	N/A		/A	N/A	0	N/A
EASTBOUND	N/A			/A	N/A	N/A	N/A
NORTHBOUND	•	· .		05	N/A	193	N/A
SOUTHBOUND	30	N/A	1	00	N/A	N/A	N/A
EAST-WEST CRITICAL VOLUMES							
THE SUM OF CRITICAL VOLUMES 549							
	NUMBER OF CRITICAL CLEARANCE INTERVALS 2*						
	CMA VALUE 0.343						
	LEVEL OF SERVICE A						

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 17, Ventura Road and Wagon Wheel Road DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 340 0 0 50	TI	HROUGH 0 0 940 520	** MI	RI N ON GRE 35 0 176 0	GHT TURNS EEN MA	** X ON RED 25 0 94 0		
SOUTHBOOKE	30		-		_				
		**]	NUMBER	OF LANES	* * *				
APPROACH	LEFT ONLY	SHARED	HROUGH ONLY	SHARED	ONLY		TOTAL LANES		
WESTBOUND	2	0	0	0 0	1 0	0 0	3 0		
EASTBOUND	0 0	0 0	0 2	0	1	0	3		
NORTHBOUND SOUTHBOUND		0	3	0	0	0	4		
SOUTHBOOMD		• •	J	Ū	J	J	_		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT				RIGHT			
	ONLY					ONLY 35			
WESTBOUND EASTBOUND	187	N/A N/A							
NORTHBOUND		N/A				176			
SOUTHBOUND		N/A	1	73		N/A			
SOUTHDOOND	30	14, 11	-		,	21, 22	2., 22		
		CRITICAL TH CRITIC	-						
	THE SUM C	F CRITICAL	L VOLUM	ES		707			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*	•		
	CMA VALUE					0.442			
	LEVEL OF	SERVICE .				А			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 17, Ventura Road and Wagon Wheel Road DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				*		IGHT TURNS	
	LEFT	-	THROUGH	M:	IN ON GR	een ma	X ON RED
WESTBOUND	280		0		20		60
EASTBOUND	0		0		,0		0
NORTHBOUND			1080		193		77
SOUTHBOUND	120		850		0		0
		**	NUMBER	OF LANE	S **		
APPROACH	LEFT	LEFT 3	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	0	1	0	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	2	0	1	0	3
SOUTHBOUND	1	0	3	0	0	0	4
		** ASSIC	GNED LAN	ie volumi	ES **		
APPROACH	LEFT	LEFT	THRO	OUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHAREI	4 O C	ILY S	SHARED	ONLY	SHARED
WESTBOUND	154	N/A	N	I/A	N/A	20	N/A
EASTBOUND	N/A	N/A	N	I/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	5	40	N/A	193	N/A
SOUTHBOUND	120	N/A	2	283	N/A	N/A	N/A
	EAST-WEST	CRITICAL	L VOLUME	S	• • • • • • • •	154	
	NORTH-SOU	TH CRITIC	CAL VOLU	MES		660	
	THE SUM C	F CRITICA	Tr Aoraw	ies	• • • • • • • •	814	
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	ERVALS	2*	
	CMA VALUE		· · · · · · · ·		· · · · · · · · · ·	0.509	
	LEVEL OF	SERVICE .	· • • • • • • •			А	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3 10-16-2001, 9:46 AM

INTERSECTION: 17, Ventura Road and Wagon Wheel Road DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * MT	R: N ON GRI	IGHT TURNS	** X ON RED		
WESTBOUND	380		0	•••	55		5		
EASTBOUND	0		0		0		0		
NORTHBOUND	0		1140		156		104		
SOUTHBOUND	10		280		0		0		
		**	NUMBER	OF LANES	**				
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	0	0	1	0	3		
EASTBOUND	0	0	0	0	0	0	0		
NORTHBOUND	0	0	2	0	1	0	3		
SOUTHBOUND	1	0	3	0	0	0	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARE	-		HARED	ONLY	SHARED		
WESTBOUND	209	N/A		I/A	N/A	55	N/A		
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A		
NORTHBOUND	N/A	N/A			N/A	156	N/A		
SOUTHBOUND	10	N/A	1	93	N/A	N/A	N/A		
	EAST-WEST								
	THE SUM (F CRITIC	CAL VOLUM	ies		789			
	NUMBER OF	CRITICA	AL CLEARA	NCE INTE	ERVALS .	2*	•		
	CMA VALUE	3	· · · · · · · · · · · ·			0.493			
	LEVEL OF	SERVICE				А			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 17, Ventura Road and Wagon Wheel Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT	7	THROUGH	* ±	RI	GHT TURNS	X ON RED		
WESTBOUND	701	•	0	141.	71	SEIN ME	22		
EASTBOUND	0		0		0		0		
NORTHBOUND	0		524		0		72		
SOUTHBOUND	45		523		0		0		
		**	NUMBER	OF LANES	5 **				
APPROACH	LEFT	LEFT 7	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	0	0	1	0	3		
EASTBOUND	0	0	0	0	0	0	0		
NORTHBOUND	0	0	1	0	1	0	2		
SOUTHBOUND	1	0	1	0	0	0	2		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R		
	ONLY	SHAREI			SHARED	ONLY	SHARED		
WESTBOUND	386	N/A		/A	N/A	71	N/A		
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A		
NORTHBOUND	•	N/A		24	N/A	0	N/A		
SOUTHBOUND	45	N/A	5	23	N/A	N/A	N/A		
	EAST-WEST NORTH-SOU					569			
	THE SUM O	F CRITICA	L VOLUM	es		955			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS	2*			
	CMA VALUE	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •		0.597			
	LEVEL OF	SERVICE .				А			

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5 10-16-2001, 9:33 AM

INTERSECTION: 17, Ventura Road and Wagon Wheel Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**		IGHT TURNS			
	LEFT	•	THROUGH	MI	N ON GR	een ma	X ON RED		
WESTBOUND	1270		0		25		5		
EASTBOUND	0		0		0		0		
NORTHBOUND	0		570		0		140		
SOUTHBOUND	10		210		0		0		
		**	NUMBER	OF LANES	**				
APPROACH	LEFT	LEFT '	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	0	0	1	0	3		
EASTBOUND	0	0	0	0	0	0	0		
NORTHBOUND	0	0	2	0	1	0	3		
SOUTHBOUND	1	0	3	0	0	0	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARE			HARED	ONLY	SHARED		
WESTBOUND	698	N/A		/A	N/A	25	N/A		
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A		
NORTHBOUND	N/A	N/A		85	N/A	. 0	N/A		
SOUTHBOUND	10	N/A		70	N/A	N/A	N/A		
	EAST-WEST								
	NORTH-SOU	TH CRITIC	CAL VOLU	mes		295			
	THE SUM O	F CRITIC	AL VOLUM	ES		993			
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	2*			
	CMA VALUE					0.621			
	LEVEL OF	SERVICE				в			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 17, Ventura Road and Wagon Wheel Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	T 77777			* 1		IGHT TURNS	
MECHROTHE	LEFT 940	Т	HROUGH	M	IN ON GRI	SEN MA	X ON RED
WESTBOUND EASTBOUND	940		0 0		190		10
NORTHBOUND			1080		0		0 100
SOUTHBOUND			1160		0		0
SOUTHBOOKD	2.0		1100		U		U
		**	NUMBER	OF LANES	5 **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	0	1	0	3
EASTBOUND	0	0	0	0	0	0	Ō
NORTHBOUND	0	0	2	0	1	0	3
SOUTHBOUND	1	0	3	0	0	0	4
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT			RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED	ONLY	SHARED
WESTBOUND	517	N/A		/A	N/A	190	N/A
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A
NORTHBOUND		N/A		40	N/A	0	N/A
SOUTHBOUND	20	N/A	3	87	N/A	N/A	N/A
	NORTH-SOU	r CRITICAL JTH CRITIC	AL VOLU	MES		517	
	THE SUM (OF CRITICA	L VOLUM	ES	• • • • • • • • •	1077	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS	2*	
	CMA VALUE	3	• • • • • • •	• • • • • • • •		0.673	
	LEVEL OF	SERVICE .	• • • • • •			в	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7 10-16-2001, 9:33 AM

INTERSECTION: 17, Ventura Road and Wagon Wheel Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND	LEFT 860	TH	IROUGH 0	** MI	R. N ON GR. 235	IGHT TURNS EEN MA	** X ON RED 25		
EASTBOUND	0		0		0		0		
NORTHBOUND	Ō		1230		0		110		
SOUTHBOUND	50		1340		0		0		
		** N	IUMBER	OF LANES	**				
APPROACH	LEFT		IROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	0	0	1	0	3		
EASTBOUND	0	0	0	0	0	0	0		
NORTHBOUND	0	0	2	0	1	0	3		
SOUTHBOUND	1	0	3	0	0	0	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT ONLY	LEFT SHARED		LY S	RIGHT HARED	RIGHT ONLY	L/T/R SHARED		
WESTBOUND	473	N/A		/A	N/A	235	N/A		
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A		
NORTHBOUND		N/A		15	N/A	.0	N/A		
SOUTHBOUND	50	N/A	4	47	N/A	N/A	N/A		
		CRITICAL TH CRITICA							
	THE SUM O	F CRITICAL	r vorum	ies	• • • • • • •	1138			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	2*	•		
	CMA VALUE					0.711			
	LEVEL OF	SERVICE				c			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7 10-16-2001, 9:46 AM

INTERSECTION: 17, Ventura Road and Wagon Wheel Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	** MT	RI N ON GRE	GHT TURNS	X ON RED
WESTBOUND EASTBOUND	1030		0 0		5 0		5
NORTHBOUND	0		850		0		130
SOUTHBOUND	10		1260		0		0
		**	NUMBER	OF LANES	* *		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	0	1	0	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	2	0	1	0	3
SOUTHBOUND	1	0	3	0	0	0	4
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	566	N/A	N	/A	N/A	5	N/A
EASTBOUND	N/A	N/A	. N	I/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	. 4	25	N/A	0	N/A
SOUTHBOUND	10	N/A	. 4	20	N/A	N/A	N/A
	EAST-WEST						
	THE SUM C		7 T T T T T T T T T T T T T T T T T T T	TO C		1001	
	THE SUM C	of CRITIC	AL VOLUM	ES	• • • • • • •	1001	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS	2*	
	CMA VALUE					0.626	
	LEVEL OF	SERVICE	• • • • • • • • •			в	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7 10-16-2001, 9:42 AM

INTERSECTION: 18, Wagon Wheel Road and US-101 Southbound Off-ramp

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 3 0 0 47	Т	THROUGH 71 108 0 0	* * M3	IN ON G 0 0 2 0		S ** AX ON RED 0 0 2 357		
		**	NUMBER	OF LANES	5 **				
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 0 1	LEFT T SHARED 0 0 0	THROUGH ONLY 1 0 1	RIGHT SHARED 0 0 0	RIGHT ONLY 0 1 1	, ,	TOTAL LANES 2 2 2 2 3		
** ASSIGNED LANE VOLUMES **									
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 3 N/A 0 47	LEFT SHARED N/A N/A N/A N/A	1		RIGHT SHARED N/A N/A N/A N/A	RIGHT ONLY N/A 0 2 0	L/T/R SHARED N/A N/A N/A		
	NORTH-SOU	CRITICAL TH CRITIC F CRITICA	'AL VOLU	MES					
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS	2	*		
	CMA VALUE			• • • • • •		0.100			
	LEVEL OF	SERVICE .				A			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 18, Wagon Wheel Road and US-101 Southbound Off-ramp DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	qu _L	IROUGH	* M	* RI	GHT TURNS	XX ON RED
WESTBOUND	10	1.5	30	ĮΨ	IN ON GRE	2014 1.11	ON RED
EASTBOUND	0		340		0		10
NORTHBOUND			0		5		5
SOUTHBOUND	260		10		190		160
		** 1	TUMBER	OF LANE	S **		
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY				LANES
WESTBOUND	1	0	1	0	0	0	2
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	1	0	0	0	1	0	2
SOUTHBOUND	1	0	1	0	1	0	3
		** ASSIGN	NED LAN	E VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED	ONLY	SHARED
WESTBOUND	10	N/A		30	N/A	N/A	N/A
EASTBOUND	N/A	N/A		40	N/A	0	N/A
NORTHBOUND		N/A		/A	N/A	5	N/A
SOUTHBOUND	260	N/A		10	N/A	190	N/A
		•					
		r CRITICAL JTH CRITICA					
	THE SUM (OF CRITICAL	VOLUM	ES		615	
	NUMBER OF	F CRITICAL	CLEARA	NCE INT	ERVALS	3*	•
	CMA VALUE	3	• • • • • •	• • • • • • •	• • • • • • • • •	0.384	
	LEVEL OF	SERVICE				A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2 10-16-2001, 9:33 AM

INTERSECTION: 18, Wagon Wheel Road and US-101 Southbound Off-ramp

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

			1111 01 1	02020					
APPROACH				**	N ON G	RIGHT TURNS	** X ON RED		
	LEFT	T	HROUGH	IAIT		KEEN MA			
WESTBOUND	10		40		0		0		
EASTBOUND	0		340		0		10		
NORTHBOUND	10		0		5		5		
SOUTHBOUND	250		10		185		155		
		**	NUMBER	OF LANES	**				
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	1	0	0	0	2		
EASTBOUND	0	Ō	1	0	1	0	2		
NORTHBOUND	1	Ö	0	0	1	0	2		
SOUTHBOUND	_ 1	Ō	1	Ō	1	0	3		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED			HARED	ONLY	SHARED		
WESTBOUND	10	N/A		40	N/A	N/A	N/A		
EASTBOUND	N/A	N/A		40	N/A	Ó	N/A		
NORTHBOUND	10	N/A		I/A	N/A	5	N/A		
SOUTHBOUND	250	N/A		10	N/A	185	N/A		
	EAST-WEST								
	NORTH-SOU	TH CRITIC	AL VOLU	MES		255			
	THE SUM O	בי כיםדיידכיא	T VALIDA	IPC		605			
	THE SUM O	F CRITICA	T AOTON	ES	• • • • • •	605			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*	,		
	CMA VALUE					0.378			
	LEVEL OF	SERVICE .				A			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 18, Wagon Wheel Road and US-101 Southbound Off-ramp DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * MT	R IN ON GR	IGHT TURNS	** X ON RED		
WESTBOUND	10		60	1-1-1	0		0		
EASTBOUND	0		410		Ŏ		10		
NORTHBOUND	10		0		5		5		
SOUTHBOUND	180		10		90		180		
		**	NUMBER	OF LANES	5 **				
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	1	0	0	0	2		
EASTBOUND	0	0	1	0	1	0	2		
NORTHBOUND	1	0	0	0	1	0	2		
SOUTHBOUND	1	0	1	0	1	0	3		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRC	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARE	D ON	ILY S	SHARED	ONLY	SHARED		
WESTBOUND	10	N/A		60	N/A	N/A	N/A		
EASTBOUND	N/A	N/A	. 4	10	N/A	0	N/A		
NORTHBOUND	10	N/A	. N	I/A	N/A	5	N/A		
SOUTHBOUND	180	N/A		10	N/A	90	N/A		
	EAST-WEST								
	NORTH-SOU	JTH CRITI	CAL VOLU	MES	• • • • • • •	185			
	THE SUM (F CRITIC	AL VOLUM	ES		605			
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	ERVALS .	3*			
	CMA VALUE	·	• • • • • • •		• • • • • •	0.378			
	LEVEL OF	SERVICE	• • • • • • • •	• • • • • • •		А			

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3 10-16-2001, 9:46 AM

INTERSECTION: 18, Wagon Wheel Road and US-101 Southbound Off-ramp

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH					IGHT TURNS				
	LEFT	TH	ROUGH	MIN ON GR	een ma	X ON RED			
WESTBOUND	10		30	0		0			
EASTBOUND	0		290	0		10			
NORTHBOUND	10		0	5		5			
SOUTHBOUND	260		10	235		135			
		** N	UMBER OF L	ANES **					
APPROACH	LEFT	LEFT TH	ROUGH RI	GHT RIGHT	L/T/R	TOTAL			
	ONLY	SHARED	ONLY SHA	RED ONLY	SHARED	LANES			
WESTBOUND	1	0	1	0 0	0	2			
EASTBOUND	ō	0		0 1	0	2			
NORTHBOUND	1	Ö		0 1	0	2			
SOUTHBOUND	1	0	1	0 1	0	3			
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R			
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED			
WESTBOUND	10	N/A	30	N/A	N/A	N/A			
EASTBOUND	N/A	N/A	290	N/A	0	N/A			
NORTHBOUND	•	N/A	N/A	N/A	5	N/A			
SOUTHBOUND	260	N/A	10	N/A	235	N/A			
		CRITICAL TH CRITICA							
	THE SUM C	F CRITICAL	VOLUMES .		565				
	NUMBER OF	CRITICAL	CLEARANCE	INTERVALS .	3*				
	CMA VALUE				0.353				
	LEVEL OF	SERVICE			A				

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 18, Wagon Wheel Road and US-101 Southbound Off-ramp DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT	יידי	HROUGH	* * M1	IN ON G	RIGHT TURNS	** X ON RED			
WESTBOUND	26	4.4	143	1.1.2	0		0			
EASTBOUND	0		127		Ö		Ö			
NORTHBOUND	3		0		Ŏ		4			
SOUTHBOUND	89		12		0		666			
SCOTIBOONS	0,5				_					
		**]	NUMBER	OF LANES	3 **					
APPROACH	LEFT		HROUGH	RIGHT	RIGHT	• •	TOTAL			
	ONLY	SHARED	ONLY	SHARED	ONLY		LANES			
WESTBOUND	1	0	1	0	0	0	2			
EASTBOUND	0	0	1	0	1	0	2			
NORTHBOUND	1	0	0	0	1	0	2			
SOUTHBOUND	1	0	1	0	1	0	3			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R			
	ONLY	SHARED	ON	LY S	SHARED	ONLY	SHARED			
WESTBOUND	26	N/A	1	43	N/A	N/A	N/A			
EASTBOUND	N/A	N/A	1	27	N/A	0	N/A			
NORTHBOUND	3	N/A	N	/A	N/A	0	N/A			
SOUTHBOUND	89	N/A		12	N/A	0	N/A			
		CRITICAL TH CRITIC								
	THE SUM C	F CRITICAL	L VOLUM	ES	· • • • • • •	242				
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS	2*	•			
	CMA VALUE	:	• • • • • •		· • • • • • •	0.151				
	LEVEL OF	SERVICE .				A				

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5 10-16-2001, 9:33 AM

INTERSECTION: 18, Wagon Wheel Road and US-101 Southbound Off-ramp DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**	D T (HT TURNS	· **
APPROACH	LEFT	ינוידי	ROUGH		ON GRE		X ON RED
WESTBOUND	10	In	530	PILIN	0	214 1412	0
EASTBOUND	0		200		5		5
NORTHBOUND	10		0		0		10
SOUTHBOUND	80		10		750		0
DOGTIDOOND	00		1 0		, 50		· ·
		** N	UMBER OF	LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH R	IGHT R	IGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY SH	ARED (ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	0	0	2
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	1	0	0	0	1	0	2
SOUTHBOUND	1	0	1	0	1	0	3
		** ASSIGN	ED LANE V	OLUMES	**		
APPROACH	LEFT	LEFT	THROUGH	RI	GHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SHA	RED	ONLY	SHARED
WESTBOUND	10	N/A	530	N,	/A	N/A	N/A
EASTBOUND	N/A	N/A	200		/A	5	N/A
NORTHBOUND	10	N/A	N/A		/A	0	N/A
SOUTHBOUND	80	N/A	10	N	/A	750	N/A
	EN CT . WECT	CRITICAL	OT TIMES			530	
		TH CRITICAL					
	THE SUM C	F CRITICAL	VOLUMES		• • • • • •	1290	
	NUMBER OF	CRITICAL (CLEARANCE	INTERV	ALS	3*	
	CMA VALUE	3				. 0.806	
	THE VALUE			• • • • • •		_	

LEVEL OF SERVICE

D

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6 10-16-2001, 9:33 AM

Capacity assumed = 1600.

INTERSECTION: 18, Wagon Wheel Road and US-101 Southbound Off-ramp

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	-	THROUGH	* * MT	R N ON GR	IGHT TURNS	x on red		
WESTBOUND	10	•	460	MIT	N ON GR	EEN ME	O A NO A		
EASTBOUND	0		180		5		5		
NORTHBOUND	=		180		0		10		
SOUTHBOUND			10		720		0		
SOUTHBOOMD	30		10		720		U		
		**	NUMBER	OF LANES	**				
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	1	0	0	0	2		
EASTBOUND	0	0	1	0	1	0	2		
NORTHBOUND	1	0	0	0	1	0	2		
SOUTHBOUND	1	0	1	0	1	0	3		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHAREI	ON ON	LY S	HARED	ONLY	SHARED		
WESTBOUND	10	N/A	4	60	N/A	N/A	N/A		
EASTBOUND	N/A	N/A	1	.80	N/A	5	N/A		
NORTHBOUND	10	N/A	N		N/A	0	N/A		
SOUTHBOUND	90	N/A		10	N/A	720	N/A		
		T CRITICAI UTH CRITIC			• • • • • • •				
	THE SUM (OF CRITICA	AL VOLUM	ES	• • • • • • •	1190			
	NUMBER OF	F CRITICAI	CLEARA	NCE INTE	RVALS .	3*			
	CMA VALUI	Ε	• • • • • • •			0.744			
	LEVEL OF	SERVICE .	· • • • • • • • • • • • • • • • • • • •			c			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 18, Wagon Wheel Road and US-101 Southbound Off-ramp DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

		~ "	IMPOI V	OLUMBS			
APPROACH		ėn.	morran	**	R N ON GR	IGHT TURNS	** X ON RED
	LEFT	Ti	HROUGH	IVI 1		REM MA	
WESTBOUND	10		600		0		0
EASTBOUND	0		230		10		10
NORTHBOUND	20		0		0		10
SOUTHBOUND	40		10		580		0
		**]	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT		L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	0	0	2
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND	1	0	0	0	1	0	2
SOUTHBOUND	1	0	1	0	1	0	3
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	TLY S	HARED	ONLY	SHARED
WESTBOUND	10	N/A	6	00	N/A	N/A	N/A
EASTBOUND	N/A		2	30	N/A		N/A
NORTHBOUND	20	N/A	N	I/A	N/A	0	N/A
SOUTHBOUND		N/A		10	N/A	580	N/A
	EAST-WEST	CRITICAL	VOLUME	25		600	
		TH CRITIC					
	THE SUM C	F CRITICA	L VOLUM	IES		1200	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	3*	•
	CMA VALUE	ı 				0.750	

LEVEL OF SERVICE C

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7 10-16-2001, 9:46 AM

Capacity assumed = 1600.

INTERSECTION: 18, Wagon Wheel Road and US-101 Southbound Off-ramp

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				**	I	RIGHT TURNS	; **
	LEFT	TI	HROUGH	MI	N ON GE	reen ma	X ON RED
WESTBOUND	10		380		0		0
EASTBOUND	0		180		5		5
NORTHBOUND	10		0		0		10
SOUTHBOUND	90		10		660		0
		**]	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	0	0	2
EASTBOUND	0	0	1	0	1	0	2
NORTHBOUND		0	0	0	1	0	2
SOUTHBOUND	1	0	1	0	1	0	3
		** ASSIGN	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	10	N/A	3	80	N/A	N/A	N/A
EASTBOUND	N/A	N/A	1	.80	N/A	5	N/A
NORTHBOUND	10	N/A	N	I/A	N/A	0	N/A
SOUTHBOUND	90	N/A		10	N/A	660	N/A
					•		•
	EAST-WEST	CRITICAL	VOLUME	s		380	
		TH CRITICA			· · · · · · · ·		
	THE SUM C	F CRITICAL	r AOLAW	ES		1050	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	3*	
	CMA VALUE		• • • • • •	• • • • • • • •	• • • • • • •	0.656	
	LEVEL OF	SERVICE	• • • • •	• • • • • • •		B	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 19, Wagon Wheel Road and US-101 Southbound On-ramp DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	TH	ROUGH	** MI	R: N ON GRI	IGHT TURNS EN MA	; ** X ON RED		
WESTBOUND	0		0		0		0		
EASTBOUND	0		.0		0		Ō		
NORTHBOUND	0		640		20		0		
SOUTHBOUND	70		170		0		0		
`									
		** N	UMBER O	F LANES	**				
APPROACH	LEFT		ROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY			SHARED	ONLY	SHARED	LANES		
WESTBOUND	0	0	0	0	0	0	0		
EASTBOUND	0	0	0	0	0	0	0		
NORTHBOUND	0	0	1	0	1	0	2		
SOUTHBOUND	2	0	1	0	0	0	3		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THROU	_	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ONL		HARED	ONLY	SHARED		
WESTBOUND	N/A	N/A	N/		N/A	N/A	N/A		
EASTBOUND	N/A	N/A	N/		N/A	N/A	N/A		
NORTHBOUND	N/A	N/A	64		N/A	20	N/A		
SOUTHBOUND	38	N/A	17	0	N/A	N/A	N/A		
		CRITICAL TH CRITICA			• • • • • • • •	• • • •			
	THE SUM O	F CRITICAL	VOLUME	s	• • • • • • •	678			
	NUMBER OF	CRITICAL	CLEARAN	CE INTER	RVALS	2*			
	CMA VALUE		• • • • • •	• • • • • • •	• • • • • • •	0.424			
	LEVEL OF	SERVICE				A			

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2 10-16-2001, 9:33 AM

INTERSECTION: 19, Wagon Wheel Road and US-101 Southbound On-ramp DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	יייני	ROUGH	** MTN	RI N ON GRE	GHT TURNS	** X ON RED			
WESTBOUND	O	1.5	0	1111	0		0			
EASTBOUND	0		0		0		0			
NORTHBOUND	0	•	690		230		0			
SOUTHBOUND	60		180		0		0			
		** 1	TUMBER OI	F LANES	**					
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL			
	ONLY	SHARED	ONLY S	SHARED	ONLY	SHARED	LANES			
WESTBOUND	0	0	0	0	0	0	0			
EASTBOUND	0	0	0	0	0	0	0			
NORTHBOUND	0	0	1	0	1	0	2			
SOUTHBOUND	2	0	1	0	0	0	3			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THROU		RIGHT	RIGHT	L/T/R			
	ONLY	SHARED	ONL		HARED	ONLY	SHARED			
WESTBOUND	N/A	N/A	N/I		N/A	N/A	N/A			
EASTBOUND	N/A	N/A	N/Z		N/A	N/A	N/A			
NORTHBOUND	•	N/A	69		N/A	230	N/A			
SOUTHBOUND	33	N/A	18	0	N/A	N/A	N/A			
		r CRITICAL JTH CRITICA								
	THE SUM (F CRITICAL	L VOLUME:	s						
	NUMBER OF	F CRITICAL	CLEARAN	CE INTE	RVALS	2*				
	CMA VALUE	3		• • • • • •		0.452				
	LEVEL OF	SERVICE				A				

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3 10-16-2001, 9:33 AM

INTERSECTION: 19, Wagon Wheel Road and US-101 Southbound On-ramp

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH				**		RIGHT TURNS				
	LEFT	TH	IROUGH	MI	N ON G	reen ma	X ON RED			
WESTBOUND	0		0		. 0		0			
EASTBOUND	0		0		0		0			
NORTHBOUND	0		690		230		0			
SOUTHBOUND	60		180		0		0			
		** 1/	UMBER (OF LANES	**					
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL			
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES			
WESTBOUND	0	0	0	0	0	0	0			
EASTBOUND	0	0	0	0	0	0	0			
NORTHBOUND	0	0	0	1	1	0	2			
SOUTHBOUND	2	0	1	0	0	0	3			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R			
	ONLY	SHARED	ON		HARED	ONLY	SHARED			
WESTBOUND	N/A	N/A		/A	N/A	N/A	N/A			
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A			
NORTHBOUND	N/A	N/A		90	N/A	230	N/A			
SOUTHBOUND	33	N/A	1	80	N/A	N/A	N/A			
		CRITICAL TH CRITICA								
	THE SUM O	F CRITICAL	L VOLUM	ES		723				
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	2*				
	CMA VALUE					0.452				
	LEVEL OF	SERVICE				A				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR4
10-16-2001, 9:33 AM

INTERSECTION: 19, Wagon Wheel Road and US-101 Southbound On-ramp

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT	ਧਾਮ	ROUGH	** MTN 01	RIGHT N GREEN	TURNS ** MAX ON RED				
WESTBOUND	0	111	0	11111 01	0	0				
EASTBOUND	Ö		Ö		Ö	Ö				
NORTHBOUND	Ö		700		290	Ō				
SOUTHBOUND			130		0	0				
	٠	** N	UMBER OF	LANES **	k					
		•	0D L R 01							
APPROACH	LEFT	LEFT TH	ROUGH R	GHT RIC	GHT L/	T/R TOTAL				
	ONLY	SHARED	ONLY SH	IARED O	VLY SHA	RED LANES				
WESTBOUND	0	0	0	0	0	0 0				
EASTBOUND	0	0	0	0	0	0 0				
NORTHBOUND		0	1	0	1	0 2				
SOUTHBOUND	2	0	1	0	0	0 3				
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THROUGH			-, -,				
MECADO CIMO	ONLY	SHARED	ONLY	SHARI		LY SHARED				
WESTBOUND EASTBOUND	N/A N/A	N/A	N/A	N/2		/A N/A				
NORTHBOUND		N/A N/A	N/A 700	N/ <i>I</i> N/ <i>I</i>		/A N/A				
SOUTHBOUND	•	N/A N/A	130	N/A		90 N/A //A N/A				
SOUTHDOOND	33	N/A	130	IN/F	7 IA	/A N/A				
	EAST-WEST	CRITICAL	VOLUMES			0				
		TH CRITICA				733				
					-					
	THE SUM C	F CRITICAL	VOLUMES	• • • • • • • • • • • • • • • • • • • •		733				
	NUMBER OF	CRITICAL (CLEARANCE	INTERVAL	s	2*				
	CMA VALUE			• • • • • • • •	0	.458				
	LEVEL OF	SERVICE		• • • • • • • • •		A				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 19, Wagon Wheel Road and US-101 Southbound On-ramp DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	· Tr	HROUGH	* * MT	IN ON (RIGHT TURN	is ** IAX ON RED			
WESTBOUND	0	1	0	MI	.14 O14 (•	O AAI ON KED			
EASTBOUND	0		0				0			
NORTHBOUND	Ö		790		170	•	ő			
SOUTHBOUND	70		180		- (Ŏ			
	. •				•		•			
		**	NUMBER	OF LANES	**					
APPROACH	LEFT		HROUGH	RIGHT	RIGHT		TOTAL			
	ONLY	SHARED	ONLY	SHARED	ONLY		LANES			
WESTBOUND	0	0	0	0	0	0	0			
EASTBOUND	0	0	0	0	0	0	0			
NORTHBOUND	0 2	0 0	1 1	0	1	0 0	2 3			
SOUTHBOUND	2	U	1	0	U	U	3			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R			
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED			
WESTBOUND	N/A	N/A	N	/A	N/A	N/A	N/A			
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A			
NORTHBOUND	•	N/A	7	90	N/A	170	N/A			
SOUTHBOUND	38	N/A	1	80	N/A	N/A	N/A			
	EAST-WEST									
	THE SUM O	F CRITICA	L VOLUM	ES		828	· 			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	2	*			
	CMA VALUE					0.517				
	LEVEL OF	SERVICE .				A				

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3 10-16-2001, 9:42 AM

INTERSECTION: 19, Wagon Wheel Road and US-101 Southbound On-ramp

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	Ţ	HROUGH	** MT	RI N ON GRI	GHT TURNS	** X ON RED			
WESTBOUND	0	-	0	1.17	0	J	0			
EASTBOUND	Ō		0		0		0			
NORTHBOUND	0		400		220		0			
SOUTHBOUND	900		800		0		0			
		**	NUMBER	OF LANES	; **					
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL			
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES			
WESTBOUND	0	0	0	0	0	0	0			
EASTBOUND	0	0	0	0	0	0	0			
NORTHBOUND	0	0	1	0	1	0	2			
SOUTHBOUND	2	0	1	0	0	0	3			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R			
	ONLY	SHARED			HARED	ONLY	SHARED			
WESTBOUND	N/A	N/A		I/A	N/A	N/A	N/A			
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A			
NORTHBOUND	N/A	N/A		00	N/A	220	N/A			
SOUTHBOUND	495	N/A	8	00	N/A	N/A	N/A			
		' CRITICAL								
	NORTH-SOU	TH CRITIC	AL VOLU	MES	• • • • • • • •	895				
	THE SUM O	F CRITICA	L VOLUM	es	• • • • • • •	895				
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	2*				
	CMA VALUE		• • • • • • •			0.559				
	LEVEL OF	SERVICE .	• • • • • • •	• • • • • • • •	• • • • • • •	A				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 19, Wagon Wheel Road and US-101 Southbound On-ramp

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

				**	5 .	. C. I. III. III. III. III. III. III. I	**
APPROACH	LEFT	me	ROUGH	MI		IGHT TURNS	X ON RED
WESTBOUND	0 FF1	ın	0	MIL	0 ON GR	2514 MG	0
EASTBOUND	0		0		0		ő
NORTHBOUND	0		390		710		ŏ
SOUTHBOUND	870		900		0		Ö
500111500115	0,0		300		•		_
		** N	UMBER (OF LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	1	0	1	0	2
SOUTHBOUND	2	0	1	0	0	0	3
		** ASSIGN	ED LANI	E VOLUME	S **		
APPROACH	LEFT	LEFT	THROU	UGH :	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONI	LY S	HARED	ONLY	SHARED
WESTBOUND	N/A	N/A	N,	/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A		90	N/A	710	N/A
SOUTHBOUND	478	N/A	90	00	N/A	N/A	N/A
		CRITICAL TH CRITICA		_			
	THE SUM C	F CRITICAL	VOLUM	ES		1188	
	NUMBER OF	CRITICAL	CLEARAI	NCE INTE	RVALS .	21	•
	CMA VALUE	B				0.743	
	LEVEL OF	SERVICE				c	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 19, Wagon Wheel Road and US-101 Southbound On-ramp

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * MT	R: N ON GRI	IGHT TURNS	** X ON RED
WESTBOUND	0		0	1°4.4	0		0
EASTBOUND	0		0		0		0
NORTHBOUND	0		390		710		0
SOUTHBOUND	870		900		0		0
		**	NUMBER	OF LANES	**		
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND		0 0	0	1 0	1 0	0	2 3
SOUTHBOUND	2	U	1	U	U	U	3
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE			HARED	ONLY	SHARED
WESTBOUND	N/A	N/A		I/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A
NORTHBOUND	•	N/A		/A	550	550	N/A
SOUTHBOUND	478	N/A	. 9	00	N/A	N/A	N/A
	EAST-WEST						
	NORTH-SOU	TH CRITI	CAL VOLU	MES	• • • • • • •	1028	
	THE SUM C	F CRITIC	AL VOLUM	ES		1028	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	2*	
	CMA VALUE				• • • • • • •	0.642	
	LEVEL OF	SERVICE				В	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR8
10-16-2001, 9:33 AM

INTERSECTION: 19, Wagon Wheel Road and US-101 Southbound On-ramp DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 0 0 0 790	тні	ROUGH 0 0 400 830	** R MIN ON GR 0 0 780 0	IGHT TURNS EEN MA	** X ON RED 0 0 0 0
		** N	UMBER OF L	ANES **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 0 0 0 2			GHT RIGHT ONLY O O O O O O O O O O O O O O O O O O O	L/T/R SHARED 0 0 0	TOTAL LANES 0 0 2 3
		** ASSIGN	ED LANE VO	LUMES **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	•	LEFT SHARED N/A N/A N/A N/A	THROUGH ONLY N/A N/A 400 830	RIGHT SHARED N/A N/A N/A N/A	RIGHT ONLY N/A N/A 780 N/A	L/T/R SHARED N/A N/A N/A
	THE SUM O	F CRITICAL	VOLUMES .		1214	
	NUMBER OF	CRITICAL (CLEARANCE	INTERVALS .	2*	
	CMA VALUE	• • • • • • • • •			0.759	
	LEVEL OF	SERVICE			с	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7 10-16-2001, 9:46 AM

INTERSECTION: 19, Wagon Wheel Road and US-101 Southbound On-ramp DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				**	I	RIGHT TURN	S **
	LEFT	T	HROUGH	MI	N ON GI	REEN MA	AX ON RED
WESTBOUND	0		0		0		0
EASTBOUND	0		0		0		0
NORTHBOUND	0		410		710		0
SOUTHBOUND	960		970		0		0
		**	MADED	OF TAMES	**		
		**	NOWBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	0	0	0
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND		0	1	0	1	0	2
SOUTHBOUND	2	0	1	0	0	0	3
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	N/A	N/A		I/A	N/A	N/A	N/A
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A	4	10	N/A	710	N/A
SOUTHBOUND	528	N/A	9	70	N/A	N/A	N/A
	EAST-WEST	CRITICAL	VOLUME	s	• • • • • •	0	
	NORTH-SOU	TH CRITIC	AL VOLU	MES		1238	
	THE SUM C	F CRITICA	L VOLUM	ies		1238	
	NUMBER OF	'CRITICAL	CLEARA	NCE INTE	RVALS .	21	t
	CMA VALUE		• • • • • •	• • • • • • • •		0.774	
	LEVEL OF	SERVICE .			• • • • • •	c	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7 10-16-2001, 9:42 AM

INTERSECTION: 20, Oxnard Boulevard and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				**		IGHT TURNS	**
	LEFT	TH	ROUGH	MI	N ON GR	een ma	X ON RED
WESTBOUND	0		0		0		103
EASTBOUND	0		0		0		0
NORTHBOUND	0		1130		81		0
SOUTHBOUND	0		735		0		0
		** N	UMBER (F LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
APPROACH	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	1	0	1
EASTBOUND	Ö	Ö	Ö	Ŏ	Ō	Ö	ō
NORTHBOUND	ŏ	Ö	1	í	Ö	Ö	2
SOUTHBOUND	Ö	Ŏ	2	ō	Ö	Ō	2
	_						
		** ASSIGN	ED LAN	E VOLUME:	S **		
APPROACH	LEFT	LEFT	THROU		RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONI		HARED	ONLY	SHARED
WESTBOUND	N/A	N/A		/A	N/A	0	N/A
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A
NORTHBOUND	•	N/A	60		606	N/A	N/A
SOUTHBOUND	N/A	N/A	36	58	N/A	N/A	N/A
				-		0	
		CRITICAL TH CRITICA					
		33.0					
	THE SUM C	F CRITICAL	. VOLUMI	≅S		606	
	NUMBER OF	CRITICAL	CLEARAI	NCE INTE	RVALS .	04	.
	CMA VALUE		• • • • • •			0.379	
	LEVEL OF	SERVICE				А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 20, Oxnard Boulevard and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH					*	RIGHT		**
	LEFT	TH	IROUGH	M	IN ON		MAX	ON RED
WESTBOUND	10		10			0		10
EASTBOUND	110		10		_	0		60
NORTHBOUND	350		880			20		0
SOUTHBOUND	90		1060		22	20		0
		** 1	NUMBER	OF LANE	S **			
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGH	IT L/	T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONI	Y SHA	RED	LANES
WESTBOUND	1	0	1	0	1	-	0	3
EASTBOUND	1	0	1	0	1		0	3
NORTHBOUND	1	0	2	1	C		0	4
SOUTHBOUND	1	0	2	1	O)	0	4
		** ASSIGN	NED LAN	E VOLUM	ES **	,		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIG	нт	L/T/R
	ONLY	SHARED	ON	LY	SHARED	ON	LY	SHARED
WESTBOUND	10	N/A		10	N/A		0	N/A
EASTBOUND	110	N/A		10	N/A		0	N/A
NORTHBOUND	350	N/A		00	300		/A	N/A
SOUTHBOUND	90	N/A	4	27	427	N	/A	N/A
		CRITICAL TH CRITICA					120	
	NORTH-SOC	In CRITICA	TT ACTO	MES	• • • • • •		777	
	THE SUM (F CRITICAL	L VOLUM	ES			897	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS		3*	
	CMA VALUE	·		• • • • • • •		0	.561	
	LEVEL OF	SERVICE	· • • • • • •				A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 20, Oxnard Boulevard and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 10 110 360 90	7	THROUGH 10 10 930 1200	** MI OF LANES	20 4 70)))		** ON RED 20 60 0
			NOMBER					
APPROACH	LEFT ONLY	LEFT T	THROUGH ONLY	RIGHT SHARED	RIGH'			TOTAL LANES
WESTBOUND	1	0	1	0	1	0		3
EASTBOUND		Ö	ī	Ö	1	0		3
NORTHBOUND	1	Ŏ	2	1	0	0		4
SOUTHBOUND	1	0	2	1	0	0		4
		** ASSIG	GNED LAN	E VOLUME	s **			
APPROACH	LEFT ONLY	LEFT SHAREI	THRO ON		RIGHT HARED	RIGH ONL		L/T/R SHARED
WESTBOUND	10	N/A		10	N/A	-	0	N/A
EASTBOUND	110	N/A		10	N/A	•	0	N/A
NORTHBOUND	360	N/A	3	17	317	N/2		N/A
SOUTHBOUND	90	N/A	5	57	557	N/	A	N/A
		r CRITICAI JTH CRITIC				• • • • •	120 917	
	THE SUM (OF CRITICA	T VOLUM	ies	• • • • •	1	037	
	NUMBER OF	F CRITICAL	L CLEARA	NCE INTE	RVALS		3*	
	CMA VALUE	3				0.	648	
	LEVEL OF	SERVICE .					В	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3 10-16-2001, 9:33 AM

INTERSECTION: 20, Oxnard Boulevard and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH	7 DDM		minora.	*:		RIGHT TURNS	
MECHROLINE	LEFT		THROUGH	M.	IN ON G	REEN MU	AX ON RED
WESTBOUND EASTBOUND	10 110		10 10		0		20 60
NORTHBOUND			930		20		0
SOUTHBOUND			1200		0		470
30011E0014E	70		1200		J		4,0
		**	NUMBER	OF LANES	3 **		
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	, ,	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	-	LANES
WESTBOUND	2	0	1	0	1	0	4
EASTBOUND	2	0	1	0	1	0	4
NORTHBOUND	1	0	2	1	0	0	4
SOUTHBOUND	1	0	2	1	1	0	5
		** ASSI	GNED LAN	E VOLUME	SS **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE			HARED	ONLY	SHARED
WESTBOUND	6	N/A		10	N/A	0	N/A
EASTBOUND	60	N/A		10	N/A	0	N/A
NORTHBOUND	360	N/A		17	317	N/A	N/A
SOUTHBOUND	90	N/A	4	00	N/A	0	N/A
				_			
		T CRITICA TH CRITIC			• • • • • •		
	NORTH-SOC	oin CRIII	CAL VOLU	MES	• • • • • •	760	
	THE SUM (F CRITIC	AL VOLUM	ES		830	
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	RVALS	4*	r
	CMA VALUE	3				0.519	
	LEVEL OF	SERVICE	••••		• • • • • •	A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR4
10-16-2001, 9:33 AM

INTERSECTION: 20, Oxnard Boulevard and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

				**		TOUR REPORT	. **
APPROACH	LEFT	mu	ROUGH		n on Gr	IGHT TURNS	X ON RED
WESTBOUND	10	ın	10	141.	0 ON GR	EEN PE	40
EASTBOUND	60		10		Ŏ		60
NORTHBOUND	360		1100		20		0
SOUTHBOUND	110		1200		530		0
		_					
		** N	UMBER (F LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY		ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND	1	0	2 2	1 1	0 0	0	<u>4</u> 4
SOUTHBOUND	1	U	2	1	U	U	4
		** ASSIGN	ED LAN	VOLUME	S **		
APPROACH	LEFT	LEFT	THROU	IGH	RIGHT	RIGHT	L/T/R
ALLKOHOH	ONLY	SHARED	ONI		HARED	ONLY	SHARED
WESTBOUND	10	N/A	1	LO	N/A	0	N/A
EASTBOUND	60	N/A		LO	N/A	0	N/A
NORTHBOUND	360	N/A	31		373	N/A	N/A
SOUTHBOUND	110	N/A	51	77	577	N/A	N/A
				_		50	
		CRITICAL TH CRITICA					
	NORTH-SOC	IN CRITICA	TI ACTION	and	• • • • • •		
	THE SUM C	F CRITICAL	VOLUMI	3S		1007	
	NUMBER OF	CRITICAL	CLEARAI	NCE INTE	RVALS .	3*	•
	CMA VALUE					0.629	
	LEVEL OF	SERVICE				в	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 20, Oxnard Boulevard and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH			maran	**		GHT TURNS	
	LEFT	TH	ROUGH	MT	n on gr	Keen Ma	X ON RED
WESTBOUND	10		10		0		20
EASTBOUND	110		10		0		60
NORTHBOUND			1070		20		0
SOUTHBOUND	90		1130		460		0
		** N	UMBER C	F LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND	1	0	2	1	0	0	4
SOUTHBOUND	1	0	2	1	0	0	4
		** ASSIGN	ED LANE	VOLUME	S **		
APPROACH	LEFT	LEFT	THROU	JGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONI	LY S	HARED	ONLY	SHARED
WESTBOUND	10	N/A	1	-0	N/A	0	N/A
EASTBOUND	110	N/A	1	.0	N/A	0	N/A
NORTHBOUND	350	N/A	3€	3	363	N/A	N/A
SOUTHBOUND	90	N/A	53	30	530	N/A	N/A
				_			
		CRITICAL					
	NORTH-SOU	TH CRITICA	ידי אחדרוא	ies	• • • • • • •	880	
	THE SUM C	F CRITICAL	VOLUME	s	• • • • • • •	1000	
	NUMBER OF	CRITICAL	CLEARAN	CE INTE	RVALS .	3*	
	CMA VALUE	••••••		• • • • • •		0.625	
	LEVEL OF	SERVICE				в	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 20, Oxnard Boulevard and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT	Т	HROUGH	* · M:	* R IN ON GR	IGHT TURNS	** X ON RED
WESTBOUND	0		0		0		356
EASTBOUND	Ō		0		0		0
NORTHBOUND	0		1417		178		0
SOUTHBOUND	0		1218		0		0
		**	NUMBER	OF LANE	S **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	0	0	0	0	1	0	1
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	0	0	1	1	0	0	2
SOUTHBOUND	0	0	2	0	0	0	2
		** ASSIG	NED LAN	E VOLUM			
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHAREL			SHARED	ONLY	SHARED
WESTBOUND	N/A	N/A		I/A	N/A	0	N/A
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A
NORTHBOUND	N/A	N/A		98	798	N/A	N/A
SOUTHBOUND	N/A	N/A	6	509	N/A	N/A	N/A
	EAST-WEST	CRITICAL	. VOLUME				
	NORTH-SOU	TH CRITIC	CAL VOLU	MES			
	THE SUM O	F CRITICA	T AOLAW	ies		798	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS .	O*	·
	CMA VALUE					0.499	
, ,	LEVEL OF	SERVICE .	· • • • • • •			А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 20, Oxnard Boulevard and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	TT	HROUGH	* * M3	*	IGHT TURNS	X ON RED
WESTBOUND	280	11	10	1712	146	DBN P	264
EASTBOUND	430		10		200		110
NORTHBOUND	220		380		190		60
SOUTHBOUND	300		1020		470		0
		** 1	NUMBER	OF LANES	5 **		
APPROACH	LEFT	LEFT T	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND	1	0	2	1	0	0	4
SOUTHBOUND	1	0	2	1	0	0	4
		** ASSIGN	NED LAN	E VOLUME	3S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	SHARED	ONLY	SHARED
WESTBOUND	280	N/A		10	N/A	146	N/A
EASTBOUND	430	N/A		10	N/A	200	N/A
NORTHBOUND	220	N/A		90	190	N/A	N/A
SOUTHBOUND	300	N/A	4	97	497	N/A	N/A
		CRITICAL TH CRITICA					
	THE SUM C	F CRITICAL	L VOLUM	ES		1293	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS .	3*	
	CMA VALUE					0.808	
	LEVEL OF	SERVICE		• • • • • • • •		D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 20, Oxnard Boulevard and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				**		IGHT TURNS	
	LEFT	TE	IROUGH	MI	N ON GRI	sen ma	X ON RED
WESTBOUND	290		10		66		354
EASTBOUND	490		10		220		130
NORTHBOUND	260		470		210		0
SOUTHBOUND	350		1070		675		245
		** <i>I</i> /	UMBER	OF LANES	; **		
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND		Ō	1	Ō	1	0	3
NORTHBOUND	1	Ō	2	1	Ō	0	4
SOUTHBOUND	ī	Ö	2	1	0	0	4
		** ASSIGN	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	290	N/A		10	N/A	66	N/A
EASTBOUND	490	N/A		10	N/A	220	N/A
NORTHBOUND	260	N/A	2	27	227	N/A	N/A
SOUTHBOUND	350	N/A	5	35	N/A	675	N/A
		CRITICAL		-			
	NORTH-SOU	JTH CRITICA	T AOTA	MES		935	
	THE SUM (OF CRITICAL	L VOLUM	ES	• • • • • • •	1491	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS .	3*	•
	CMA VALUI	3				0.932	
	LEVEL OF	SERVICE			• • • • • •	E	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 20, Oxnard Boulevard and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH				**	r R	IGHT TURNS	**
****	LEFT	TH	IROUGH	M)	IN ON GRI	een ma	X ON RED
WESTBOUND	290		10		70		350
EASTBOUND	490		10		220		130
NORTHBOUND	260		470		210		0
SOUTHBOUND	350		1070		0		920
		** N	IUMBER (OF LANES	S **		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	1	0	1	0	4
EASTBOUND	2	0	1	0	1	0	4
NORTHBOUND	1	0	2	1	0	0	4
SOUTHBOUND	1	0	2	1	1	0	5
		** ASSIGN	IED LAN	E VOLUME	3S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	SHARED	ONLY	SHARED
WESTBOUND	159	N/A		10	N/A	70	N/A
EASTBOUND	270	N/A	:	10	N/A	220	N/A
NORTHBOUND	260	N/A	2:	27	227	N/A	N/A
SOUTHBOUND	350	N/A	3!	57	N/A	0	N/A
		CRITICAL					
	NORTH-SOU	TH CRITICA	T AOTA	MES		617	
	THE SUM O	F CRITICAL	, VOLUMI	ES		996	
	NUMBER OF	CRITICAL	CLEARAI	NCE INTE	ERVALS	4*	,
	CMA VALUE	• • • • • • • • •	• • • • •		· • • • • • • • • • • • • • • • • • • •	0.623	
	LEVEL OF	SERVICE		• • • • • • •		В	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR8
10-16-2001, 9:33 AM

INTERSECTION: 20, Oxnard Boulevard and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 330 390 210 370	THI	ROUGH 10 10 630 980	** R MIN ON GR 190 275 250 490	IGHT TURNS EEN MA	** X ON RED 340 105 0 480
		** N	UMBER OF L	ANES **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 1 1		ONLY SHA 1 1	GHT RIGHT RED ONLY 0 1 0 1 1 0 1	L/T/R SHARED 0 0 0 0	TOTAL LANES 3 3 4 4
		** ASSIGN	ed lane vo	LUMES **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 330 390 210 370	LEFT SHARED N/A N/A N/A	THROUGH ONLY 10 10 293 490	RIGHT SHARED N/A N/A 293 490	RIGHT ONLY 190 275 N/A N/A	L/T/R SHARED N/A N/A N/A
	NORTH-SOU	OF CRITICAL	L VOLUMES .		700	
	NUMBER OF	F CRITICAL			3*	•
	CMA VALUE	3		• • • • • • • • • • • • • • • • • • • •	0.816	
	LEVEL OF	SERVICE			D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7 10-16-2001, 9:46 AM

INTERSECTION: 20, Oxnard Boulevard and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	da.	HROUGH	* 1	* I	RIGHT TURNS	X ON RED
WESTBOUND	300	1.	10	171.	68	KEEN MA	312
EASTBOUND	570		10		250		100
NORTHBOUND	200		460		230		30
SOUTHBOUND	320		1040		520		420
		**]	NUMBER	OF LANES	S **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND		0	2	1	0	0	4
SOUTHBOUND	1	0	2	1	0	0	4
		** ASSIG	NED LAN	E VOLUMI	∃S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	_		SHARED	ONLY	SHARED
WESTBOUND	300	N/A		10	N/A	68	N/A
EASTBOUND	570	N/A			N/A	250	N/A
NORTHBOUND		N/A	2		230	N/A	N/A
SOUTHBOUND	320	N/A	5	20	520	N/A	N/A
		CRITICAL TH CRITIC			• • • • • • • •		
	THE SUM O	F CRITICAL	T. VOTJIM	RC 2H		1358	
	1112 5011 0	CRITCA	n vonon		• • • • • • •	1356	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS .	3*	
	CMA VALUE					0.849	
	LEVEL OF	SERVICE .	• • • • • •		• • • • • • •	D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 21, Vineyard Avenue and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND	LEFT 70 157 102	T	THROUGH 16 18 1532	** MI	N ON G 0 0 68		AX ON RED 65 36 0
SOUTHBOUND	322		849		0		128
		**	NUMBER	OF LANES	**		
APPROACH	LEFT ONLY	LEFT T SHARED	CHROUGH ONLY	RIGHT SHARED	RIGHT ONLY	SHARED	TOTAL LANES
WESTBOUND	1	1	0	0	1	0	3
EASTBOUND	1	1	0	0	1	0	3
NORTHBOUND	2	0	2 3	1 0	0 1	0 0	5 6
SOUTHBOUND	2	0	3	U	T	U	0
		** ASSIG	ENED LAN	E VOLUME	ES **		
APPROACH	LEFT ONLY	LEFT SHAREI		LY S	RIGHT HARED	RIGHT ONLY	L/T/R SHARED
WESTBOUND	43	43		/A	N/A	0	N/A
EASTBOUND	88	8,8		/A	N/A	0	N/A
NORTHBOUND	56	N/A		33	533	N/A	N/A
SOUTHBOUND	177	N/A	2	83	N/A	0	N/A
	EAST-WEST						
	NORTH-SOU	TH CRITIC	CAL VOLU	MES	· • • • • •	710	
	THE SUM C	F CRITICA	AL VOLUM	ES		841	
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	ERVALS	4	*
	CMA VALUE	E				0.526	
	LEVEL OF	SERVICE .			· • • • • •	A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1 10-16-2001, 9:33 AM

INTERSECTION: 21, Vineyard Avenue and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * MT	N ON G	RIGHT TURNS	** AX ON RED
WESTBOUND	130		10	1.74	0	L'AR	110
EASTBOUND	10		60		ŏ		10
NORTHBOUND			1440		340		0
SOUTHBOUND			980		50		30
		**	NUMBER	OF LANES	; * *		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY		LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	2	0	0	1	1	0	4
NORTHBOUND		0	2	1	0	0	5
SOUTHBOUND	2	0	3	0	1	0	6
		** ASS	igned lai	NE VOLUME	S **		
APPROACH	LEFT	LEF?	r THRO	OUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARI	ED OF	NLY S	HARED	ONLY	SHARED
WESTBOUND	70	70	1 0	N/A	N/A	0	N/A
EASTBOUND	6	N/2	A	60	N/A	0	N/A
NORTHBOUND		N/1	A 9	593	593	N/A	N/A
SOUTHBOUND	264	N/2	A 3	327	N/A	50	N/A
	EAST-WEST	r opimici		3.C		120	
	NORTH-SOU						
	THE SUM (OF CRITIC	CAL VOLUM	MES	• • • • • •		
	NUMBER OF	F CRITICA	AL CLEAR	NCE INTE	RVALS	4*	•
	CMA VALUE	3			• • • • • •	0.617	
	LEVEL OF	SERVICE			• • • • • •	В	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 21, Vineyard Avenue and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT 130	TH	IROUGH 10	** MI	R N ON GR O	IGHT TURNS EEN MA	X ON RED
WESTBOUND EASTBOUND	10		50		0		10
NORTHBOUND	80		1610		330		0
SOUTHBOUND	510		950		45		25
		** <i>Y</i>	NUMBER (OF LANES	**		
APPROACH	LEFT		IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	1	3 4
EASTBOUND NORTHBOUND	2 2	0 0	0 2	1 1	1 0	0 0	5
SOUTHBOUND	2	0	3	0	1	0	6
SOUTHBOOKD	2	O	,	J	-	U	J
		** ASSIGN	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON		HARED	ONLY	SHARED
WESTBOUND	70	70	·	/A	N/A	0	N/A
EASTBOUND	6	N/A		50	N/A	0	N/A
NORTHBOUND	44	N/A N/A		47	647 N/A	N/A 45	N/A N/A
SOUTHBOUND	280	N/A	3.	17	N/A	45	N/A
		CRITICAL					
	NORTH-BOC	III CRITICA	TH VOLIO	MLS		527	
	THE SUM C	F CRITICAL	L VOLUM	ES		1047	
	NUMBER OF	CRITICAL	CLEARAI	NCE INTE	RVALS .	4*	
	CMA VALUE					0.654	
	LEVEL OF	SERVICE				в	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3 10-16-2001, 9:33 AM

INTERSECTION: 21, Vineyard Avenue and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH	LEFT	TH	ROUGH	** MI1	F N ON GF	RIGHT TURNS REEN MA	** X ON RED
WESTBOUND	130		10		0		120
EASTBOUND	10		50		0		10
NORTHBOUND	80		1610		330		. 0
SOUTHBOUND	510		950		0		70
		** N	UMBER O	F LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY S	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	1	0	1	1	0	4
EASTBOUND	2	1	0	0	1	0	4
NORTHBOUND	2	0	3	1	0	0	6
SOUTHBOUND	2	0	4	0	1	0	7
		** ASSIGN	ED LANE	VOLUMES	S **		
APPROACH	LEFT	LEFT	THROUG	GH I	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONL	Y SI	HARED	ONLY	SHARED
WESTBOUND	65	N/A	10	0	N/A	0	N/A
EASTBOUND	6	N/A	50		N/A	0	N/A
NORTHBOUND		N/A	48		485	N/A	N/A
SOUTHBOUND	280	N/A	23	8	N/A	0	N/A
		CRITICAL TH CRITICA					
	THE SUM O	F CRITICAL	VOLUME	s		880	
	NUMBER OF	CRITICAL	CLEARAN	CE INTE	RVALS .	9*	
	CMA VALUE			• • • • • •		0.550	
	LEVEL OF	SERVICE		• • • • • • • • • • • • • • • • • • •		А	

^{*} Eastbound and Westbound approaches have opposed signal phases. Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR4
10-16-2001, 9:33 AM

INTERSECTION: 21, Vineyard Avenue and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 130 10 90 490		ROUGH 10 70 1530 940	** MI	RI N ON GRE 0 0 0 330 45	GHT TURNS EN MA	X ON RED 110 10 0 35
		** N	UMBER O	F LANES	**		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 2 2 2	LEFT TH SHARED 0 0 0 0	ROUGH ONLY 0 0 2 3	RIGHT SHARED 0 1 0	RIGHT ONLY 1 1 0	L/T/R SHARED 1 0 0	TOTAL LANES 3 4 5 6
		** ASSIGN	ED LANE	VOLUME	S **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 70 6 49 270	LEFT SHARED 70 N/A N/A N/A	THROU ONL N/ 7 62 31	Y S A 0 0	RIGHT HARED N/A N/A 620 N/A	RIGHT ONLY 0 0 N/A 45	L/T/R SHARED N/A N/A N/A N/A
	NORTH-SOU		AL VOLUME CLEARAN	ES S CE INTE	RVALS .	890 1030 4 ⁴ 0.644	•

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 21, Vineyard Avenue and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	ייזי	HROUGH	* # M1	R IN ON GR	IGHT TURNS	** X ON RED
WESTBOUND EASTBOUND NORTHBOUND	130 10 100	11	10 50 1590	PI.	0 0 330	DEN MA	120 10 0
SOUTHBOUND	510		1120		95		25
		**]	NUMBER	OF LANES	S **		
APPROACH	LEFT O N LY	LEFT TI	HROUGH ONLY	RIGHT SHARED	RIGHT ONLY	L/T/R SHARED	TOTAL LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	2	0	0	1	1	Ō	4
NORTHBOUND	2	0	2	1	0	Ō	5
SOUTHBOUND	2	0	3	0	1	0	6
		** ASSIG	NED LAN	E VOLUME	s **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON		HARED	ONLY	SHARED
WESTBOUND	70	70		/A	N/A	0	N/A
EASTBOUND	6	N/A		50	N/A	0	N/A
NORTHBOUND	55	N/A		40	640	N/A	N/A
SOUTHBOUND	280	N/A	3	73	N/A	95	N/A
		CRITICAL TH CRITICA				920	
	THE SUM O	F CRITICAI	UOLUM	ES	• • • • • • •	1040	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	4*	
	CMA VALUE	• • • • • • • • • •	• • • • • •	• • • • • • •		0.650	
	LEVEL OF	SERVICE				в	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 21, Vineyard Avenue and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 393 176 235 194	T	THROUGH 129 18 1047 1470	** MI	RI N ON GRI 71 54 59 0	IGHT TURNS SEN MA	** X ON RED 125 64 0 193
		**	NUMBER	OF LANES	**		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 1 2 2	LEFT T SHARED 1 1 0	CHROUGH ONLY 0 0 2 3	RIGHT SHARED 0 0 1	RIGHT ONLY 1 1 0	L/T/R SHARED 0 0 0	TOTAL LANES 3 3 5 6
		** ASSIC	ENED LAN	E VOLUME	S **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 261 97 129 107	LEFT SHAREI 261 97 N/A N/A	N N 3		RIGHT SHARED N/A N/A 369 N/A	RIGHT ONLY 71 54 N/A 0	L/T/R SHARED N/A N/A N/A
		F CRITICAL CRITICAL	CAL VOLUM AL VOLUM L CLEARA	MES	ERVALS .	619	•
	LEVEL OF						

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 21, Vineyard Avenue and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * MT	RI IN ON GRI	IGHT TURNS	X ON RED
WESTBOUND	630		90	MI	504	2514 1.15	66
EASTBOUND	380		170		16		94
NORTHBOUND			1780		230		Ō
SOUTHBOUND	240		1840		296		104
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	2	0	0	1	1	0	4
NORTHBOUND		0	2	1	0	0	5
SOUTHBOUND	2	0	3	0	1	0	6
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE		LY S	HARED	ONLY	SHARED
WESTBOUND	408	N/A		i/A	N/A	408	408
EASTBOUND	209	N/A		.70	N/A	16	N/A
NORTHBOUND		N/A		70	670	N/A	N/A
SOUTHBOUND	132	N/A	6	13	N/A	296	N/A
	EAST-WEST	' CRITICA	L VOLUME	s		617	
	NORTH-SOU				• • • • • • • •		
	THE SUM O	F CRITIC	AL VOLUM	ES		1419	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS	4*	
	CMA VALUE		• • • • • • • •	• • • • • • • •		0.887	•
	LEVEL OF	SERVICE	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	D	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 21, Vineyard Avenue and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 630 400 370 280	т	HROUGH 130 140 1860 2000	** MI	R N ON GR 474 68 240 270	IGHT TURNS EEN MA	** X ON RED 86 102 0 110
		**	NUMBER	OF LANES	**		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 2 2 2	LEFT T SHARED 0 0 0	THROUGH ONLY 0 0 2 3	RIGHT SHARED 0 1 1	RIGHT ONLY 1 1 0	L/T/R SHARED 1 0 0	TOTAL LANES 3 4 5 6
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 404 220 204 154	LEFT SHARED N/A N/A N/A	N 1 7		RIGHT HARED N/A N/A 700 N/A	RIGHT ONLY 420 68 N/A 270	L/T/R SHARED 411 N/A N/A N/A
	NORTH-SOU	CRITICAL TTH CRITIC OF CRITICA	AL VOLUM	mes		871 1511	
	NUMBER OF	CRITICAL	L CLEAR	ANCE INTE	RVALS .	4*	r
	CMA VALUE	3				0.944	
	LEVEL OF	SERVICE .				E	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 21, Vineyard Avenue and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURNS	\$ **
	LEFT	7	THROUGH	MI			AX ON RED
WESTBOUND	630		130		406		154
EASTBOUND	400		140		0		170
NORTHBOUND	370		1860		240		0
SOUTHBOUND	280		2000		0		380
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT 7	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	1	0	1	1	0	4
EASTBOUND	2	1	0	0	1	0	4
NORTHBOUND	_	0	3	1	0	0	6
SOUTHBOUND	2	0	4	0	1	0	7
		** ASSIG	ENED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHAREI	ON O	ILY S	HARED	ONLY	SHARED
WESTBOUND	315	N/A	N	I/A	268	268	N/A
EASTBOUND	166	239	N	I/A	N/A	0	N/A
NORTHBOUND		N/A		25	525	N/A	N/A
SOUTHBOUND	154	N/A	5	500	N/A	0	N/A
		CRITICAL					
	NORTH-SOU	JTH CRITIC	AL VOLU	MES	• • • • • • • •	704	
	THE SUM (OF CRITICA	L VOLUM	IES	• • • • • •	1258	
	NUMBER OF	F CRITICAL	CLEARA	NCE INTE	RVALS .	9*	
	CMA VALUE	3		• • • • • • • • •	• • • • • • •	0.786	
	LEVEL OF	SERVICE .		• • • • • • • • • • • • • • • • • • • •	• • • • • • •	C	

Eastbound and Westbound approaches have opposed signal phases.

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR8
10-16-2001, 9:33 AM

INTERSECTION: 21, Vineyard Avenue and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURNS	**
AFFROACH	LEFT	T	HROUGH	MI	N ON GR		X ON RED
WESTBOUND	600		160		451		99
EASTBOUND	340		130		8		102
NORTHBOUND	370		1910		230		0
SOUTHBOUND	300		2120		286		94
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
111 1 11011011	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	2	0	0	1	1	0	4
NORTHBOUND	2	0	2	1	0	0	5 6
SOUTHBOUND	2	0	3	0	1	0	6
		** ASSIG	NED LAN	TE VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	OUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	404	N/A		I/A	N/A	404	404
EASTBOUND	187	N/A		130	N/A	8	N/A
NORTHBOUND	204	N/A		713 707	713 N/A	N/A 286	N/A N/A
SOUTHBOUND	165	N/A	,	707	N/A	200	N/A
	EAST-WEST						
	NORTH-SOU	TH CRITIC	AL VOLU	DMES	• • • • • •	911	
	THE SUM O	F CRITICA	L VOLUN	MES		1502	
	NUMBER OF	CRITICAL	CLEAR	ANCE INTE	RVALS .	4*	,
	CMA VALUE					0.939	
	LEVEL OF	SERVICE .				E	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 21, Vineyard Avenue and Esplanade Drive DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * MT	R: N ON GRI	IGHT TURNS	
WESTBOUND	620		110	MIT	.N ON GRI 494	een Ma	X ON RED 96
EASTBOUND	420		160		8		102
NORTHBOUND			1880		230		0
SOUTHBOUND	270		2070		304		116
		**	NUMBER	OF LANES	**		
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	2	0	. 0	1	1	0	4
NORTHBOUND		0	2	1	0	0	5
SOUTHBOUND	2	0	3	0	1	0	6
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE			HARED	ONLY	SHARED
WESTBOUND	408	N/A	. N	/A	N/A	408	408
EASTBOUND	231	N/A	. 1	60	N/A	8	N/A
NORTHBOUND	204	N/A	. 7	03	703	N/A	N/A
SOUTHBOUND	148	N/A	. 6	90	N/A	304	N/A
	EAST-WEST	' CRITICA	L VOLUME	s		639	
	NORTH-SOU	TH CRITI	CAL VOLU	MES			
	THE SUM O	F CRITIC	AL VOLUM	ES	• • • • • • • • •	1533	•
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS	4*	
	CMA VALUE	•••••	• • • • • • • • • •	• • • • • • • •	• • • • • • • •	0.958	
	LEVEL OF	SERVICE	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	E	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 22, Vineyard Avenue and N. Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 190 80 40 30	TH	IROUGH 210 430 840 400	** MI	R N ON GRI 125 50 420 0	IGHT TURNS EEN MA	** X ON RED 15 0 0 100
	_	** 1	IIMBER	OF LANES	**		
		•	.0.1011		,		
APPROACH	LEFT ONLY	SHARED	ROUGH ONLY	RIGHT SHARED	RIGHT ONLY	L/T/R SHARED	TOTAL LANES
WESTBOUND	2	0	2	0	1	0	5 3
EASTBOUND	1	0	1	1	0	0 0	3 4
NORTHBOUND	1	0	2 2	1 0	0 1	0	4
SOUTHBOUND	1	0	2	U	1	U	-
		** ASSIGN	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
AFFROACH	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	104	N/A	1	.05	N/A	125	N/A
EASTBOUND	80	N/A	2	40	240	N/A	N/A
NORTHBOUND	40	N/A	4	20	420	N/A	N/A
SOUTHBOUND	30	N/A	2	00	N/A	0	N/A
		CRITICAL TH CRITICAL			· · · · · · · · · · ·		
	THE SUM C	F CRITICAL	L VOLUM	ies		794	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	3	·
	CMA VALUE	B				0.496	
	LEVEL OF	SERVICE .				A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 22, Vineyard Avenue and N. Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH		_		*:		IGHT TURNS	=
	LEFT	J	THROUGH	M:	IN ON GR	een M	X ON RED
WESTBOUND	250		210		160		20
EASTBOUND	50		420		0		70
NORTHBOUND			980		711		69
SOUTHBOUND	40		530		0		70
		**	NUMBER	OF LANES	S **		
APPROACH	LEFT	LEFT T	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	2	0	1	0	5
EASTBOUND	1	0	2	0	1	Ō	4
NORTHBOUND	1	0	2	1	0	Ö	4
SOUTHBOUND	1	0	2	0	1	0	4
		** ASSIG	NED LAN	E VOLUME	≅S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	SHARED	ONLY	SHARED
WESTBOUND	138	N/A	1	05	N/A	160	N/A
EASTBOUND	50	N/A	2	10	N/A	0	N/A
NORTHBOUND		N/A	4	90	N/A	711	N/A
SOUTHBOUND	40	N/A	2	65	N/A	0	N/A
	EAST-WEST	CRITICAL	VOLUME	s		348	
	NORTH-SOU	TH CRITIC	AL VOLU	MES	• • • • • • • • •	751	
	THE SUM O	F CRITICA	L VOLUM	ES	• • • • • • •	1099	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*	
	CMA VALUE	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •	• • • • • • • • •	0.687	
	LEVEL OF	SERVICE .	• • • • • • •	• • • • • • • •		в	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 22, Vineyard Avenue and N. Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURNS	5 **
AFFROACII	LEFT	T	HROUGH	MI	N ON GR		AX ON RED
WESTBOUND	280		210		130		20
EASTBOUND	60		420		0		60
NORTHBOUND	80		1250		633		77
SOUTHBOUND	40		690		0		80
		**	NUMBER	OF LANES	**		
			Nadion	OF HARES			
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	2	0	1	0	5
EASTBOUND	1	0	2	0	1	0	4
NORTHBOUND	1	0	2	1	0	0	4
SOUTHBOUND	1	0	2	0	1	0	4
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	154	N/A	1	.05	N/A	130	N/A
EASTBOUND	60	N/A		10	N/A	0	N/A
NORTHBOUND	80	N/A		25	N/A	633	N/A
SOUTHBOUND	40	N/A	3	45	N/A	0	N/A
		CRITICAL				• • • • • •	
	NORTH-SOU	TH CRITIC	AL VOLU	MES	• • • • • • •	673	
·	THE SUM O	F CRITICA	ı volum	tes		1037	
			_				
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	31	t
	CMA VALUE					0.648	
	CIA VALUE	• • • • • • •				0.010	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3 10-16-2001, 9:33 AM

INTERSECTION: 22, Vineyard Avenue and N. Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH				**		GHT TURNS	**
	LEFT	TH	ROUGH	MIN	N ON GRE	en ma	X ON RED
WESTBOUND	280		210		130		20
EASTBOUND	60		420		0		60
NORTHBOUND	80		1250		556		154
SOUTHBOUND	40		690		80		0
		** N	UMBER OF	LANES	**		
APPROACH	LEFT			RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED		IARED	ONLY	SHARED	LANES
WESTBOUND	2	0	2	0	1	0	5
EASTBOUND	1	0	2	0	1	0	4
NORTHBOUND	1	0	3	0	1	0	5
SOUTHBOUND	1	0	2	1	0	0	4
		** ASSIGN	ED LANE V	OLUMES	S **		
APPROACH	LEFT	LEFT	THROUGH	I F	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONLY	SE	IARED	ONLY	SHARED
WESTBOUND	154	N/A	105		N/A	130	N/A
EASTBOUND	60	N/A	210		N/A	0	N/A
NORTHBOUND	80	N/A	417		N/A	556	N/A
SOUTHBOUND	40	N/A	257		257	N/A	N/A
		CRITICAL			• • • • • • •	596	
	THE SUM C	F CRITICAL	VOLUMES		• • • • • • • •	960	
	NUMBER OF	CRITICAL	CLEARANCE	INTER	VALS	4*	
	CMA VALUE		• • • • • • • • •			0.600	
	LEVEL OF	SERVICE	• • • • • • • • •			в	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR4
10-16-2001, 9:33 AM

INTERSECTION: 22, Vineyard Avenue and N. Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				* *		RIGHT TURNS	3 **
APPROACH	LEFT	d.	HROUGH	мт	N ON G		AX ON RED
WESTBOUND	250	•	210		155		25
EASTBOUND	70		430		0		60
NORTHBOUND	80		1360		680		50
SOUTHBOUND	50		940		0		80
00011120011							
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	2	0	1	0	5
EASTBOUND	1	0	2	0	1	0	4
NORTHBOUND	1	0	2	1	0	0	4
SOUTHBOUND	1	0	2	0	1	0	4
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	IICH	RIGHT	RIGHT	L/T/R
APPROACH	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	138	N/A		05	N/A	155	N/A
EASTBOUND	70	N/A		15	N/A	0	N/A
NORTHBOUND	80	N/A		80	680	N/A	N/A
SOUTHBOUND	50	N/A		70	N/A	0	N/A
		•			•		•
	EAST-WEST	CRITICAL	VOLUME	s		353	
	NORTH-SOU	TH CRITIC	AL VOLU	MES		730	
	THE SUM C	F CRITICA	T AOTAW	ES			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	31	*
	CMA VALUE					0.677	
	LEVEL OF	SERVICE .				В	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3 10-16-2001, 9:46 AM

INTERSECTION: 22, Vineyard Avenue and N. Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND	LEFT 330 60		THROUGH 240 430	** MI		IGHT TURNS EEN MA	X ON RED 25 60
NORTHBOUND SOUTHBOUND	80 50		1440 520		720 0		30 50
		**	NUMBER	OF LANES	**		
APPROACH	LEFT ONLY	SHARED	THROUGH ONLY	RIGHT SHARED	RIGHT ONLY	L/T/R SHARED	TOTAL LANES
WESTBOUND	2	0	2	0	1	0	5
EASTBOUND	1	0	2	0	1	0	4
NORTHBOUND	1	0	2	1	0	0	4
SOUTHBOUND	1	0	2	0	1	Ō	4
				E VOLUME	_		
APPROACH	LEFT ONLY	LEFT SHARE			RIGHT HARED	RIGHT ONLY	L/T/R SHARED
WESTBOUND	182	N/A	1	20	N/A	135	N/A
EASTBOUND	60	n/a		15	N/A	0	N/A
NORTHBOUND	80	N/A		20	720	N/A	N/A
SOUTHBOUND	50	N/A		60	N/A	0	N/A
	EAST-WEST	·			·	•	Α, Α
	NORTH-SOU				• • • • • • •		
	THE SUM C	F CRITIC	AL VOLUM	ES	• • • • • • •	1167	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS	3*	
	CMA VALUE		• • • • • • • • •	• • • • • • • • •	• • • • • • •	0.729	
	LEVEL OF	SERVICE	• • • • • • • •		• • • • • • •	с	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 22, Vineyard Avenue and N. Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				*	*	RIGHT	TURNS	**
	LEFT	TH	IROUGH	M	IN ON	GREEN	MA	X ON RED
WESTBOUND	420		310			7		153
EASTBOUND	60		300		3	30		0
NORTHBOUND	60		470		24	4		116
SOUTHBOUND			980			0		120
		** 1	NUMBER	OF LANE	S **			
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGH	IT L	/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONI	Y SHA	ARED	LANES
WESTBOUND	2	0	2	0	1		0	5
EASTBOUND	1	0	1	1	C)	0	3
NORTHBOUND	1	0	2	1	C)	0	4
SOUTHBOUND	1	0	2	0	1	•	0	4
		** ASSIGN	NED LAN	E VOLUM	ES **	•		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIC	3HT	L/T/R
	ONLY	SHARED	ON	LY	SHARED	10 (VLY	SHARED
WESTBOUND	231	N/A	1	.55	N/A		7	N/A
EASTBOUND	60	N/A	1	.65	165	ı	A/N	N/A
NORTHBOUND	60	N/A	2	35	N/A		244	N/A
SOUTHBOUND	90	N/A	4	90	N/A		0	N/A
				_				
		CRITICAL					396	
	NORTH-SOU	TH CRITICA	TT AOPO	MES	• • • • • •	• • • • •	550	
	THE SUM O	F CRITICAL	. VOLUM	ES		-	946	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS		3*	
	CMA VALUE		• • • • • •	• • • • • • •	• • • • • •		.591	,
	LEVEL OF	SERVICE					A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 22, Vineyard Avenue and N. Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**		IGHT TURNS	
	LEFT	•	THROUGH	MI	IN ON GR	een ma	X ON RED
WESTBOUND	770		330		85		95
EASTBOUND	30		300		0		40
NORTHBOUND	90		760		558		212
SOUTHBOUND	190		1180		0		60
		**	NUMBER	OF LANES	; **		
APPROACH	LEFT	LEFT '	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	2	0	1	0	5
EASTBOUND	1	0	2	0	1	0	4
NORTHBOUND	1	0	2	1	0	0	4
SOUTHBOUND	1	0	2	0	1	0	4
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	LY S	HARED	ONLY	SHARED
WESTBOUND	424	N/A	1	65	N/A	85	N/A
EASTBOUND	30	N/A	1	50	N/A	0	N/A
NORTHBOUND	90	N/A	3	80	N/A	558	N/A
SOUTHBOUND	190	N/A	5	90	N/A	0	N/A
		r CRITICA					
	NORTH-SO	UTH CRITIC	CAL VOLU	MES	• • • • • •	748	
	THE SUM (OF CRITICA	AL VOLUM	es	• • • • • •	1322	
	NUMBER O	F CRITICAL	L CLEARA	NCE INTE	RVALS .	3*	
	CMA VALUI	3			• • • • • •	0.826	
	LEVEL OF	SERVICE .	• • • • • • • •	• • • • • • •	• • • • • •	D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 22, Vineyard Avenue and N. Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				**		GHT TURNS	
	LEFT	TH	IROUGH	MI	N ON GRI	BEN MA	X ON RED
WESTBOUND	610		410		32		168
EASTBOUND	70		310		0		50
NORTHBOUND			1120		560		130
SOUTHBOUND	330		1590		0		90
		** 1	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT TH	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	2	0	1	0	5
EASTBOUND	1	0	2	0	1	0	4
NORTHBOUND	1	0	2	1	0	0	4
SOUTHBOUND	1	0	2	0	1	0	4
		** ASSIGN	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON		HARED	ONLY	SHARED
WESTBOUND	335	N/A	2	05	N/A	32	N/A
EASTBOUND	70	N/A	1.	55	N/A	0	N/A
NORTHBOUND	100	N/A	5	60	560	N/A	N/A
SOUTHBOUND	330	N/A	7	95	N/A	. 0	N/A
		CRITICAL TH CRITICA					
	THE SUM C	F CRITICAL	VOLUM	ES	• • • • • •	1385	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*	
	CMA VALUE			• • • • • • • • •	• • • • • • •	0.866	
	LEVEL OF	SERVICE		• • • • • • • •		D	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 22, Vineyard Avenue and N. Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH	LEFT	т	HROUGH	** MT	R. N ON GRI	IGHT TURNS	** X ON RED
WESTBOUND	610	•	410	MI	35		165
EASTBOUND	70		310		0		50
NORTHBOUND			1120		355		335
SOUTHBOUND	330		1590		90		0
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	. 2	0	2	0	1	0	5
EASTBOUND	1	0	2	0	1	0	4
NORTHBOUND		0	3	0	1	. 0	5
SOUTHBOUND	1	0	2	1	0	0	4
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	335	N/A		05	N/A	35	N/A
EASTBOUND	70	N/A	1		N/A	0	N/A
NORTHBOUND		N/A	3		N/A	355	N/A
SOUTHBOUND	330	N/A	5	60	560	N/A	N/A
							•
		T CRITICAL					
	NORTH-SO	UTH CRITIC	AL VOLU	MES	• • • • • • • •	703	
	THE SUM (OF CRITICA	L VOLUM	ES	• • • • • • • • • • • • • • • • • • • •	1193	
	NUMBER O	F CRITICAL	CLEARA	NCE INTE	RVALS	4*	
	CMA VALUI	E	• • • • • • •		• • • • • • • •	0.746	
	LEVEL OF	SERVICE .	• • • • • • •		• • • • • • • •	c	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR8
10-16-2001, 9:33 AM

INTERSECTION: 22, Vineyard Avenue and N. Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 570 70 100 320		ROUGH 450 330 1210 1680	** MI	RI N ON GRI 72 10 605 0	IGHT TURNS EEN MA	** X ON RED 168 50 75 90
	323			F LANES	**		
		•					
APPROACH	LEFT ONLY		ROUGH ONLY	RIGHT SHARED	RIGHT ONLY	L/T/R SHARED	TOTAL LANES
WESTBOUND	2	0	2	0	1	0	5
EASTBOUND	1	0	2	0	1	0	4
NORTHBOUND	1	0	2	1	0	0	4
SOUTHBOUND	1	0	2	0	1	0	4
		** ASSIGN	ED LANE	VOLUME	S **		
APPROACH	LEFT ONLY	LEFT SHARED	THROU ONL		RIGHT HARED	RIGHT ONLY	L/T/R SHARED
WESTBOUND	314	N/A	22	:5	N/A	72	N/A
EASTBOUND	70	N/A	16		N/A	10	N/A
NORTHBOUND	100	N/A	60		605	N/A	N/A
SOUTHBOUND	320	N/A	84	.0	N/A	0	N/A
		CRITICAL TTH CRITICA					
	THE SUM C	F CRITICAL	VOLUME	ß		1419	
	NUMBER OF	CRITICAL	CLEARAN	ICE INTE	RVALS .	3*	•
	CMA VALUE				• • • • • •	0.887	
	LEVEL OF	SERVICE				D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 22, Vineyard Avenue and N. Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	ידוכו כו ד	ry.	HROUGH	* * MT	RI IN ON GRI	IGHT TURNS	X ON RED
WEICHEOTHE.	LEFT 610		480	MI	.N ON GRI	SEM ME	200
WESTBOUND EASTBOUND	40		330		0		40
NORTHBOUND	90		1120		560		160
SOUTHBOUND	400		1700		0		110
SOUTHBOOMD	400		1700		O		110
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
112 2 11011011	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	2	0	1	0	5
EASTBOUND	1	0	2	0	1	0	4
NORTHBOUND	1	0	2	1	0	0	4
SOUTHBOUND	1	0	2	0	1	0	4
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	335	N/A	2	40	N/A	30	N/A
EASTBOUND	40	N/A		.65	N/A	0	N/A
NORTHBOUND		N/A		60	560	N/A	N/A
SOUTHBOUND	400	N/A	8	50	N/A	0	N/A
	EAST-WEST	CRITICAL	. VOLUME	! C		500	
		TH CRITIC					
	THE SUM C	F CRITICA	L VOLUM	ies		1460	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*	
	CMA VALUE				· · · · · · · · · ·	0.913	
	LEVEL OF	SERVICE .				Е	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 23, Vineyard Avenue and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				**	· R	IGHT TURNS	**
APPROACH	LEFT	نبك	HROUGH	мт	N ON GR		X ON RED
WESTBOUND	300	- .	410		80		0
EASTBOUND	100		630		131		39
NORTHBOUND	40		670		262		58
SOUTHBOUND	60		580		70		0
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	3	0	1	1	0	0	5
EASTBOUND	1	1	2	0	1	0	5
NORTHBOUND	2	0	3	0	1	0	6
SOUTHBOUND	2	0	2	1	0	0	5
		** ASSIG	NED LAN	E VOLUME	S **	·	
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	110	N/A		45	245	N/A	N/A
EASTBOUND	89	203		19	N/A	131	N/A
NORTHBOUND	22	N/A		23	N/A	262	N/A
SOUTHBOUND	33	N/A	2	17	217	N/A	N/A
		CRITICAL		-			
	NORTH-SOU	TH CRITIC	AL VOLU	MES	••••	295	
	THE SUM (F CRITICA	L VOLUM	ES	• • • • • •	629	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS .	4*	•
	CMA VALUE	3				0.393	
	LEVEL OF	SERVICE .				A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 23, Vineyard Avenue and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	Tr.	HROUGH	*: M:	* RI	IGHT TURNS	x **
WESTBOUND	650	1	510	1*1.	IN ON GR		10
EASTBOUND	110		1310		239		71
NORTHBOUND	140		820		422		358
SOUTHBOUND	110		1020		0		50
		**	NUMBER	OF LANES	S **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	3 3	0	1	0	6
NORTHBOUND		0	3	0	1	0	6
SOUTHBOUND	2	0	3	0	1	0	6 ,
		** ASSIG	NED LAN	IE VOLUMI	ES **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED	ONLY	SHARED
WESTBOUND	358	N/A		.70	N/A	0	N/A
EASTBOUND	60	N/A		37	N/A	239	N/A
NORTHBOUND		N/A	2		N/A	422	N/A
SOUTHBOUND	60	N/A	3	40	N/A	0	N/A
		CRITICAL JTH CRITIC			• • • • • • • •		
	THE SUM (OF CRITICA	I. VOLUM	IES		1277	
			_ ,020		• • • • • • • •	//	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS .	4*	
	CMA VALUE	3		• • • • • • • •	• • • • • • •	0.798	
	LEVEL OF	SERVICE .		• • • • • • •	• • • • • • • •	C	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2 10-16-2001, 9:33 AM

INTERSECTION: 23, Vineyard Avenue and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

					_		
APPROACH	* ***	m	DOTTOTT	**	R N ON GR	IGHT TURNS	X ON RED
WEICHIN OTHER	LEFT 660	TH	ROUGH 460	MI	N ON GR	EEN ME	10
WESTBOUND EASTBOUND	120		1300		175		135
NORTHBOUND			850		577		363
SOUTHBOUND			1120		0		70
BOOTMBOOMB	120				•		. •
		** N	UMBER	OF LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	3	0	1	0	6
NORTHBOUND		0	3	0	1	0	6
SOUTHBOUND	2	0	3	0	1	0	6
		** ASSIGN	ED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	363	N/A	1	53	N/A	0	N/A
EASTBOUND	66	N/A		33	N/A	175	N/A
NORTHBOUND		N/A		83	N/A	577	N/A
SOUTHBOUND	66	N/A	3	73	N/A	0	N/A
	EAST-WEST	CRITICAL	VOLUME	S		796	
	NORTH-SOU	TH CRITICA	T AOTA	MES		643	
	THE SUM C	F CRITICAL	VOLUM	ES		1439	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	4*	•
	CMA VALUE					0.899	
	LEVEL OF	SERVICE				D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 23, Vineyard Avenue and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	** MT	N ON GE	RIGHT TURNS	s ** AX ON RED
WESTBOUND	660		460	PIL	0	CEER PE	10
EASTBOUND	120		1300		221		89
NORTHBOUND	140		850		819		121
SOUTHBOUND	120		1120		70		0
SOUTHBOOKE	120		1120		, 0		V
		**	NUMBER	OF LANES	**		
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	3	0	3	0	1	0	7
EASTBOUND	1	0	3	0	1	0	5
NORTHBOUND	2	0	3 3	0	2	0	7
SOUTHBOUND	2	0	3	1	0	0	6
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	242	N/A	. 1	.53	N/A	0	N/A
EASTBOUND	120	N/A	4	33	N/A	221	N/A
NORTHBOUND	77	N/A	. 2	83	N/A	410	N/A
SOUTHBOUND	66	N/A	. 2	98	298	N/A	N/A
	EAST-WEST				• • • • • • •		
	THE SUM C	F CRITIC	AL VOLUM	ies		1151	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	4	t
	CMA VALUE					0.719	
	LEVEL OF	SERVICE				c	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR4
10-16-2001, 9:33 AM

INTERSECTION: 23, Vineyard Avenue and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**		RIGHT TURNS	**
APPROACH	LEFT	т	THROUGH	мт	N ON G		X ON RED
WESTBOUND	670	-	440		0		10
EASTBOUND	140		1280		210		110
NORTHBOUND	140		950		532		368
SOUTHBOUND	110		1120		0		70
00011100011							
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	3	0	1	0	6
NORTHBOUND	2	0	3	0	1	0	6
SOUTHBOUND	2	0	3	0	1	0	6
		** ASSIG	NED LAN	NE VOLUME	s **		
							+ /= /=
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	368	N/A		47	N/A	0	N/A
EASTBOUND	77 77	N/A N/A		127 317	N/A N/A	210 532	N/A N/A
NORTHBOUND	60	N/A N/A		373	N/A N/A	33 <i>2</i> 0	N/A N/A
SOUTHBOUND	60	N/A	-	0/3	N/A	U	N/A
		CRITICAL				795 592	
	NORTH-SOC	JIH CRITIC	AL VOLC	mes	• • • • •	592	
	THE SUM (OF CRITICA	L VOLUM	nes		1387	
	NUMBER OF	CRITICAL	CLEAR	NCE INTE	RVALS	4+	•
	CMA VALUE	3				0.867	
	LEVEL OF	SERVICE .				D	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3 10-16-2001, 9:46 AM

INTERSECTION: 23, Vineyard Avenue and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * MT	R N ON GR	IGHT TURNS	X ON RED
WESTBOUND	650		650	1.1.7	0		10
EASTBOUND	160		1320		174		126
NORTHBOUND	140		910		562		358
SOUTHBOUND	90		1080		0		70
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT '	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	3	0	1	0	6
NORTHBOUND		0	3	0	1	0	6
SOUTHBOUND	2	0	3	0	1	0	6
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	LY S	HARED	ONLY	SHARED
WESTBOUND	358	N/A	2	17	N/A	0	N/A
EASTBOUND	88	N/A		40	N/A	174	N/A
NORTHBOUND		N/A		03	N/A	562	N/A
SOUTHBOUND	50	N/A	3	60	N/A	0	N/A
	EAST-WEST	r CRITICA	L VOLUME	s		798	
	NORTH-SO	UTH CRITIC	CAL VOLU	MES	• • • • • • •	612	
	THE SUM (OF CRITIC	AL VOLUM	ES		1410	
	NUMBER OF	F CRITICAL	L CLEARA	NCE INTE	RVALS .	4*	
	CMA VALUI	3	• • • • • • •			0.881	
	LEVEL OF	SERVICE	• • • • • • • •			D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 23, Vineyard Avenue and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	· .			**		GHT TURNS	
	LEFT	T.	HROUGH	MI	N ON GRE	SEN MA	X ON RED
WESTBOUND	560		690 630		120 0		130
EASTBOUND	120 230		1140		648		102
NORTHBOUND	150		770		110		0
SOUTHBOUND	150		770		110		Ü
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	
WESTBOUND	3	0	1	1	0	0	5
EASTBOUND	1	1	2	0	1	0	5
NORTHBOUND	2	0	3	0	1	0	6
SOUTHBOUND	2	0	2	1	0	0	5
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	187	N/A		:05	405	N/A	N/A
EASTBOUND	69	123		179	N/A	0	N/A
NORTHBOUND			3		N/A	648	N/A
SOUTHBOUND	75	N/A	2	193	293	N/A	N/A
	DACT MECT	r CRITICAL	. VOLUME	r C		484	
		TH CRITIC					
	THE SUM (F CRITICA	L VOLUM	ies	• • • • • •	1207	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS .	4*	•
	CMA VALUE	3				0.754	
	LEVEL OF	SERVICE .				C	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5 10-16-2001, 9:33 AM

INTERSECTION: 23, Vineyard Avenue and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	** MT	RI N ON GRI	IGHT TURNS	x **
WESTBOUND	740		1260		0		20
EASTBOUND	100		930		35		175
NORTHBOUND	430		1270		663		407
SOUTHBOUND	170		1220		72		148
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	3	0	1	0	6
NORTHBOUND		0	3	0	1	0	6
SOUTHBOUND	2	0	3	0	1	0	6
		** ASS	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRC	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARI			HARED	ONLY	SHARED
WESTBOUND	370	N/A		20	N/A	0	N/A
EASTBOUND	50	N/1		110	N/A	35	N/A
NORTHBOUND		N/1		23	N/A	663	N/A
SOUTHBOUND	85	N/2	A 4	107	N/A	72	N/A
		T CRITICA			• • • • • • • • • • • • • • • • • • • •		
	THE SUM	OF CRITIC	CAL VOLUM	ies	• • • • • • •	1428	
	NUMBER O	F CRITICA	AL CLEARA	NCE INTE	RVALS	4*	•
	CMA VALU	E				0.893	
	LEVEL OF	SERVICE				D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 23, Vineyard Avenue and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURNS	; **			
	LEFT	TH	ROUGH	MI	N ON GR	EEN MA	X ON RED			
WESTBOUND	1020		1120		0		20			
EASTBOUND	80		980		64		116			
NORTHBOUND	420		1410		569		561			
SOUTHBOUND	140		1370		0		200			
** NUMBER OF LANES **										
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL			
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES			
WESTBOUND	2	0	3	0	1	0	6			
EASTBOUND	2	0	3	0	1	0	6			
NORTHBOUND	2	0	3	0	1	0	6			
SOUTHBOUND	2	0	3	0	1	0	6			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THROU	GH :	RIGHT	RIGHT	L/T/R			
	ONLY	SHARED	ONL		HARED	ONLY	SHARED			
WESTBOUND	510	N/A	37		N/A	0	N/A			
EASTBOUND	40	N/A	32		N/A	64	N/A			
NORTHBOUND		N/A	47		N/A	569	N/A			
SOUTHBOUND	70	N/A	45	7	N/A	0	N/A			
							,			
		CRITICAL TH CRITICA								
	THE SUM C	F CRITICAL	VOLUME	s		1504				
	NUMBER OF	CRITICAL	CLEARAN	CE INTE	RVALS .	4*	•			
	CMA VALUE					0.940				
	LEVEL OF	SERVICE				E				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 23, Vineyard Avenue and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH	LEFT	.	THROUGH		* IN ON	RIGHT TO	JRNS ** MAX ON RED			
WESTBOUND	1020	•	1120	AA		0	20			
EASTBOUND	80		980			4	116			
NORTHBOUND	420		1410		94	3	187			
SOUTHBOUND	140		1370		20	0	0			
** NUMBER OF LANES **										
APPROACH	LEFT	LEFT 7	THROUGH	RIGHT	RIGH	T L/T/	R TOTAL			
	ONLY	SHARED	ONLY	SHARED	ONL	y shari	ED LANES			
WESTBOUND	3	0	3	0	1		7			
EASTBOUND	1	0	3	0	1		5			
NORTHBOUND	2	0	3	0	2		7			
SOUTHBOUND	2	0	3	1	0	0	6			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	r L/T/R			
	ONLY	SHAREI		LY	SHARED	ONLY	SHARED			
WESTBOUND	340	N/A		73	N/A	C	N/A			
EASTBOUND	80	N/A		27	N/A					
NORTHBOUND	210	N/A			N/A		•			
SOUTHBOUND	70	N/A	3	92	392	N/A	A N/A			
	NORTH-SOU	CRITICAL TH CRITIC OF CRITICA	CAL VOLU	MES	• • • • •		567 502 269			
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS	• • • •	4*			
	CMA VALUE	3	• • • • • • • •	• • • • • • •	• • • • • •	0.7	'93			
	LEVEL OF	SERVICE .	• • • • • • •				C			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR8
10-16-2001, 9:33 AM

INTERSECTION: 23, Vineyard Avenue and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURNS	; **		
APPROACH	LEFT	T	HROUGH	MI	N ON GR		X ON RED		
WESTBOUND	1080	-	1140		0		20		
EASTBOUND	100		1030		74		116		
NORTHBOUND	420		1540		536		594		
SOUTHBOUND	160		1300		0		210		
		**]	NUMBER	OF LANES	**				
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	3	0	1	0	6		
EASTBOUND	2	0	3	0	1	0	6		
NORTHBOUND	2	0	3	0	1	0	6		
SOUTHBOUND	2	0	3	0	1	0	6		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	OUGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	O	VLY S	HARED	ONLY	SHARED		
WESTBOUND	540	N/A	3	380	N/A	0	N/A		
EASTBOUND	50	N/A	3	343	N/A	74	N/A		
NORTHBOUND	210	N/A	Ç	513	N/A	536	N/A		
SOUTHBOUND	80	N/A	4	133	N/A	0	N/A		
		CRITICAL			• • • • • •				
	NORTH-SOU	TH CRITIC	AL VOLU	DMES	• • • • • •	643			
	THE SUM (F CRITICA	L VOLUM	MES		1526			
	NUMBER OF	CRITICAL	CLEAR	ANCE INTE	RVALS .	4*	•		
	CMA VALUE	3				0.954			
	LEVEL OF	SERVICE .				Е			

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 23, Vineyard Avenue and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	m	IROUGH	*: M:	* R	IGHT TURNS	** X ON RED			
WESTBOUND	980	11	1230	M.	IN ON GR	een Ma	20 20			
EASTBOUND	100		1020		62		128			
NORTHBOUND			1340		581		539			
SOUTHBOUND			1270		0		230			
** NUMBER OF LANES **										
APPROACH	LEFT		IROUGH	RIGHT	RIGHT	L/T/R	TOTAL			
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES			
WESTBOUND	2	0	3	0	1	0	6			
EASTBOUND	2	0	3	0	1	0	6			
NORTHBOUND		0	3	0	1	0	6			
SOUTHBOUND	2	0	3	0	1	0	6			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R			
	ONLY	SHARED	ON	LY S	SHARED	ONLY	SHARED			
WESTBOUND	490	N/A	4	10	N/A	0	N/A			
EASTBOUND	50	N/A		40	N/A	62	N/A			
NORTHBOUND		N/A		47	N/A	581	N/A			
SOUTHBOUND	90	N/A	4:	23	N/A	0	N/A			
		CRITICAL TH CRITICA								
	THE SUM O	F CRITICAL	VOLUM	ES	• • • • • • •	1501				
	NUMBER OF	CRITICAL	CLEARAI	NCE INTE	ERVALS .	4*				
	CMA VALUE			• • • • • • • • •	• • • • • • • • • •	0.938				
	LEVEL OF	SERVICE	• • • • • •		• • • • • • • •	E				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 24, Gonzales Road and Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				**	RI	GHT TURNS	**			
	LEFT	TH	ROUGH	MIN	ON GRE	EN MA	X ON RED			
WESTBOUND	230		510		110		0			
EASTBOUND	240		570		190		0			
NORTHBOUND	320		930		290		0			
SOUTHBOUND	180		780		140		0			
500111200112			,							
		** N	UMBER OF	LANES	**					
APPROACH	LEFT	LEFT TH	ROUGH F	RIGHT	RIGHT	L/T/R	TOTAL			
	ONLY	SHARED	ONLY SE	IARED	ONLY	SHARED	LANES			
WESTBOUND	2	0	1	1	0	0	4			
EASTBOUND	1	0	1	1	0	0	3			
NORTHBOUND	1	0	2	1	0	0	4			
SOUTHBOUND	1	0	2	1	0	0	4			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THROUGH	i R	IGHT	RIGHT	L/T/R			
	ONLY	SHARED	ONLY	SH	ARED	ONLY	SHARED			
WESTBOUND	126	N/A	310		310	N/A	N/A			
EASTBOUND	240	N/A	380		380	N/A	N/A			
NORTHBOUND	320	N/A	407	•	407	N/A	N/A			
SOUTHBOUND	180	N/A	307		307	N/A	N/A			
		CRITICAL								
	NORTH-SOU	TH CRITICA	L VOLUMES	3	• • • • • •	627				
	THE SUM C	OF CRITICAL	VOLUMES	• • • • •	• • • • • •	1177				
	NUMBER OF	CRITICAL	CLEARANCI	INTER	VALS	4*				
	CMA VALUE	3	• • • • • • • •			0.736				
	LEVEL OF	SERVICE				с				

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1 10-16-2001, 9:33 AM

INTERSECTION: 24, Gonzales Road and Ventura Road

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	r marin	,	THROUGH	** MT	RI N ON GRI	IGHT TURNS	X ON RED			
WESTBOUND	LEFT 460		960	1417	95	31314 1.12	95			
EASTBOUND	430		770		198		152			
NORTHBOUND	550		1270		320		150			
SOUTHBOUND	190		930		92		118			
		**	NUMBER	OF LANES	**					
APPROACH	LEFT		THROUGH	RIGHT	RIGHT		TOTAL			
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES			
WESTBOUND	2	0	3	0	1	0	6			
EASTBOUND	2	0	3	0	1	0	6			
NORTHBOUND	2	0	3 3	0	1	0 0	6 6			
SOUTHBOUND	2	0	3	0	1	U	•			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THRO	OUGH	RIGHT	RIGHT	L/T/R			
	ONLY	SHARE	D ON	ILY S	HARED	ONLY	SHARED			
WESTBOUND	253	N/A		320	N/A	95	N/A			
EASTBOUND	236	N/A			N/A	198	N/A			
NORTHBOUND		N/A			N/A	320	N/A			
SOUTHBOUND	104	N/A	. 3	310	N/A	92	N/A			
	EAST-WEST									
	THE SUM (F CRITIC	AL VOLUM	mes	• • • • • • •	1169				
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	4	r			
	CMA VALUE			· • • • • • • • • • • • • • • • • • • •		0.731				
	LEVEL OF	SERVICE		• • • • • • •		C				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 24, Gonzales Road and Ventura Road

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

					_		2 **		
APPROACH		m	IROUGH	** MT	R N ON GR	IGHT TURNS	X ON RED		
MECHDOINE	LEFT 450	111	1000	141 1	126	EEM MA	94		
WESTBOUND EASTBOUND	450 490		870		202		148		
NORTHBOUND	540		1390		234		156		
SOUTHBOUND	200		1060		175		135		
SOUTUBOOND	200		1000		175		133		
		** N	TUMBER	OF LANES	**				
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
HI I KOHOH	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	3	0	1	0	6		
EASTBOUND	2	0	3	0	1	0	6		
NORTHBOUND	2	0	3	0	1	0	6		
SOUTHBOUND	2	0	3	0	1	0	6		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED		
WESTBOUND	248	N/A	3	33	N/A	126	N/A		
EASTBOUND	270	N/A	2	90	N/A	202	N/A		
NORTHBOUND	297	N/A		63	N/A	234	N/A		
SOUTHBOUND	110	N/A	3	53	N/A	175	N/A		
	EAST-WEST	CRITICAL	VOLUME	s		603			
		TH CRITICA							
	THE SUM C	F CRITICAL	L VOLUM	ES		1253			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	4	t		
	CMA VALUE		· • • • • • •			0.783			
	LEVEL OF	SERVICE				c			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 24, Gonzales Road and Ventura Road

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH				*	*	RIGHT TURNS	**			
	LEFT	7	THROUGH	M	IN ON G	reen ma	X ON RED			
WESTBOUND	450		1000		113		107			
EASTBOUND	490		870		202		148			
NORTHBOUND	540		1390		266		124			
SOUTHBOUND	200		1060		166		144			
		**	NUMBER	OF LANE	S **					
APPROACH	LEFT	LEFT T	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL			
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES			
WESTBOUND	2	0	4	0	1	0	7			
EASTBOUND	2	0	3	0	1	0	6			
NORTHBOUND	2	0	3	1	1	0	7			
SOUTHBOUND	2	0	4	0	1	0	7			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R			
	ONLY	SHAREI	ON ON	LY	SHARED	ONLY	SHARED			
WESTBOUND	248	N/A	2	50	N/A	113	N/A			
EASTBOUND	270	N/A	2	90	N/A	202	N/A			
NORTHBOUND	297	N/A	3	48	N/A	266	N/A			
SOUTHBOUND	110	N/A	2	65	N/A	166	N/A			
					·		•			
	EAST-WEST NORTH-SOU									
	NORTH-500	In CRITIC	TAL VOLU	MES	• • • • • •	562				
	THE SUM C	F CRITICA	AL VOLUM	ES	• • • • • •	1100				
	NUMBER OF	CRITICAL	. CLEARA	NCE INT	ERVALS	4*				
	CMA VALUE	• • • • • • •		• • • • • • •	• • • • • • •	0.688				
	LEVEL OF	SERVICE .	• • • • • • •	• • • • • • •	• • • • • • •	В				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR4
10-16-2001, 9:33 AM

INTERSECTION: 24, Gonzales Road and Ventura Road

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURNS	3 **			
APPROACH	LEFT	тн	ROUGH	MIN	ON GR		X ON RED			
WESTBOUND	460		980		153		107			
EASTBOUND	500		840		172		148			
NORTHBOUND	540		1450		209		161			
SOUTHBOUND	310		1200		162		138			
000111000112										
		** N	UMBER O	F LANES	**					
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL			
111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ONLY			SHARED	ONLY	SHARED	LANES			
WESTBOUND	2	0	3	0	1	0	6			
EASTBOUND	2	Ō	3	0	1	0	6			
NORTHBOUND		0	3 3	0	1	0	6			
SOUTHBOUND	2	0	3	0	1	0	6			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THROU	GH F	RIGHT	RIGHT	L/T/R			
	ONLY	SHARED	ONL	Y SE	IARED	ONLY	SHARED			
WESTBOUND	253	N/A	32	7	N/A	153	N/A			
EASTBOUND	275	N/A	28	0	N/A	172	N/A			
NORTHBOUND	297	N/A	48	3	N/A	209	N/A			
SOUTHBOUND	170	N/A	40	0	N/A	162	N/A			
	EAST-WEST	CRITICAL	VOLUMES			602				
		TH CRITICA								
	THE SUM (OF CRITICAL	VOLUME	s		1299				
	NUMBER OF	CRITICAL	CLEARAN	CE INTER	RVALS .	4	r			
	CMA VALUE	g				0.812				
						_				
	LEVEL OF	SERVICE				D				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 24, Gonzales Road and Ventura Road

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 550 570 570 180		THROUGH 990 880 1470 1040	** MI	R N ON GR 185 154 174 53	IGHT TURNS EEN MA	** X ON RED 85 156 176 157			
SOUTHBOOMD	100						157			
		**	NUMBER	OF LANES	**					
APPROACH WESTBOUND	LEFT ONLY 2	LEFT SHARED 0	THROUGH ONLY 3	RIGHT SHARED 0	RIGHT ONLY 1	L/T/R SHARED 0	TOTAL LANES 6			
EASTBOUND	2	Ö	3	Ö	1	Ö	6			
NORTHBOUND	2	0	3	0	1	0	6			
SOUTHBOUND	2	0	3	0	1	0	6			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT			RIGHT	RIGHT	L/T/R			
	ONLY	SHARE			HARED	ONLY	SHARED			
WESTBOUND	302	N/A		30	N/A	185	N/A			
EASTBOUND	314	N/A		93	N/A	154	N/A			
NORTHBOUND	313	N/A			N/A	174	N/A			
SOUTHBOUND	99	N/A	. 3	47	N/A	53	N/A			
	EAST-WEST									
	THE SUM C	F CRITIC	AL VOLUM	ES	• • • • • •	1304				
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	4*				
	CMA VALUE		• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	0.815				
	LEVEL OF	SERVICE	• • • • • • •	• • • • • • •	• • • • • • •	D				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 24, Gonzales Road and Ventura Road

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURNS	; **		
AFFROACH	LEFT	TH	ROUGH	MI	N ON GR	_	X ON RED		
WESTBOUND	530	2 1	440	-	150		0		
EASTBOUND	190		460		110		0		
NORTHBOUND	100		810		370		0		
SOUTHBOUND	130		1120		110		0		
500111500115									
		** N	UMBER O	F LANES	**				
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	1	1	0	0	4		
EASTBOUND	1	0	1	1	0	0	3		
NORTHBOUND	1	0	2	1	0	0	4		
SOUTHBOUND	1	0	2	1	0	0	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THROU	GH :	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ONL	Y S	HARED	ONLY	SHARED		
WESTBOUND	291	N/A	29	5	295	N/A	N/A		
EASTBOUND	190	N/A	28	5	285	N/A	N/A		
NORTHBOUND	100	N/A	39		393	N/A	N/A		
SOUTHBOUND	130	N/A	41	0	410	N/A	N/A		
			4						
	EAST-WEST	CRITICAL	VOLUMES						
	NORTH-SOU	TH CRITICA	L VOLUM	ES		523			
	THE SUM O	F CRITICAL	VOLUME	s	• • • • • •	1099			
	NUMBER OF	CRITICAL	CLEARAN	CE INTE	RVALS .	4	r		
	CMA VALUE					0.687			
	LEVEL OF	SERVICE				в			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 24, Gonzales Road and Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				*		IGHT TURNS				
	LEFT	TH	IROUGH	M	IN ON GRI	een ma	X ON RED			
WESTBOUND	700		1240 650		118		52			
EASTBOUND NORTHBOUND	450 170		1350		330 508		60 192			
SOUTHBOUND			1480		179		151			
SOUTHBOOM	190		1400		1/3		131			
		** 1	NUMBER	OF LANE	S **					
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL			
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES			
WESTBOUND	2	0	3	0	1	0	6			
EASTBOUND	2	0	3 3	0	1	0	6			
NORTHBOUND		0	3	0	1	0	6			
SOUTHBOUND	2	0	3	0	1	0	6			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R			
	ONLY	SHARED	ON	ILY :	SHARED	ONLY	SHARED			
WESTBOUND	385	N/A		:13	N/A	118	N/A			
EASTBOUND	248	N/A		17	N/A	330	N/A			
NORTHBOUND	_	N/A		50	N/A	508	N/A			
SOUTHBOUND	104	N/A	4	93	N/A	179	N/A			
		r CRITICAL JTH CRITICA			• • • • • • • • • • • • • • • • • • • •					
	THE SUM (OF CRITICAL	NOLUM	ES	• • • • • • • •	1327				
	NUMBER OF	F CRITICAL	CLEARA	NCE INT	ERVALS	4*				
	CMA VALUE	3	• • • • • •	• • • • • •	• • • • • • • • •	0.829				
	LEVEL OF	SERVICE	• • • • • •	• • • • • •	• • • • • • • •	D				

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6 10-16-2001, 9:33 AM

INTERSECTION: 24, Gonzales Road and Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

3 DDD03 GII				**		RIGHT TURNS	2 **
APPROACH	LEFT	•	THROUGH		N ON G		AX ON RED
WESTBOUND	710		1450	1.17	152	KDDIV 12	78
EASTBOUND	560		820		326		44
NORTHBOUND	160		1400		478		232
SOUTHBOUND	230		1640		206		154
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT '	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	3	0	1	0	6
NORTHBOUND	2	0	3	0	1	0	6
SOUTHBOUND	2	0	3	0	1	0	6
		** ASSI	GNED LAI	NE VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	OUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE		_	HARED	ONLY	SHARED
WESTBOUND	390	N/A		183	N/A	152	N/A
EASTBOUND	308	N/A		273	N/A	326	N/A
NORTHBOUND	88	N/A		167	N/A	478	N/A
SOUTHBOUND	126	N/A		547	N/A	206	N/A
	naon who	r CRITICA		7.C		701	
	NORTH-SOU						
	THE SUM (OF CRITIC	AL VOLUM	MES	• • • • • •	1426	
	NUMBER OF	F CRITICA	L CLEAR	ANCE INTE	RVALS	41	•
	CMA VALUE	3				0.891	
	LEVEL OF	SERVICE				D	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7 10-16-2001, 9:33 AM

INTERSECTION: 24, Gonzales Road and Ventura Road DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH	rann	Try.	HROUGH	* 1	R:	IGHT TURNS	x **
WESTBOUND	LEFT 710	1.1	1450	[4]	IN ON GRI	EEN MY	63
EASTBOUND	560		820		320		50
NORTHBOUND	160		1400		515		195
SOUTHBOUND	230		1640		186		174
		**]	NUMBER	OF LANES	5 **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	4	0	1	0	7
EASTBOUND	2	0	3	0	1	0	6
NORTHBOUND	2	0	3	1	1	0	7
SOUTHBOUND	2	0	4	0	1	0	7
		** ASSIGN	NED LAN	E VOLUME	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED	ONLY	SHARED
WESTBOUND	390	N/A		62	N/A	167	N/A
EASTBOUND	308	N/A		73	N/A	320	N/A
NORTHBOUND		N/A		83	383	383	N/A
SOUTHBOUND	126	N/A	4	10	N/A	186	N/A
		CRITICAL TH CRITICA					
	THE SUM C	F CRITICAL	L VOLUM	ES	• • • • • • • •	1219	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS	4*	
	CMA VALUE			• • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •	0.762	
	LEVEL OF	SERVICE			• • • • • • • •	с	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR8 10-16-2001, 9:33 AM

INTERSECTION: 24, Gonzales Road and Ventura Road

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	ī	RIGHT TURNS	**
APPROACH	LEFT	•	THROUGH	MI	n on Gi		X ON RED
WESTBOUND	660		1400		185		85
EASTBOUND	560		800		312		38
NORTHBOUND	140		1440		448		232
SOUTHBOUND	230		1720		166		154
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT '	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	3	0	1	0	6
NORTHBOUND	2	0	3	0	1	0	6
SOUTHBOUND	2	0	3	0	1	0	6
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D 01/	ILY S	HARED	ONLY	SHARED
WESTBOUND	363	N/A	4	67	N/A	185	N/A
EASTBOUND	308	N/A	2	67	N/A	312	N/A
NORTHBOUND	77	N/A	4	.80	N/A	448	N/A
SOUTHBOUND	126	N/A	5	73	N/A	166	N/A
	EAST-WEST	י מסודרמי	T MOTITME	ec.		775	
	NORTH-SOU						
	THE SUM C	F CRITIC	AL VOLUM	ies		1425	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS	41	٠
	CMA VALUE					0.891	
	LEVEL OF	SERVICE				D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7 10-16-2001, 9:46 AM

INTERSECTION: 24, Gonzales Road and Ventura Road

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	T	THROUGH	*: M	* R	IGHT TURNS	** X ON RED
tanama oran	710	•	1480	****	150		90
WESTBOUND			800		326		44
EASTBOUND	590				464		246
NORTHBOUND	160		1410				162
SOUTHBOUND	300		1690		178		162
		**	NUMBER	OF LANES	s **		
APPROACH	LEFT	LEFT T	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	ŏ	3	Ö	1	Ō	6
NORTHBOUND	2	ŏ	3	ŏ	1	Ö	6
SOUTHBOUND	2	ŏ	3	Ŏ	ī	Ö	6
SOUTHDOON	2	· ·	3	· ·	-	ŭ	•
		** ASSIG	ENED LAN	E VOLUMI	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHAREI			SHARED	ONLY	SHARED
WESTBOUND	390	N/A		93	N/A	150	N/A
EASTBOUND	324	N/A		67	N/A	326	N/A
NORTHBOUND	88	N/A		70	N/A	464	N/A
SOUTHBOUND	165	N/A		63	N/A	178	N/A
DOOTIIDOOND	103	21/ 22	-	.03	24/ 22	2.0	,
	EAST-WEST	CRITICAL	L VOLUME	s		817	
	NORTH-SOU	TH CRITIC	CAL VOLU	MES		· · · · · · · · · · · · · · · · · · ·	
	THE SUM C	F CRITICA	AL VOLUM	ies		1468	
	NUMBER OF	CRITICAL	L CLEARA	NCE INT	ERVALS .	41	•
	CMA VALUE	,				0.917	
	CIM VALIUE			• • • • • •	• • • • • • •	0.71/	
	LEVEL OF	SERVICE .				E	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7 10-16-2001, 9:42 AM

INTERSECTION: 25, Gonzales Road and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	r mmm	m	HROUGH	* * MT	RI IN ON GRI	GHT TURNS	** X ON RED
WESTBOUND	LEFT 140	11	410	1417	192	SEM MH	38
EASTBOUND	230		890		84		36
NORTHBOUND	130		870		102		38
SOUTHBOUND	130		880		0		70
		**]	NUMBER	OF LANES	3 **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	2	0	1	0	5
NORTHBOUND	2	0	3	0	1	0	6
SOUTHBOUND	2	0	3	0	1	0	6
		** ASSIG	NED LAN	E VOLUME	3S . **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED	ONLY	SHARED
WESTBOUND	77	N/A		37	N/A	192	N/A
EASTBOUND	126	N/A	4		N/A	84	N/A
NORTHBOUND	72	N/A	2		N/A	102	N/A
SOUTHBOUND	72	N/A	2	93	N/A	0	N/A
		CRITICAL TH CRITIC					
	THE SUM C	F CRITICA	L VOLUM	ES	• • • • • • •	887	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS .	4*	•
	CMA VALUE				• • • • • • •	0.554	
	LEVEL OF	SERVICE .			• • • • • • • •	A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 25, Gonzales Road and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* M	* F	RIGHT TURNS	X ON RED
WESTBOUND	140		660	14	281	CERTA LIE	99
EASTBOUND	120		1250		140		130
NORTHBOUND	240		1050		412		38
SOUTHBOUND	360		1340		60		0
500111200112							
		**	NUMBER	OF LANE	S **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT			TOTAL
	ONLY	SHARED	ONLY	SHARED		SHARED	LANES
WESTBOUND	2	0	3	0	2	0	7
EASTBOUND	2	0	3	0	1	0	6
NORTHBOUND	2	0	4	0	1	0	7
SOUTHBOUND	2	0	3	1	0	0	6
		** ASSI	GNED LAN	E VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	ED ON	ILY	SHARED	ONLY	SHARED
WESTBOUND	77	N/A		20	N/A	140	N/A
EASTBOUND	66	N/A		17	N/A	140	N/A
NORTHBOUND	132	N/A		262	N/A	412	N/A
SOUTHBOUND	198	N/A	. 3	50	350	N/A	N/A
		r critica					
	NORTH-SO	UTH CRITI	CAL VOLU	MES	• • • • • • •	610	
	THE SUM	OF CRITIC	AL VOLUM	ies	• • • • • • •	1104	
	NUMBER O	F CRITICA	L CLEARA	NCE INT	ERVALS .	4*	•
	CMA VALU	Ε				0.690	
	LEVEL OF	SERVICE	• • • • • • • •		• • • • • • • •	В	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 25, Gonzales Road and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH		en i	DOUGU	**	RI N ON GRE	GHT TURNS	** X ON RED
	LEFT	TH	ROUGH	MIT	N ON GRE	ETA LATA	107
WESTBOUND	170		730				92
EASTBOUND	130		1280		158		47
NORTHBOUND	230		1210		343		
SOUTHBOUND	390		1430		60		0
		** N	UMBER O	F LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	2	0	7
EASTBOUND	2	0	3	0	1	0	6
NORTHBOUND	2	0	4	0	1	0	7
SOUTHBOUND	2	0	3	1	0	0	6
		** ASSIGN	ED LANE	VOLUME	S **		
APPROACH	LEFT	LEFT	THROU	GH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONL	Y S	HARED	ONLY	SHARED
WESTBOUND	94	N/A	24	3	N/A	142	N/A
EASTBOUND	71	N/A	42	7	N/A	158	N/A
NORTHBOUND	126	N/A	30	2	N/A	343	N/A
SOUTHBOUND	214	N/A	37	2	372	N/A	N/A
		CRITICAL	VOLUMBS			521	
		TH CRITICAL					
	NORTH BOO	, III CICITION					
	THE SUM C	F CRITICAL	VOLUME	s		1078	
	NUMBER OF	CRITICAL	CLEARAN	CE INTE	RVALS	4*	
	CMA VALUE					0.674	
	LEVEL OF	SERVICE				в	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 25, Gonzales Road and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* M	* R	IGHT TURNS	X ON RED
WESTBOUND	170		730	1.1	283	EEN ME	107
EASTBOUND	130		1280		143		107
NORTHBOUND	230		0		0		390
SOUTHBOUND	390		0		0		60
		**	NTIMBER	OF LANE	S **		
					~		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	2	0	1	0	5
EASTBOUND	2	0	2	0	1	0	5
NORTHBOUND	2	0	0	0	1	0	3
SOUTHBOUND	2	0	0	0	1	0	3
		** ASSI	GNED LAN	E VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	ILY :	SHARED	ONLY	SHARED
WESTBOUND	94	N/A	. 3	65	N/A	283	N/A
EASTBOUND	71	N/A		40	N/A	143	N/A
NORTHBOUND	126	N/A		I/A	N/A	0	N/A
SOUTHBOUND	214	N/A	. N	I/A	N/A	0	N/A
	EAST-WEST				• • • • • • • • •		
	THE SUM (OF CRITIC	AL VOLUM	ES		948	
	NUMBER OF	CRITICA	L CLEARA	NCE INT	ERVALS .	4*	
	CMA VALUE	3		• • • • • • •		0.592	
	LEVEL OF	SERVICE	• • • • • • •	• • • • • •		А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR4
10-16-2001, 9:33 AM

INTERSECTION: 25, Gonzales Road and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND	LEFT 160 120 230 390	,	THROUGH 720 1260 0	** MI	R N ON GR 293 0 356	IGHT TURNS EEN MA	X ON RED 107 260 44 60
SOUTHBOUND	390		U		U		80
		**	NUMBER	OF LANES	**		
APPROACH WESTBOUND	LEFT ONLY 2	LEFT SHARED	THROUGH ONLY 3	RIGHT SHARED 0	RIGHT ONLY 2	L/T/R SHARED 0	TOTAL LANES 7
EASTBOUND	2	ő	3	Ö	ĩ	ŏ	, 6
NORTHBOUND	2	0	0	0	1	0	3
SOUTHBOUND	2	0	0	0	1	0	3
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT ONLY	LEFT SHARE			RIGHT HARED	RIGHT ONLY	L/T/R SHARED
WESTBOUND	88	N/A		40	N/A	146	N/A
EASTBOUND	66	N/A		20	N/A	0	N/A
NORTHBOUND	126	N/A		[/A	N/A	356	N/A
SOUTHBOUND	214	N/A	N	I/A	N/A	0	N/A
	EAST-WEST					300	
	NORTH DOC	JIII CRIII	CAL VOLO		• • • • • •		
	THE SUM (F CRITIC	AL VOLUM	ES		1078	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	4*	
	CMA VALUE	3				0.674	
	LEVEL OF	SERVICE				В	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 25, Gonzales Road and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	r aam	77	THROUGH	* * MT	R: N ON GRI	IGHT TURNS	** X ON RED
WESTBOUND	LEFT 160	1	720	1417	293	SISIN ME	107
EASTBOUND	120		1220		0		270
NORTHBOUND			0		356		44
SOUTHBOUND	390		Ō		0		50
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT I	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	2	0	1	0	5
NORTHBOUND		0	0	0	1	0	5 3 3
SOUTHBOUND	2	0	0	0	1	0	3
		** ASSIG	ened Lan	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHAREI	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	88	N/A	2	40	N/A	293	N/A
EASTBOUND	66	N/A	6		N/A	0	N/A
NORTHBOUND		N/A		I/A	N/A	356	N/A
SOUTHBOUND	214	N/A	N	/A	N/A	0	N/A
	EAST-WEST	CRITICAL	. VOLUME	S		698	
	NORTH-SOU	TH CRITIC	CAL VOLU	MES		570	
	THE SUM C	F CRITICA	T AOLUM	ES	• • • • • • •	1268	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	4*	,
	CMA VALUE					0.792	
	LEVEL OF	SERVICE .				C	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 25, Gonzales Road and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT	Ţ	HROUGH	** MT	R N ON GR	IGHT TURNS	** AX ON RED
ME CEROLINE	360	1	1020	1.17	213	.DBN PF	67
WESTBOUND EASTBOUND	270		810		83		47
NORTHBOUND	170		1220		201		99
	190		1340		201		120
SOUTHBOUND	190		1340		U		120
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	Ö	2	Ö	1	Ö	5
NORTHBOUND	2	Ö	3	Ö	1	Ö	6
SOUTHBOUND	2	Ö	3	Ö	_ 1	Ö	6
	_	•	-	-			
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	198	N/A	3	40	N/A	213	N/A
EASTBOUND	148	N/A	4	:05	N/A	83	N/A
NORTHBOUND	94	N/A	4	07	N/A	201	N/A
SOUTHBOUND	104	N/A	4	47	N/A	0	N/A
		CRITICAL				541	
	THE SUM C	F CRITICA	L VOLUM	ies		1144	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	43	•
	CMA VALUE					0.715	
	LEVEL OF	SERVICE .				c	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5 10-16-2001, 9:33 AM

INTERSECTION: 25, Gonzales Road and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	r namm		TUDOUCH	* 1 M*	F IN ON GR	RIGHT TURNS	** X ON RED
	LEFT		THROUGH 1600	141	IN ON GR 448	MI NEED	102
WESTBOUND	600				154		106
EASTBOUND	190		1360		305		165
NORTHBOUND	340		1650		305		0
SOUTHBOUND	370		1590		30		U
		**	NUMBER	OF LANES	S **		
APPROACH	LEFT	LEFT '	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	2	0	7
EASTBOUND	2	0	3	0	1	0	6
NORTHBOUND	2	0	4	0	1	0	7
SOUTHBOUND	2	0	3	1	0	0	6
		** ASSI	GNED LAN	E VOLUMI	ES **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHARE			SHARED	ONLY	SHARED
WESTBOUND	330	N/A		33	N/A	224	N/A
EASTBOUND	104	N/A		53	N/A	154	N/A
NORTHBOUND	187	N/A		12	N/A	305	N/A
SOUTHBOUND	204	N/A	4	:05	405	N/A	N/A
	EAST-WEST	י רים דיזידריא	T. VOLUME	יכ		783	
	NORTH-SOU						
	THE SUM C	F CRITIC	AL VOLUM	ies		1399	
	NUMBER OF	CRITICA	L CLEARA	NCE INT	ERVALS .	4*	
	CMA VALUE	3				0.874	
		-					
	LEVEL OF	SERVICE				D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 25, Gonzales Road and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				*	* R	IGHT TURNS	**
111 11011011	LEFT	TH	IROUGH	M	IN ON GR	EEN MA	X ON RED
WESTBOUND	540		1750		436		124
EASTBOUND	220		1550		110		110
NORTHBOUND	400		1810		302		148
SOUTHBOUND	370		1860		60		0
		** 1	NUMBER	OF LANE	S **		
APPROACH	LEFT	LEFT T	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	2	0	7
EASTBOUND	2	0	3	0	1	0	6
NORTHBOUND	2	0	4	0	1	0	7
SOUTHBOUND	2	0	3	1	0	0	6
		** ASSIG	NED LAN	IE VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	ILY	SHARED	ONLY	SHARED
WESTBOUND	297	N/A	5	83	N/A	218	N/A
EASTBOUND	121	N/A	5	17	N/A	110	N/A
NORTHBOUND	220	N/A	4	52	N/A	302	N/A
SOUTHBOUND	204	N/A	4	80	480	N/A	N/A
						2.1	
		C CRITICAL TH CRITICAL			• • • • • • • •		
	THE SUM (F CRITICAL	r Aoraw	ies		1514	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS .	4*	,
	CMA VALUE					0.946	
	LEVEL OF	SERVICE .				E	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 25, Gonzales Road and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH	LEFT	7	THROUGH	* : M:	* RI	IGHT TURNS	** X ON RED
WESTBOUND	540	-	1750		450		110
EASTBOUND	220		1550		110		110
NORTHBOUND			0		0		450
SOUTHBOUND	370		0		0		60
		**	NUMBER	OF LANES	s **		
APPROACH	LEFT	LEFT T	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	3	0	1	0	6
NORTHBOUND		0	0	0	1	0	3
SOUTHBOUND	2	0	0	0	1	0	3
		** ASSIG	NED LAN	IE VOLUMI	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED	ONLY	SHARED
WESTBOUND	297	N/A		83	N/A	450	N/A
EASTBOUND	121	N/A		17	N/A	110	N/A
NORTHBOUND		N/A		I/A	N/A	0	N/A
SOUTHBOUND	204	N/A	N	I/A	N/A	0	N/A
		•					
		CRITICAL TH CRITIC				220	
	THE SUM (OF CRITICA	T AOTAW	ies	• • • • • • • • •	1034	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS	4*	
	CMA VALUE	3			· • • • • • • • • • • • • • • • • • • •	0.646	
	LEVEL OF	SERVICE .		• • • • • • • •		в	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR8
10-16-2001, 9:33 AM

INTERSECTION: 25, Gonzales Road and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				*	* F	IGHT TURNS	; **
	LEFT	TH	IROUGH	M:	IN ON GR	REEN MA	X ON RED
WESTBOUND	560		1700		478		102
EASTBOUND	240		1510		0		230
NORTHBOUND	360		0		296		154
SOUTHBOUND	370		Ö		0		50
500111500115	3.0		•		Ū		3.0
		** V	IUMBER	OF LANE	S **		
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	2	0	7
EASTBOUND	2	0	3	0	1	0	6
NORTHBOUND	2	0	0	0	1	0	3
SOUTHBOUND	2	0	0	0	1	0	3
		** ASSIGN	ED LAN	E VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON		SHARED	ONLY	SHARED
WESTBOUND	308	N/A		67	N/A	239	N/A
EASTBOUND	132	N/A		03	N/A	0	N/A
NORTHBOUND	198	N/A		/A	N/A	296	N/A
SOUTHBOUND	204	N/A		/A	N/A	0	N/A
		5., 5.	-	,	,	•	,
	EAST-WEST	CRITICAL	VOLUME	S		811	
		TH CRITICA			· · · · · · · · · · · ·		
			,,,				
	THE SUM C	F CRITICAL	VOLUM	ES		1311	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS .	4*	•
	CMA VALUE					0.819	
	LEVEL OF	SERVICE			• • • • • • •	D	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 25, Gonzales Road and Oxnard Boulevard DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	** MT	R N ON GR	IGHT TURNS	** X ON RED
WESTBOUND	590		1630		471	DDI4 PE	99
EASTBOUND	210		1570		22		238
NORTHBOUND			0		278		162
SOUTHBOUND	360		0		0		40
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	2	0	1	0	5
NORTHBOUND	2	0	0	0	1	0	3
SOUTHBOUND	2	0	0	0	1	0	3
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	LY S	HARED	ONLY	SHARED
WESTBOUND	324	N/A		43	N/A	471	N/A
EASTBOUND	116	N/A		85	N/A	22	N/A
NORTHBOUND	214	N/A		/A	N/A	278	N/A
SOUTHBOUND	198	N/A	N N	/A	N/A	0	N/A
	EAST-WEST						
	NORTH-SOU	JTH CRITI	CAL VOLU	MES	• • • • • • •	476	
	THE SUM (OF CRITIC	AL VOLUM	ES	• • • • • • •	1585	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	4*	
·	CMA VALUE	·	• • • • • • • •	• • • • • • •		0.991	
	LEVEL OF	SERVICE	• • • • • • •	• • • • • • • •	• • • • • • •	E	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 26, VICTORIA AVENUE AND TELEPHONE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				* *	r	RIGHT TURNS	**
	LEFT	7	THROUGH	MI	IN ON G	REEN MA	AX ON RED
WESTBOUND	293		568		7		60
EASTBOUND	302		256		124		0
NORTHBOUND	164		1279		173		0
SOUTHBOUND	220		1195		282		83
		**	NUMBER	OF LANES	5 **		
APPROACH	LEFT	LEFT 7	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	2	1	0	0	5
NORTHBOUND	2	0	3	1	0	0	6
SOUTHBOUND	2	0	4	0	1	0	7
		** ASSIC	GNED LAN	E VOLUME	ES **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHAREI			SHARED	ONLY	SHARED
WESTBOUND	161	N/A		89	N/A	7	N/A
EASTBOUND	166	N/A		.27	127	N/A	N/A
NORTHBOUND		N/A		63	363	N/A	N/A
SOUTHBOUND	121	N/A	2	99	N/A	282	N/A
	EAST-WEST NORTH-SOU						
	THE SUM O	F CRITICA	AL VOLUM	ES		839	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS	4*	•
	CMA VALUE			• • • • • • •	• • • • • •	0.524	
	LEVEL OF	SERVICE .			• • • • • •	A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1 10-16-2001, 9:33 AM

INTERSECTION: 26, VICTORIA AVENUE AND TELEPHONE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	* ******	m	mouau	*:		GHT TURNS	
WESTBOUND	LEFT 309	11	HROUGH 598	M.	IN ON GRE	SEN MA	X ON RED
EASTBOUND	318		270		131		0
NORTHBOUND			1347		182		Ö
SOUTHBOUND			1259		296		88
		**]	NUMBER	OF LANES	5 **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
111 2 11011011	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	2	1	0	0	5
NORTHBOUND		0	3	1	0	0	6
SOUTHBOUND	2	0	4	0	1	0	7
		** ASSIG	NED LAN	E VOLUMI	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED	ONLY	SHARED
WESTBOUND	170	N/A		99	N/A	7	N/A
EASTBOUND	175	N/A	1		134	N/A	N/A
NORTHBOUND		N/A		82	382	N/A	N/A
SOUTHBOUND	128	N/A	3	15	N/A	296	N/A
		r CRITICAL UTH CRITIC					
	THE SUM	OF CRITICAL	r vorum	ES		884	
	NUMBER O	F CRITICAL	CLEARA	NCE INT	ERVALS	4*	
	CMA VALU	3		• • • • • •		0.552	
	LEVEL OF	SERVICE .		• • • • • • •		A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 26, VICTORIA AVENUE AND TELEPHONE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH					*	RIGHT 1		**
	LEFT	T	HROUGH	M	IN ON	GREEN	MAX (ON RED
WESTBOUND	340		598			7		64
EASTBOUND	318		270		13	5		16
NORTHBOUND	180		1420		20	9		0
SOUTHBOUND	232		1323		29	6		88
		**	NUMBER	OF LANE	S **			
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGH	T L/I	C/R TO	CIAL
	ONLY	SHARED	ONLY	SHARED	ONL	Y SHAR	ED L	ANES
WESTBOUND	2	0	3	0	1	. 0	j	6
EASTBOUND	2	0	2	1	0	0	j	5
NORTHBOUND		0	3	1	0	0)	6
SOUTHBOUND	2	0	4	0	1	. 0)	7
		** ASSIG	NED LAN	E VOLUM	ES **			
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGH	IT	L/T/R
	ONLY	SHARED			SHARED			SHARED
WESTBOUND	187	N/A	1	.99	N/A		7	N/A
EASTBOUND	175	N/A	1	.35	135	N/	A	N/A
NORTHBOUND	99	N/A	4	.07	407	N/		N/A
SOUTHBOUND		N/A		31	N/A	29		N/A
		CRITICAL					374 535	
	mire cray o	E CDIMICS						
	THE SUM O	F CRITICA	r AOTOW	ies	• • • • •	• • • •	909	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS	• • • •	4*	
	CMA VALUE					0.	568	
	LEVEL OF	SERVICE .					A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 26, VICTORIA AVENUE AND TELEPHONE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * MT	N ON GE	RIGHT TURNS	X ON RED
WESTBOUND	320		598	1.11	7		64
EASTBOUND	318		273		136		12
NORTHBOUND	182		1389		186		0
SOUTHBOUND	232		1302		296		88
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	2	1	0	0	5
NORTHBOUND	2	0	3	1	0	0	6
SOUTHBOUND	2	0	4	0	1	0	7
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	ED ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	176	N/A		.99	N/A	7	N/A
EASTBOUND	175	N/A		.36	136	N/A	N/A
NORTHBOUND	100	N/A		94	394	N/A	N/A
SOUTHBOUND	128	N/A	. 3	26	N/A	296	N/A
				_			
		T CRITICA UTH CRITI					
	THE SUM	OF CRITIC	CAL VOLUM	ies		896	
	NUMBER O	F CRITICA	L CLEARA	NCE INTE	RVALS .	4*	•
	CMA VALU	E	• • • • • • • •	• • • • • • • • •	• • • • • •	0.560	
	LEVEL OF	SERVICE	• • • • • • • • • • • • • • • • • • • •		• • • • • • •	А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 26, VICTORIA AVENUE AND TELEPHONE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				**	r	RIGHT TUR	ens **
	LEFT		THROUGH	MI	N ON	GREEN	MAX ON RED
WESTBOUND	337		598		•	7	64
EASTBOUND	318		270		13	5	10
NORTHBOUND	181		1379		19:	1	0
SOUTHBOUND	232		1335		29	6	88
		**	NUMBER	OF LANES	; **		
APPROACH	LEFT		THROUGH	RIGHT	RIGH		
	ONLY	SHARED	ONLY	SHARED	ONL'	-	
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	2	1	0	0	5
NORTHBOUND	2	0	3	1	0	0	6
SOUTHBOUND	2	0	4	0	1	0	7
		** ASSI	GNED LAN	E VOLUME	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	LY S	HARED	ONLY	SHARED
WESTBOUND	185	N/A	. 1	99	N/A	7	N/A
EASTBOUND	175	N/A	. 1	35	135	N/A	N/A
NORTHBOUND	100	N/A	. 3	92	392	N/A	N/A
SOUTHBOUND	128	N/A	. 3	34	N/A	296	N/A
	na om tinom	CDIMICA		10		2.5	
	EAST-WEST					• • • • • • •	-
	NORTH-SOC	IN CRIII	CAL VOLU	MES	• • • • •	54	
	THE SUM C	F CRITIC	AL VOLUM	ES		89	4
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	ERVALS		4*
	CMA VALUE					0.55	9
	LEVEL OF	SERVICE				• • • •	A

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 26, VICTORIA AVENUE AND TELEPHONE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT	dut	IROUGH	* M	* RI	GHT TURNS	** AX ON RED
WESTBOUND	363	11	501	M	213	PEN ME	72
EASTBOUND	350		500		250		34
NORTHBOUND	-		1164		251		0
SOUTHBOUND	264		1449		283		118
		** 1	IUMBER	OF LANE	S **		
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	2	1	0	0	5
NORTHBOUND		0	3	1	0	0	6
SOUTHBOUND	2	0	4	0	1	0	7
		** ASSIGN	ED LAN	E VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED	ONLY	SHARED
WESTBOUND	200	N/A		67	N/A	213	N/A
EASTBOUND	192	N/A		50	250	N/A	N/A
NORTHBOUND		N/A		54	354	N/A	N/A
SOUTHBOUND	145	N/A	3	62	N/A	283	N/A
		CRITICAL					
	THE SUM (OF CRITICAL	. VOLUM	ES	• • • • • • • •	949	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS	4*	•
	CMA VALUE	3		• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	0.593	
	LEVEL OF	SERVICE	• • • • • • ,	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 26, VICTORIA AVENUE AND TELEPHONE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	** MT	N ON G	RIGHT TURNS	** AX ON RED
WESTBOUND	382		528	1.17	223		77
EASTBOUND	369		527		264		35
NORTHBOUND	261		1226		264		0
SOUTHBOUND	278		1526		296		126
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY		LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	2	1	0	0	5
NORTHBOUND	2	0	3	1	0	0	6
SOUTHBOUND	2	0	4	0	1	0	7
		** ASS]	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
HI I KONCII	ONLY	SHARE			HARED	ONLY	SHARED
WESTBOUND	210	N/A	1	.76	N/A	223	N/A
EASTBOUND	203	N/A	. 2	64	N/A	264	N/A
NORTHBOUND	144	N/I	<u>.</u> 3	72	372	N/A	N/A
SOUTHBOUND	153	N/A	A 3	82	N/A	296	N/A
	EAST-WEST						
	NORTH-SOU	TH CRITI	CAL VOLU	MES		526	
	THE SUM C	F CRITIC	CAL VOLUM	ies		1000	
	NUMBER OF	CRITICA	AL CLEARA	NCE INTE	ERVALS	4	*
	CMA VALUE	E	<i>.</i>			0.625	
	LEVEL OF	SERVICE				В	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 26, VICTORIA AVENUE AND TELEPHONE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				*:		IGHT TURNS	
WESTBOUND	LEFT 445		THROUGH 528	M.	IN ON GR	EEN M	AX ON RED 76
EASTBOUND	369		527		264		60
NORTHBOUND	269		1343		309		0
SOUTHBOUND	278		1666		280		142
		**	NUMBER	OF LANES	S **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	2	1	0	0	5
NORTHBOUND		0	3	1	0	0	6
SOUTHBOUND	2	0	4	0	1	0	7
		** ASS1	igned Lan	E VOLUMI	∃S **		
APPROACH	LEFT	LEFT		UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE			SHARED	ONLY	SHARED
WESTBOUND	245	N/A		.76	N/A	224	N/A
EASTBOUND	203	N/A		64	N/A	264	N/A
NORTHBOUND		N/A		13	413	N/A	N/A
SOUTHBOUND	153	N/A	4	16	N/A	280	N/A
	EAST-WES	T CRITICA	I. VOLUME	Q		509	
	NORTH-SO	UTH CRITI	CAL VOLU	MES			
	THE SUM	OF CRITIC	CAL VOLUM	ES		1075	
	NUMBER O	F CRITICA	L CLEARA	NCE INTE	ERVALS .	4*	•
	CMA VALU	E	• • • • • • • • • • • • • • • • • • • •	• • • • • • •		0.672	
	LEVEL OF	SERVICE	• • • • • • •	• • • • • • • •	• • • • • • • •	В	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 26, VICTORIA AVENUE AND TELEPHONE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	ī	RIGHT TURNS	· **
APPROACH	LEFT	1	THROUGH	MI	N ON GE		AX ON RED
WESTBOUND	406		528		224		76
EASTBOUND	369		539		270		43
NORTHBOUND	276		1312		283		0
SOUTHBOUND	278		1583		288		134
500111200112							
		**	NUMBER	OF LANES	**		
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	3	0	1	0	6
EASTBOUND	2	0	2	1	0	0	5
NORTHBOUND	2	0	3	1	0	0	6
SOUTHBOUND	2	0	4	0	1	0	7
		** ASSI	GNED LAN	E VOLUME	s **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	223	N/A	. 1	.76	N/A	224	N/A
EASTBOUND	203	N/A		70	N/A	270	N/A
NORTHBOUND	152	N/A	. 3	99	399	N/A	N/A
SOUTHBOUND	153	N/A	. 3	96	N/A	288	N/A
		r CRITICA UTH CRITI				552	
	THE SUM (OF CRITIC	AL VOLUM	ies		1045	
	NUMBER O	F CRITICA	L CLEARA	NCE INTE	RVALS .	4	t
	CMA VALUI	3				0.653	
	LEVEL OF	SERVICE				В	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 26, VICTORIA AVENUE AND TELEPHONE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	**	R N ON GR	IGHT TURNS			
WESTBOUND	425		528	MIT	.N ON GR	een My	X ON RED		
EASTBOUND	369		527		264		56		
NORTHBOUND			1306		294		0		
SOUTHBOUND	278		1627		284		138		
		**	NUMBER	OF LANES	**				
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	3	0	1	0	6		
EASTBOUND	2	0	2	1	0	0	5		
NORTHBOUND	_	0	3	1	0	0	6		
SOUTHBOUND	2	0	4	0	1	0	7		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARE		LY S	HARED	ONLY	SHARED		
WESTBOUND	234	N/A		76	N/A	223	N/A		
EASTBOUND	203	N/A		64	N/A	264	N/A		
NORTHBOUND		N/A		00	400	N/A	N/A		
SOUTHBOUND	153	N/A	4	07	N/A	284	N/A		
	EAST-WEST				• • • • • • • •				
	mile cine (OD TOTAL							
	THE SUM (OF CRITIC	AL VOLUM	ES	• • • • • • •	1052			
	NUMBER OF	F CRITICA	L CLEARA	NCE INTE	RVALS	4*			
	CMA VALUE	3	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	• • • • • • •	0.658			
	LEVEL OF	SERVICE	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •	В			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 27, VICTORIA AVENUE AND RALSTON STREET DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT	7	THROUGH	* * MT	RI N ON GRI	IGHT TURNS	** X ON RED	
WESTBOUND	198	-	201		15		153	
EASTBOUND	87		75		50		124	
NORTHBOUND	247		1315		88		0	
SOUTHBOUND	118		1500		141		0	
		**	NUMBER	OF LANES	**			
APPROACH	LEFT	LEFT 7	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	1	0	1	0	1	0	3	
EASTBOUND	1	0	1	0	1	0	3	
NORTHBOUND	1	0	3	1	0	0	5	
SOUTHBOUND	1	0	3	1	0	0	5	
		** ASSIG	ENED LAN	E VOLUME	S **			
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHAREI			HARED	ONLY	SHARED	
WESTBOUND	198	N/A		01	N/A	15	N/A	
EASTBOUND	87	N/A		75	N/A	50	N/A	
NORTHBOUND	247	N/A		51	351	N/A	N/A	
SOUTHBOUND	118	N/A	4	10	410	N/A	N/A	
		CRITICAL TH CRITIC			• • • • • • •			
	THE SUM (OF CRITICA	AL VOLUM	IES		945		
	NUMBER OF CRITICAL CLEARANCE INTERVALS 2*							
	CMA VALUE	3				0.591		
	LEVEL OF	SERVICE				A		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 27, VICTORIA AVENUE AND RALSTON STREET DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	T 12 1200	m	IROUGH	** MT	R N ON GR	IGHT TURNS	** X ON RED
WESTBOUND	LEFT 208	111	211	M.I.	16		161
EASTBOUND	91		79		53		130
NORTHBOUND	260		1382		93		0
SOUTHBOUND	124		1577		148		0
		** N	IUMBER O	F LANES	**		
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND		0	3	1	0	0	5
SOUTHBOUND	1	0	3	1	0	0	5
		** ASSIGN	ied lane	VOLUME	S **		
APPROACH	LEFT	LEFT	THROU		RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONL		HARED	ONLY	SHARED
WESTBOUND	208	N/A	21		N/A	16	N/A
EASTBOUND	91	N/A	7		N/A	53	N/A
NORTHBOUND		N/A	36		369	N/A	N/A
SOUTHBOUND	124	N/A	43	1	431	N/A	N/A
		r CRITICAL UTH CRITICA			• • • • • • •		
	THE SUM (OF CRITICAL	. VOLUME	s		993	
	NUMBER O	F CRITICAL	CLEARAN	CE INTE	RVALS .	2*	
	CMA VALUI	3	· • • • • • •		• • • • • •	0.621	
	LEVEL OF	SERVICE		• • • • • • •		В	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 27, VICTORIA AVENUE AND RALSTON STREET DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 216 91 263 124	Т	HROUGH 211 79 1489 1692	** MI	R: N ON GRI 13 59 97 148	IGHT TURNS BEN MA	X ON RED 164 132 0
SOUTHBOOKE	124						, ⁻
		**	NUMBER	OF LANES	**		
APPROACH WESTBOUND	LEFT ONLY 1	LEFT T SHARED 0	HROUGH ONLY 1	RIGHT SHARED 0	RIGHT ONLY 1	L/T/R SHARED 0	TOTAL LANES 3
EASTBOUND	ī	Ö	1	0	1	0	3
NORTHBOUND	1	0	3	1	0	0	5
SOUTHBOUND	1	0	3	1	0	0	5
		** ASSIG	NED LAN	E VOLUME	ES **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED	ONLY	SHARED
WESTBOUND	216	N/A N/A	2	79	N/A N/A	13 59	N/A N/A
EASTBOUND NORTHBOUND	91 263	N/A N/A	3	-	N/A 396	N/A	N/A
SOUTHBOUND		N/A		60	460	N/A	N/A
DOUTHDOUND	121	2., 22	-				•
		r CRITICAL UTH CRITIC					
	THE SUM	OF CRITICA	T AOTAW	ies		1025	e e
	NUMBER O	F CRITICAL	CLEARA	NCE INTE	ZRVALS .	2*	•
	CMA VALU	B				0.641	
	LEVEL OF	SERVICE .				в	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 27, VICTORIA AVENUE AND RALSTON STREET DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT	7	יטס וורט	* *		IGHT TURNS			
WESTBOUND EASTBOUND	212 91	1	THROUGH 211 79	MI	N ON GR 13 59	een ma	X ON RED 164 132		
NORTHBOUND			1437		96		0		
SOUTHBOUND			1648		148		Ō		
		**	NUMBER	OF LANES	**				
APPROACH	LEFT ONLY	LEFT T SHARED	HROUGH ONLY	RIGHT SHARED	RIGHT ONLY	L/T/R SHARED	TOTAL LANES		
WESTBOUND	1	0	1	0	1	0	3		
EASTBOUND	1	0	1	Ö	1	Ō	3		
NORTHBOUND	1	0	3	1	0	0	5		
SOUTHBOUND	1	0	3	1.	0	0	5		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R		
	ONLY	SHARED			HARED	ONLY	SHARED		
WESTBOUND	212	N/A		11	N/A	13	N/A		
EASTBOUND	91	N/A		79	N/A	59	N/A		
NORTHBOUND	263	N/A		83	383	N/A	N/A		
SOUTHBOUND	124	N/A	4	49	449	N/A	N/A		
		CRITICAL TH CRITIC			• • • • • •	• • • • • • • • • • • • • • • • • • • •			
	THE SUM (OF CRITICA	L VOLUM	ES		1014			
	NUMBER OF	F CRITICAL	CLEARA	NCE INTE	RVALS .	2*			
	CMA VALUE	3	• • • • • • •		• • • • • •	0.634			
	LEVEL OF	SERVICE .		• • • • • • • •	• • • • • • •	В			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 27, VICTORIA AVENUE AND RALSTON STREET DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				**	•	RIGHT TURN	S **		
	LEFT		THROUGH	MI	N ON G	REEN M	AX ON RED		
WESTBOUND	225		211		7	,	170		
EASTBOUND	91		79		61		130		
NORTHBOUND	261		1431		94	<u>.</u>	0		
SOUTHBOUND	124		1695		148	3	0		
		**	NUMBER	OF LANES	; **				
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	1	0	1	0	3		
EASTBOUND	1	0	1	0	1	0	3		
NORTHBOUND	1	0	3	1	0	0	5		
SOUTHBOUND	1	0	3	1	0	0	5		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARE	D ON	LY S	HARED	ONLY	SHARED		
WESTBOUND	225	N/A	2	11	N/A	7	N/A		
EASTBOUND	91	N/A		79	N/A	61	N/A		
NORTHBOUND	261	N/A	3	81	381	N/A	N/A		
SOUTHBOUND	124	N/A	4	61	461	N/A	N/A		
	EAST-WEST	CRITICA	L VOLUME	s		304			
	NORTH-SOU								
	THE SUM C	F CRITIC	AL VOLUM	ES	• • • • •	1026			
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS	2	*		
	CMA VALUE	3				0.641			
	LEVEL OF	SERVICE				В			

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 27, VICTORIA AVENUE AND RALSTON STREET DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				* *		IGHT TURNS	**
	LEFT		THROUGH	M	IN ON GRI	een ma	X ON RED
WESTBOUND	293		129		0		142
EASTBOUND	95		207		172		122
NORTHBOUND			1400		223		0
SOUTHBOUND	286		1845		95		0
		**	NUMBER	OF LANES	; **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND		0	3	1	0	0	5
SOUTHBOUND	1	0	3	1	0	0	5
		** ASSI	GNED LAN	NE VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	OUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	ED ON	NLY S	HARED	ONLY	SHARED
WESTBOUND	293	N/A		L29	N/A	0	N/A
EASTBOUND	95	N/A		207	N/A	172	N/A
NORTHBOUND		N/A		106	406	N/A	N/A
SOUTHBOUND	286	N/A	. 4	185	485	N/A	N/A
		T CRITICA UTH CRITI			• • • • • • • •		
	THE SUM	OF CRITIC	'AL VOLUM	MES	• • • • • • • • • • • • • • • • • • • •	1228	
	NUMBER O	F CRITICA	L CLEARA	NCE INTE	RVALS	2*	
	CMA VALU	E		•••••		0.767	
	LEVEL OF	SERVICE		• • • • • • • • • • • • • • • • • • • •		С	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 27, VICTORIA AVENUE AND RALSTON STREET DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				*	*	RIGHT TU	RNS **	
	LEFT	T	HROUGH	M:	IN ON	GREEN	MAX ON RED	
WESTBOUND	308		136			0	149	
EASTBOUND	100		218		18	1	128	
NORTHBOUND	255		1472		23		0	
SOUTHBOUND	301		1939		10		Ö	
							-	
		**]	NUMBER	OF LANE	S **			
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGH	T L/T/	R TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONL	Y SHARE	D LANES	
WESTBOUND	1	0	1	0	1	0	3	
EASTBOUND	1	0	1	0	1	0	3	
NORTHBOUND	1	0	3	1	0		5	
SOUTHBOUND	1	0	3	1	0		5	
		** ASSIG	NED LAN	E VOLUM	ES **			
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHARED	ON	LY :	SHARED	ONLY	SHARED	
WESTBOUND	308	N/A	1	36	N/A	0	N/A	
EASTBOUND	100	N/A	2	18	N/A	181	N/A	
NORTHBOUND	255	N/A	4	26	426	N/A	. N/A	
SOUTHBOUND	301	N/A	5	10	510	N/A	. N/A	
		·				•	•	
	EAST-WEST	CRITICAL	VOLUME	s		5	26	
	NORTH-SOU	TH CRITIC	AL VOLU	MES	• • • • • •	7	65	
	THE SUM O	F CRITICA	L VOLUM	ES		12	91	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS	• • • •	2*	
	CMA VALUE					0.8	07	
	LEVEL OF	SERVICE .					D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 27, VICTORIA AVENUE AND RALSTON STREET DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * MT	R N ON GR	IGHT TURNS	x on red
WESTBOUND	318		136	1,17	0		149
EASTBOUND	100		218		189		134
NORTHBOUND			1637		240		0
SOUTHBOUND	301		2170		100		0
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND		0	3	1	0	0	5
SOUTHBOUND	1	0	3	1	0	0	5
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	' THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE		LY S	HARED	ONLY	SHARED
WESTBOUND	318	N/A		.36	N/A	0	N/A
EASTBOUND	100	N/A		18	N/A	189	N/A
NORTHBOUND	268	N/A		69	469	N/A	N/A
SOUTHBOUND	301	N/A	. 5	68	568	N/A	N/A
	ENOM NEO						
		T CRITICA UTH CRITI					
	THE SUM	OF CRITIC	AL VOLUM	ES	• • • • • • •	1372	
	NUMBER OF	F CRITICA	L CLEARA	NCE INTE	RVALS	2*	
	CMA VALUI	E	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •	0.858	
	LEVEL OF	SERVICE	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • •	D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 27, VICTORIA AVENUE AND RALSTON STREET DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	r	RIGHT TURNS	s **
APPROACH	LEFT	T	HROUGH	мт	N ON G		AX ON RED
WESTBOUND	308	•	139		0	-	149
EASTBOUND	100		233		177		132
NORTHBOUND	264		1597		245		0
SOUTHBOUND	301		2033		104		0
500111500115	30						
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND	1	0	3	1	0	0	5
SOUTHBOUND	1	0	3	1	0	0	5
		** 25576	אנג ז רויים דאי	E VOLUME	75 **		
		- ASSIG	MED THE	ib volioni	35		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			HARED	ONLY	SHARED
WESTBOUND	308	N/A	1	.39	N/A	0	N/A
EASTBOUND	100	N/A	2	:33	N/A	177	N/A
NORTHBOUND	264	N/A	4	60	460	N/A	N/A
SOUTHBOUND	301	N/A	5	34	534	N/A	N/A
		•					
			1101 TB4T	10		E 4.1	
	EAST-WEST				. 		
	NORTH-SOC	IH CRITIC	AL VOL	MES		/30	
	THE SUM C	F CRITICA	T AOTAW	ies		1339	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS	2	*
	CMA VALUE				· • • • • • •	0.837	
	LEVEL OF	SERVICE .			<i></i>	D	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 27, VICTORIA AVENUE AND RALSTON STREET DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				**		IGHT TURNS	
***********	LEFT	TH	IROUGH	WI	N ON GR	een ma	X ON RED
WESTBOUND EASTBOUND	318 100		136 218		0 184		149 136
NORTHBOUND			1591		241		136
SOUTHBOUND	301		2108		100		0
SOUTHBOOKD	301		2100		100		· ·
		** N	NUMBER (OF LANES	**		
APPROACH	LEFT		IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND	1	0	3	1	0	0	5
SOUTHBOUND	1	0	3	1	0	0	5
		** ASSIGN	ED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	318	N/A	13	36	N/A	0	N/A
EASTBOUND	100	N/A	2:	18	N/A	184	N/A
NORTHBOUND		N/A		58	458	N/A	N/A
SOUTHBOUND	301	N/A	5!	52	552	N/A	N/A
		CRITICAL TH CRITICA					
	THE SUM C	F CRITICAL	VOLUMI	ES	• • • • • • •	1361	
	NUMBER OF	CRITICAL	CLEARAI	NCE INTE	RVALS .	2*	
	CMA VALUE		• • • • • •	• • • • • • • •	• • • • • • •	0.851	
	LEVEL OF	SERVICE			• • • • • • •	D	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 28, VICTORIA AVENUE AND U.S.-101 NB RAMPS DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				**		GHT TURNS	
rinomporam	LEFT	TH	IROUGH	MI	N ON GRI 706	SEN MA	X ON RED
WESTBOUND	490 0		0 0		706		0
EASTBOUND NORTHBOUND			737		0		0
SOUTHBOUND			1640		0		260
SOUTHBOOKD	O		1040		Ū		200
		** N	TUMBER (OF LANES	**		
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	2	1	4
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND		0	3	0	0	0	5
SOUTHBOUND	0	0	4	0	1	0	5
		** ASSIGN	ED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON		HARED	ONLY	SHARED
WESTBOUND	299	N/A		/A	N/A	299	299
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A
NORTHBOUND		N/A		46	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	4	10	N/A	0	N/A
		CRITICAL TH CRITICA					
	THE SUM C	F CRITICAL	VOLUM	ES		811	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*	•
	CMA VALUE		· • • • • •		• • • • • •	0.507	
	LEVEL OF	SERVICE				А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 28, VICTORIA AVENUE AND U.S.-101 NB RAMPS DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	,	THROUGH	* M	* RI	IGHT TURNS	** AX ON RED
WESTBOUND	549		0	141	791	PPM M	149
EASTBOUND	0		Ō		0		0
NORTHBOUND	207		826		0		0
SOUTHBOUND	0		1837		0		291
		**	NUMBER	OF LANE	S **		
	•						_
APPROACH	LEFT		THROUGH	RIGHT		•	TOTAL
	ONLY	SHARED	ONLY	SHARED		SHARED	LANES
WESTBOUND	1	0	0	0	2	1	4
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND		0	3	0	0	0	5
SOUTHBOUND	0	0	4	0	1	0	5
		** ASSI	GNED LAN	E VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	ILY :	SHARED	ONLY	SHARED
WESTBOUND	335	N/A	N	I/A	N/A	335	335
EASTBOUND	N/A	N/A	N	I/A	N/A	N/A	N/A
NORTHBOUND		N/A		75	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	4	59	N/A	0	N/A
		,					
	EAST-WEST				• • • • • • • •		
•	THE SUM C	OF CRITIC	AL VOLUM	ies	• • • • • • • •	908	
	NUMBER OF	CRITICA	L CLEARA	NCE INT	ERVALS .	3*	r
	CMA VALUE		• • • • • • •	• • • • • • •	• • • • • • • •	0.568	
	LEVEL OF	SERVICE	• • • • • • •	• • • • • • •	• • • • • • • • • • • • • • • • • • •	А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 28, VICTORIA AVENUE AND U.S.-101 NB RAMPS DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	** MI	N ON GRI	IGHT TURNS EEN MA	X ON RED
WESTBOUND	582		0		904		168
EASTBOUND	0		0		0		0 0
NORTHBOUND	207		826 1993		0		291
SOUTHBOUND	0		1993		U		291
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	2	1	4
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	2	0	3	0	0	0	5 5
SOUTHBOUND	0	0	4	0	1	U	5
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
AL LICOLO.	ONLY	SHARE		TLY S	HARED	ONLY	SHARED
WESTBOUND	372	N/A	A N	I/A	N/A	372	372
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A
NORTHBOUND	114	N/A		275	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	4	98	N/A	0	N/A
	EAST-WEST	CRITICA	AL VOLUME	s		372	
	NORTH-SOU	TH CRIT	CAL VOLU	MES		612	
	THE SUM C	ים מסדידות	יאד. ערונווא	rec		984	
	THE SOM C	of CRITIC	LAL VOLUM				
	NUMBER OF	CRITICA	AL CLEARA	NCE INTE	ERVALS .	3*	•
	CMA VALUE	E		· • • • • • • • • • • • • • • • • • • •	· • • • • • •	0.615	
	LEVEL OF	SERVICE				в	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 28, VICTORIA AVENUE AND U.S.-101 NB RAMPS DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	** MT	R: N ON GRI	IGHT TURNS	** X ON RED
WESTBOUND	573		0	MI	N ON GRI 849	SEN MA	162
EASTBOUND	0		ŏ		0		0
NORTHBOUND	_		826		Ö		Ö
SOUTHBOUND	0		1936		Ō		291
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	2	1	4
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	2	0	3	0	0	0	5
SOUTHBOUND	0	0	4	0	1	0	5
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE			HARED	ONLY	SHARED
WESTBOUND	356	N/A	. N	I/A	N/A	356	356
EASTBOUND	N/A	N/A	. N	/A	N/A	N/A	N/A
NORTHBOUND	114	N/A	. 2	75	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	. 4	84	N/A	0	N/A
	EAST-WEST				• • • • • • •		
	NORTH-SOU	JTH CRITI	CAL VOLU	MES	• • • • • • •	598	
	THE SUM (OF CRITIC	AL VOLUM	ES	• • • • • • •	954	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS	3*	
	CMA VALUE	3	• • • • • • • •		• • • • • • • •	0.596	
	LEVEL OF	SERVICE				А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 28, VICTORIA AVENUE AND U.S.-101 NB RAMPS DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				**	ī	RIGHT TURNS	**
APPROACH	LEFT	ידי	HROUGH	MT	n on Gi		X ON RED
WESTBOUND	556	•	0		824		170
EASTBOUND	0		Ö		0		0
NORTHBOUND	207		826		0		0
SOUTHBOUND	0		2003		0		291
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	2	1	4
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	2	0	3	0	0	0	5
SOUTHBOUND	0	0	4	0	1	0	5
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH :	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	345	N/A	N	I/A	N/A	345	345
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A
NORTHBOUND	114	N/A		275	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	5	501	N/A	0	N/A
		CRITICAL TH CRITIC			• • • • • •		
	THE SUM (F CRITICA	L VOLUM	MES	• • • • • •	960	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	3,	r
	CMA VALUE	3				0.600	
	LEVEL OF	SERVICE .				В	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3 10-16-2001, 9:42 AM

INTERSECTION: 28, VICTORIA AVENUE AND U.S.-101 NB RAMPS DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT	,	THROUGH	* : M`	* RI	IGHT TURNS	** X ON RED
WESTBOUND	240		0	•••	650		114
EASTBOUND	0	•	0		0		. 0
NORTHBOUND			1244		0		0
SOUTHBOUND	0		2018		0		366
		**	NUMBER	OF LANES	S **		
APPROACH	LEFT	LEFT :	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	2	1	4
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	_	0	3	0	0	0	5
SOUTHBOUND	0	0	4	0	1	0	5
		** ASSI	GNED LAN	E VOLUMI	ES **		
APPROACH	LEFT	LEFT			RIGHT	RIGHT	L/T/R
	ONLY	SHAREI			SHARED	ONLY	SHARED
WESTBOUND	222	N/A		/A	N/A	222	222
EASTBOUND	N/A	N/A			N/A	N/A	N/A
NORTHBOUND		N/A			N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	5	04	N/A	0	N/A
	EAST-WEST	CRITICAL TH CRITIC					
	THE SUM C	F CRITICA	AL VOLUM	ES	• • • • • • • •	866	
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	ERVALS	3*	
	CMA VALUE		• • • • • • • • •	• • • • • • • •		0.541	
	LEVEL OF	SERVICE .	• • • • • • • •	• • • • • • • • •	· • • • • • • • • • • • • • • • • • • •	А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 28, VICTORIA AVENUE AND U.S.-101 NB RAMPS DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

3 DDD 0 3 CH				**		RIGHT TURNS	2 **
APPROACH	LEFT	וידי	HROUGH		N ON GF		AX ON RED
WESTBOUND	269	**	0	1412	728		128
EASTBOUND	200		0		0		0
NORTHBOUND	285		1394		Ŏ		Ō
SOUTHBOUND	0		2261		0		410
		**]	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	2	1	4
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	2	0	3	0	0	0	5
SOUTHBOUND	0	0	4	0	1	0	5
		** ASSIGN	NED LAN	IE VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	249	N/A		I/A	N/A	249	249
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A
NORTHBOUND		N/A		65	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	5	65	N/A	0	N/A
	73.0M N70.0	OD TOTAL	TYOY TRAF	30		240	
		CRITICAL TH CRITIC					
	THE SUM (OF CRITICAL	L VOLUM	ies	• • • • • •	971	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	3	*
	CMA VALUE	3				0.607	
	LEVEL OF	SERVICE .				В	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 28, VICTORIA AVENUE AND U.S.-101 NB RAMPS DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	7	THROUGH	** M:	* R IN ON GR	IGHT TURNS	** X ON RED
WESTBOUND	293	-	0		917		172
EASTBOUND	0		Ö		0		0
NORTHBOUND	285		1394		0		0
SOUTHBOUND			2607		Ō		410
	_						
		**	NUMBER	OF LANES	5 **		
APPROACH	LEFT	LEFT 7	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	2	1	4
EASTBOUND	0	0	Ō	Ö	Ō	0	Ō
NORTHBOUND	2	0	3	0	0	0	5
SOUTHBOUND	0	0	4	0	1	0	5
		** ASSIG	ENED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHAREI			SHARED	ONLY	SHARED
WESTBOUND	293	N/A		/A	306	306	N/A
EASTBOUND	N/A			/A	N/A	N/A	N/A
NORTHBOUND	_	N/A		65	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	6	52	N/A	0	N/A
		r criticai					
	NORTH-SO	JTH CRITIC	CAL VOLU	MES		809	
	THE SUM (OF CRITICA	L VOLUM	ES		1115	
	NUMBER O	F CRITICAL	CLEARA	NCE INTE	ERVALS .	3*	
	CMA VALUI	3	• • • • • • • • • • • • • • • • • • • •		• • • • • • •	0.697	
	LEVEL OF	SERVICE .	• • • • • • •		• • • • • • •	В	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 28, VICTORIA AVENUE AND U.S.-101 NB RAMPS DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURNS	; **
APPROACH	LEFT	ר	THROUGH	MI	N ON GR		X ON RED
WESTBOUND	292	-	0		882		150
EASTBOUND	0		Ö		0		0
NORTHBOUND	285		1395		0		0
SOUTHBOUND	0		2430		0		410
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT 7	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	2	1	4
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	2	0	3	0	0	0	5
SOUTHBOUND	0	0	4	0	1	0	5
		** ASSIC	ENED LAN	E VOLUME	S **		
							- 1 1
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHAREI			HARED	ONLY	SHARED
WESTBOUND	292	N/A		/A	294	294	N/A
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A
NORTHBOUND	157	N/A		65	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	6	08	N/A	0	N/A
	DAOM MDOO	r CRITICAI	. WOLIDAS			294	
		TH CRITICAL					
	NORTH-SOC	JIH CRIIIC	LAL VOLU	MES	• • • • • • •	765	
	THE SUM C	OF CRITICA	AL VOLUM	ES		1059	
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	RVALS .	3*	•
	CMA VALUE	·				0.662	
	LEVEL OF	SERVICE .				B	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 28, VICTORIA AVENUE AND U.S.-101 NB RAMPS DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * MT	R: IN ON GRI	IGHT TURNS	** X ON RED
WESTBOUND	305		0	1417	.N ON GRI 894	edn Me	160
EASTBOUND	0		Õ		0		0
NORTHBOUND	285		1394		0		0
SOUTHBOUND	0		2508		0		410
		**	NUMBER	OF LANES	; **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	2	1	4
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	_	0	3	0	0	0	5
SOUTHBOUND	0	0	4	0	1	0	5
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRC	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE			HARED	ONLY	SHARED
WESTBOUND	300	N/A		ī/A	N/A	300	300
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A
NORTHBOUND		N/A		65	N/A	N/A	N/A
SOUTHBOUND	N/A	N/A	. 6	27	N/A	0	N/A
				_			
	EAST-WEST	TH CRITICA	L VOLUME	MES	• • • • • • • • •	784	
	THE SUM C	F CRITIC	AL VOLUM	ES	• • • • • • • • •	1084	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS	3*	
	CMA VALUE			• • • • • • • •	• • • • • • • •	0.677	
	LEVEL OF	SERVICE		• • • • • • • •		в	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 29, U.S.-101 SB RAMPS AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 454 0 49 0	Т	THROUGH 0 0 242 759	** MI	R N ON GR 0 0 0 0	IGHT TURNS EEN MA	** X ON RED 99 0 980 0
		**	NUMBER	OF LANES	; **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 0 1	LEFT T SHARED 0 0 0	THROUGH ONLY 0 0 2 2	RIGHT SHARED 0 0 0 0	RIGHT ONLY 1 0 2 0	L/T/R SHARED 1 0 0	TOTAL LANES 3 0 5 3
		** ASSIG	NED LAN	E VOLUME	ES **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 227 N/A 49 0	LEFT SHARED 227 N/A N/A N/A	N N 1	TLY S I/A I/A	RIGHT SHARED N/A N/A N/A N/A	RIGHT ONLY 0 N/A 0 N/A	L/T/R SHARED N/A N/A N/A
	NORTH-SOU	CRITICAL JTH CRITICA OF CRITICA F CRITICAL	AL VOLUM	MES	ERVALS .	429 656 2*	•
	LEVEL OF	SERVICE .				A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 29, U.S.-101 SB RAMPS AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	r com	m	ROUGH	* ·	* RI	IGHT TURNS	X ON RED	
WESTBOUND	LEFT 554	ın	0	141	1N ON GR	DEM ME	121	
EASTBOUND	0		Ō		Ō		0	
NORTHBOUND	60		295		0		1196	
SOUTHBOUND	0		926		0		0	
		** N	UMBER C	of Lane	S **			
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	1	0	0	0	1	1	3	
EASTBOUND	0	0	0	0	0	0	0	
NORTHBOUND		0	2	0	2	0	5	
SOUTHBOUND	1	0	2	0	0	0	3	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THROU		RIGHT	RIGHT	L/T/R	
	ONLY	SHARED	ONI		SHARED	ONLY	SHARED	
WESTBOUND	277	277	N/		N/A	.0	N/A	
EASTBOUND	N/A	N/A	N/		N/A	N/A	N/A	
NORTHBOUND		N/A	14		N/A	0	N/A	
SOUTHBOUND	0	N/A	46	53	N/A	N/A	N/A	
		CRITICAL TH CRITICA						
		F CRITICAL				•		
	NUMBER OF	CRITICAL	CLEARAN	ICE INT	ERVALS .	2*	,	
	CMA VALUE	·			• • • • • • •	0.500		
	LEVEL OF	SERVICE		• • • • • •	• • • • • • •	A		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 29, U.S.-101 SB RAMPS AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 554 0 60 0	тн	ROUGH 0 0 318 930	** MIN		IGHT TURNS EEN MA	X ON RED 121 0 1226 0
		** N	UMBER OF	F LANES	**		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 0 1		ROUGH ONLY S 0 0 2 2	RIGHT SHARED 0 0 0 0	RIGHT ONLY 1 0 2 0	L/T/R SHARED 1 0 0	TOTAL LANES 3 0 5 3
		** ASSIGN	ED LANE	VOLUMES	s **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 277 N/A 60 0	LEFT SHARED 277 N/A N/A N/A	THROUG ONL: N/I N/I 159 469	y si A A 9	RIGHT HARED N/A N/A N/A	RIGHT ONLY 0 N/A 0 N/A	L/T/R SHARED N/A N/A N/A N/A
	NORTH-SOU	CRITICAL TH CRITICA OF CRITICAL CRITICAL	L VOLUME:	ES			•
	CMA VALUE	3				0.501	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 29, U.S.-101 SB RAMPS AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT	ייים	ROUGH	* 1 M3		RIGHT T		** ON RED	
WESTBOUND	554		0		011	0	I-M-M	121	
EASTBOUND	224		Ö			0		0	
NORTHBOUND	_		317			0		1196	
SOUTHBOUND			930			0		0	
DOOTHDOOND	· ·		230			· ·		J	
		** N	UMBER C	F LANES	5 **				
APPROACH	LEFT		ROUGH	RIGHT	RIGH	•	Γ/R	TOTAL	
	ONLY		ONLY	SHARED	ONI	Y SHAF	RED	LANES	
WESTBOUND	1	0	0	0	1		L	3	
EASTBOUND	0	0	0	0	C			0	
NORTHBOUND		0	2	0	2			5 3	
SOUTHBOUND	1	0	2	0	C) ()	3	
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THROU	IGH	RIGHT	RIGH	T	L/T/R	
	ONLY	SHARED	ONL	Y S	HAREL	ONI	ĽΥ	SHARED	
WESTBOUND	277	277	N/	'A	N/A		0	N/A	
EASTBOUND	N/A	N/A	N/	A	N/A	N/	/A	N/A	
NORTHBOUND		N/A	15	8	N/A		0	N/A	
SOUTHBOUND	0	N/A	46	55	N/A	N/	/A	N/A	
								·	
		CRITICAL TH CRITICA			• • • • •		277 525		
	THE SUM C	F CRITICAL	VOLUME	s			802		
	NUMBER OF	CRITICAL	CLEARAN	CE INTE	RVALS		2*		
	CMA VALUE	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	• • • • • • •		0.	501		
	LEVEL OF	SERVICE					A		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 29, U.S.-101 SB RAMPS AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				**	· I	RIGHT TURNS	· **		
APPROACH	LEFT	गग	HROUGH	мт	N ON G		XX ON RED		
WESTBOUND	554		0	•••	0		121		
EASTBOUND	0		Ö		Ō		0		
NORTHBOUND	60		301		0		1223		
SOUTHBOUND	0		936		0		0		
		** 1	NUMBER	OF LANES	**				
		_							
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	0	0	1	1	3		
EASTBOUND	0	0	0	0	0	0	0		
NORTHBOUND	1	0	2	0	2	0	5		
SOUTHBOUND	1	0	2	0	0	0	3		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED		
WESTBOUND	277	277	N	/A	N/A	0	N/A		
EASTBOUND	N/A	N/A	N	/A	N/A	N/A	N/A		
NORTHBOUND	60	N/A	1	50	N/A	0	N/A		
SOUTHBOUND	0	N/A	4	68	N/A	N/A	N/A		
		CRITICAL TH CRITICA			• • • • • •				
	THE SUM O	F CRITICAL	L VOLUM	ES	• • • • • •				
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	2*	·		
	CMA VALUE	• • • • • • •			• • • • • •	0.503			
	LEVEL OF	SERVICE				A			

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 29, U.S.-101 SB RAMPS AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				*	* R	IGHT TURNS	**
	LEFT		THROUGH	M	IN ON GR	een ma	X ON RED
WESTBOUND	217		0		60		0
EASTBOUND	0		0		0		0
NORTHBOUND			289		0		1141
SOUTHBOUND	0		179		0		0
		**	NUMBER	OF LANE	S **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND		0	2	0	2	0	5
SOUTHBOUND	1	0	2	0	0	0	3
		** ASSI	GNED LAN	NE VOLUM	ES **		
APPROACH	LEFT	LEFT		OUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE			SHARED	ONLY	SHARED
WESTBOUND	108	108		I/A	N/A	60	N/A
EASTBOUND	N/A	N/A		N/A	N/A	N/A	N/A
NORTHBOUND SOUTHBOUND		N/A N/A		L 44 90	N/A	0	N/A
SOUTHBOOND	U	N/A	L	90	N/A	N/A	N/A
	EAST-WEST				• • • • • • • •		
	NORTH-500	oin CRIII	CAL VOLC)MES	• • • • • • •	144	
	THE SUM (OF CRITIC	AL VOLUM	MES	• • • • • • • •	252	
	NUMBER OF	CRITICA	L CLEAR	NCE INT	ERVALS .	2*	•
	CMA VALUE	·			• • • • • • • •	0.158	
	LEVEL OF	SERVICE				А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 29, U.S.-101 SB RAMPS AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	T 17 17 17			* *		IGHT TURNS			
WESTBOUND	LEFT 265	1	THROUGH 0	MI	IN ON GRI 73	EEN MA	X ON RED		
EASTBOUND	265 0		0		73		0 0		
NORTHBOUND	•		353		0		1392		
SOUTHBOUND			218		Ö		0		
	•				•		ŭ		
		**	NUMBER	OF LANES	**				
APPROACH	LEFT	LEFT T	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	0	0	1	1	3		
EASTBOUND	0	0	0	0	0	0	0		
NORTHBOUND		0	2	0	2	0	5		
SOUTHBOUND	1	0	2	0	0	0	3		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHAREI			HARED	ONLY	SHARED		
WESTBOUND	132	132		I/A	N/A	73	N/A		
EASTBOUND	N/A	N/A		I/A	N/A	N/A	N/A		
NORTHBOUND	15	N/A		.76	N/A	0	N/A		
SOUTHBOUND	0	N/A	1	.09	N/A	N/A	N/A		
	EAST-WEST								
	THE SUM C	F CRITICA	AL VOLUM	ES	• • • • • • •	308			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	2*			
	CMA VALUE	3	•	• • • • • • • • •	• • • • • • •	0.193			
	LEVEL OF	SERVICE .	• • • • • • • •		• • • • • • •	A			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 29, U.S.-101 SB RAMPS AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	•	THROUGH	*: M:	IN ON GR	IGHT TURNS	AX ON RED
WESTBOUND	265		0		73		0
EASTBOUND NORTHBOUND	0 15		364		0		0 1528
SOUTHBOUND			320		0		0
SOUTHBOOMD	U		320		U		U
		**	NUMBER	OF LANE	s **		
APPROACH	LEFT	LEFT '	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	1	0	2	0	2	0	5 3
SOUTHBOUND	1	0	2	0	0	0	3
		** ASSI	GNED LAN	E VOLUMI	ES **		
APPROACH	LEFT	LEFT			RIGHT	RIGHT	L/T/R
	ONLY	SHARE			SHARED	ONLY	SHARED
WESTBOUND	132	132		/A	N/A	73	N/A
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A
NORTHBOUND	_	N/A		82	N/A	0	N/A
SOUTHBOUND	0	N/A	1	60	N/A	N/A	N/A
		r CRITICA TTH CRITIC					
	NORTH-SOC	JIH CRITIC	CAL VOLU	MES	• • • • • • • •	182	
	THE SUM (OF CRITICA	AL VOLUM	ES	• • • • • • • •	314	
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	ERVALS	2*	•
	CMA VALUE	3	• • • • • • • •	• • • • • • • •	• • • • • • • •	0.196	
	LEVEL OF	SERVICE	• • • • • • • •	• • • • • • • • •		A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 29, U.S.-101 SB RAMPS AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND	LEFT 265 0 15	тн	ROUGH 0 0 364	** MI	N ON GRI 73 0 0	IGHT TURNS EEN MA	X ON RED 0 0 0 1431
SOUTHBOUND	0		314		0		0
		** N	UMBER (OF LANES	**		
APPROACH	LEFT ONLY		ROUGH ONLY	RIGHT SHARED	RIGHT ONLY	L/T/R SHARED	TOTAL LANES
WESTBOUND	1	0	0	0	1	1	3
EASTBOUND	0	0	0	0	0	0	0
NORTHBOUND	1	0	2	0	2	0	5
SOUTHBOUND	1	0	2	0	0	0	3
		** ASSIGN	ED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THROU	UGH :	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	132	132	N,	/A	N/A	73	N/A
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A
NORTHBOUND	15	N/A		82	N/A	0	N/A
SOUTHBOUND	0	N/A	15	57	N/A	N/A	N/A
	NORTH-SOU	CRITICAL TH CRITICA OF CRITICAL CRITICAL	L VOLUMI CLEARAI	MES ES NCE INTE	RVALS .	182	·

LEVEL OF SERVICE A

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

Capacity assumed = 1600.

INTERSECTION: 29, U.S.-101 SB RAMPS AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH			TITO ALIAN	**		IGHT TURNS		
MACADOIBID	LEFT 265	· ·	THROUGH	MI	N ON GRI	een Ma	X ON RED	
WESTBOUND EASTBOUND	265 0		0 0		73		0	
NORTHBOUND	15		372		0		1501	
SOUTHBOUND	0		286		Ö		0	
	•				•		•	
		**	NUMBER	OF LANES	**			
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	1	0	0	0	1	1	3	
EASTBOUND	0	0	0	0	0	0	0	
NORTHBOUND	1	0	2	0	2	0	5	
SOUTHBOUND	1	0	2	0	0	0	3	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHAREI	ON ON	LY S	HARED	ONLY	SHARED	
WESTBOUND	132	132	N	/A	N/A	73	N/A	
EASTBOUND	N/A	N/A		/A	N/A	N/A	N/A	
NORTHBOUND	15	N/A		86	N/A	0	N/A	
SOUTHBOUND	0	N/A	1	43	N/A	N/A	N/A	
	EAST-WEST	CRITICAL	L VOLUME	s		132		
	NORTH-SOU							
	THE SUM C	F CRITICA	AL VOLUM	ES	• • • • • • •	318		
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	RVALS	2*		
	CMA VALUE		• • • • • • •		• • • • • • •	0.199		
	LEVEL OF	SERVICE .	• • • • • • • •		• • • • • • •	А		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 30, VICTORIA AVENUE AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT	m	IROUGH	* *	RI	GHT TURNS	** X ON RED		
WESTBOUND	90	11	997	141.	IN ON GRE	TEIN ME	1159		
EASTBOUND	65		1168		18		0		
NORTHBOUND	29		19		45		70		
SOUTHBOUND	7 4 9		50		376		18		
	,								
		** 1	NUMBER (OF LANES	3 **				
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	2	0	2	0	5		
EASTBOUND	2	0	2	1	0	0	5		
NORTHBOUND	0	1	0	0	1	0	2		
SOUTHBOUND	2	1	0	0	1	0	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED		
WESTBOUND	90	N/A	4:	98	N/A	0	N/A		
EASTBOUND	36	N/A	3	95	395	N/A	N/A		
NORTHBOUND	N/A	48	N,	/A	N/A	45	N/A		
SOUTHBOUND	293	266	N,	/A	N/A	376	N/A		
	EAST-WEST	CRITICAL	VOLUME	S		534			
	NORTH-SOU	TH CRITICA	T AOTA	MES		405			
	THE SUM C	F CRITICAL	VOLUM	ES	· • • • • • • • • • • • • • • • • • • •	939			
	NUMBER OF	CRITICAL	CLEARAI	NCE INTE	ERVALS	4*			
	CMA VALUE			• • • • • •		0.587			
	LEVEL OF	SERVICE				A			

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 30, VICTORIA AVENUE AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	T T300			* *		GHT TURNS		
WESTBOUND	LEFT 133	T.	HROUGH 1479	MT	IN ON GRI 0	SEN MA	AX ON RED 1719	
EASTBOUND	96		1732		27		0	
NORTHBOUND	43		28		67		104	
SOUTHBOUND	1111		74		558		26	
		**	NUMBER	OF LANES	S **			
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	1	0	2	0	2	0	5	
EASTBOUND	2	0	2	1	0	0	5	
NORTHBOUND	0	1	0	0	1	0	2	
SOUTHBOUND	2	1	0	0	1	0	4	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R	
	ONLY	SHARED			HARED	ONLY	SHARED	
WESTBOUND	133	N/A		40	N/A	0	N/A	
EASTBOUND	53	N/A		86	586	N/A	N/A	
NORTHBOUND	N/A	71		/A	N/A	67	N/A	
SOUTHBOUND	434	395	N	/A	N/A	558	N/A	
		CRITICAL						
	THE SUM C	F CRITICA	L VOLUM	ES		1394		
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	4*	•	
	CMA VALUE			• • • • • • • •		0.871		
	LEVEL OF	SERVICE .				D		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 30, VICTORIA AVENUE AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* * MT	R: IN ON GRI	IGHT TURNS	X ON RED		
WESTBOUND	184		1489	• • •	0		1719		
EASTBOUND	97		1734		27		0		
NORTHBOUND	43		29		66		105		
SOUTHBOUND	1115		74		558		26		
		**	NUMBER	OF LANES	; **				
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	0	2	0	2	0	5		
EASTBOUND	2	0	2	1	0	0	5		
NORTHBOUND	0	1	0	0	1	0	2		
SOUTHBOUND	2	1	0	0	1	0	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARE	_		HARED	ONLY	SHARED		
WESTBOUND	184	N/A		44	N/A	.0	N/A		
EASTBOUND	53	N/A		87	587	N/A	N/A		
NORTHBOUND	•	72		I/A	N/A	66	N/A		
SOUTHBOUND	436	396	N	I/A	N/A	558	N/A		
		r CRITICA UTH CRITI			· • • • • • • • • • • • • • • • • • • •				
	NORTH-SO	OTH CRITI	CAT VOTE	MES	• • • • • • •	601			
	THE SUM	OF CRITIC	AL VOLUM	ies		1398			
	NUMBER O	F CRITICA	L CLEARA	NCE INTE	ERVALS .	4	ŧ		
	CMA VALU	E				0.874			
	LEVEL OF	SERVICE				D			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 30, VICTORIA AVENUE AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT	TT:	ROUGH	* M	* R IN ON GR	IGHT TURNS	** AX ON RED	
WESTBOUND	133	ın	1482	141	IN ON GR	EEN NE	1741	
EASTBOUND	96		1733		27		0	
NORTHBOUND			28		68		104	
SOUTHBOUND			74		558		26	
SOUTHBOOKD	+ + + +		/ %		330		20	
		** N	UMBER (OF LANE	S **			
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	1	0	2	0	2	0	5	
EASTBOUND	2	0	2	1	0	0	5	
NORTHBOUND	0	1	0	0	1	0	2	
SOUTHBOUND	2	1	0	0	. 1	0	4	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHARED	ON	LY :	SHARED	ONLY	SHARED	
WESTBOUND	133	N/A	.74	41	N/A	0	N/A	
EASTBOUND	53	N/A	58	87	587	N/A	N/A	
NORTHBOUND	•	71	N,	/A	N/A	68	N/A	
SOUTHBOUND	434	395	N,	/A	N/A	558	N/A	
	EAST-WEST	CRITICAL	VOLUMES	s		794		
		TH CRITICA						
		F CRITICAL			• • • • • • • •			
	NUMBER OF	CRITICAL	CLEARAI	NCE INT	ERVALS .	4*	•	
	CMA VALUE	• • • • • • • •	• • • • •	• • • • • •	• • • • • • • •	0.872		
	LEVEL OF	SERVICE	• • • • • •			D		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 30, VICTORIA AVENUE AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				**		RIGHT TURN	'C **
APPROACH	LEFT	T	HROUGH	MT	N ON G		AX ON RED
WESTBOUND	133	•	1645	114	0		1719
EASTBOUND	96		1732		27		0
NORTHBOUND	50		28		81		144
SOUTHBOUND	1111		74		558		26
			, <u>-</u>		550		20
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT I	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	2	0	. 5
EASTBOUND	2	0	2	1	0	0	5
NORTHBOUND	0	1	0	0	1	0	2
SOUTHBOUND	2	1	0	0	1	0	4
		** ASSIG	NED LAN	E VOLUME	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	133	N/A	8	22	N/A	0	N/A
EASTBOUND	53	N/A	5	86	586	N/A	N/A
NORTHBOUND	N/A	78	N	/A	N/A	81	N/A
SOUTHBOUND	434	395	N	/A	N/A	558	N/A
	EAST-WEST	י מסדידור או	. VOLUME	c		875	
	NORTH-SOU						
	NORTH BOO	III CKIIIC	AL VOLO		• • • • •	000	
	THE SUM O	F CRITICA	L VOLUM	ES		1483	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	4	*
	CMA VALUE					0.927	
	LEVEL OF	CEDVICE				**	
	TEABT OR	SERVICE .	• • • • • •	• • • • • • • •	• • • • •	E	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 30, VICTORIA AVENUE AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT		mmoudu	*1	· .	IGHT TURNS	-	
WESTBOUND	48		THROUGH 646	M.	IN ON GRI 0	REN MA	AX ON RED 1415	
EASTBOUND	177		1078		10		0	
NORTHBOUND			14		51		28	
SOUTHBOUND	195		26		105		48	
		**	NUMBER	OF LANES	5 **			
3 DDDO3 (711	T TO COM	r ppm	munouau	D.T.CITT	D.T.GUM	T /85 /55	moma r	
APPROACH	LEFT ONLY	LEFT SHARED	THROUGH	RIGHT SHARED	RIGHT ONLY	L/T/R SHARED	TOTAL	
WESTBOUND	1	SHARED 0	2	SHARED 0	2 2	SHARED 0	LANES 5	
EASTBOUND	2	0	2	1	0	0	5 5	
NORTHBOUND		1	0	Ō	1	0	2	
SOUTHBOUND		ī	Ö	Ö	1	ő	4	
				•	_	•	-	
		** ASSI	GNED LAN	E AOLUMI	3S **			
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHARE			SHARED	ONLY	SHARED	
WESTBOUND	48	N/A		23	N/A	0	N/A	
EASTBOUND	97	N/A		63	363	N/A	N/A	
NORTHBOUND		22			N/A	51	N/A	
SOUTHBOUND	81	74	N	I/A	N/A	105	N/A	
	EAST-WES	T CRITICA	L VOLUME	s		420		
		UTH CRITI						
	THE SUM	OF CRITIC	AL VOLUM	es		552		
	NUMBER O	F CRITICA	L CLEARA	NCE INTE	ERVALS	4*	•	
	CMA VALU	E				0.345		
	LEVEL OF	SERVICE	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	A		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 30, VICTORIA AVENUE AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	* P.P.	,	THROUGH	*:	* R IN ON GR	IGHT TURNS	** AX ON RED
WESTBOUND	LEFT 71		958	141.	IN ON GR.	een m	2098
EASTBOUND	262		1599		15		0
NORTHBOUND	12		21		75		42
SOUTHBOUND	289		39		155		72
		**	NUMBER	OF LANE	S **		
APPROACH	LEFT	LEFT '	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	2	0	5
EASTBOUND	2	0	2	1	0	0	5
NORTHBOUND	0	1	0	0	1 1	0	2
SOUTHBOUND	2	1	0	0	1	U	4
		** ASSI	GNED LAN	IE VOLUM	ES **		
APPROACH	LEFT	LEFT			RIGHT	RIGHT	L/T/R
	ONLY	SHARE			SHARED	ONLY	SHARED
WESTBOUND	71	N/A		179	N/A	0	N/A
EASTBOUND	144	N/A		38	538	N/A	N/A
NORTHBOUND	•			I/A	N/A	75 155	N/A N/A
SOUTHBOUND	120	109	I.	I/A	N/A	155	N/A
	EAST-WEST	r CRITICA	L VOLUME	s			
	NORTH-SO	JTH CRITI	CAL VOLU	MES		195	
	THE SUM (OF CRITIC	AL VOLUN	MES		818	
	NUMBER O	F CRITICA	L CLEAR	NCE INT	ERVALS .	4	*
	CMA VALUI	Ξ				0.511	
	LEVEL OF	SERVICE				A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 30, VICTORIA AVENUE AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	1 12 12 17		THROUGH	** MT	R:	IGHT TURNS	X ON RED	
WESTBOUND	LEFT 71		967	MI	.N. ON GR	GEM MA	2240	
EASTBOUND	262		1603		19		0	
NORTHBOUND	12		26		73		44	
SOUTHBOUND	289		39		155		72	
DOUTHBOOKE	203		33		200			
		**	NUMBER	OF LANES	**			
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	1	0	2	0	2	0	5	
EASTBOUND	2	0	2	1	0	0	5	
NORTHBOUND	0	1	0	0	1	0	2	
SOUTHBOUND	2	1	0	0	1	0	4	
		** ASSI	GNED LAN	E VOLUME	S **			
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHARE			HARED	ONLY	SHARED	
WESTBOUND	71	N/A	4	84	N/A	0	N/A	
EASTBOUND	144	N/A	1 5	41	541	N/A	N/A	
NORTHBOUND	N/A	38	3 N	I/A	N/A	73	N/A	
SOUTHBOUND	120	109	N	I/A	N/A	155	N/A	
	EAST-WEST CRITICAL VOLUMES 628 NORTH-SOUTH CRITICAL VOLUMES 193 THE SUM OF CRITICAL VOLUMES 821 NUMBER OF CRITICAL CLEARANCE INTERVALS 4* CMA VALUE 0.513							
	LEVEL OF		• • • • • • • • •					

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 30, VICTORIA AVENUE AND VALENTINE ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT	T	HROUGH	* * MT	RI IN ON GRI	IGHT TURNS	** AX ON RED
WE CEROLINE	75	1	966	MI	0	21114 112	2138
WESTBOUND EASTBOUND	75 267		1604		15		0
NORTHBOUND	12		26		72		45
SOUTHBOUND	289		39		153		74
5001111200112	203						
		**	NUMBER	OF LANES	3 **		
APPROACH	LEFT	LEFT I	THROUGH	RIGHT	RIGHT	• •	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	2	0	5
EASTBOUND	2	0	2	1	0	0	5
NORTHBOUND	0	1	0	0	1	0	2
SOUTHBOUND	2	1	0	0	1	0	4
		** ASSIG	NED LAN	E VOLUME	≅S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHAREL	ON	ILY S	SHARED	ONLY	SHARED
WESTBOUND	75	N/A		83	N/A	0	N/A
EASTBOUND	147	N/A		40	540	N/A	N/A
NORTHBOUND	•	38		I/A	N/A	72	N/A
SOUTHBOUND	120	109	N	I/A	N/A	153	N/A
		CRITICAL TH CRITIC					
	NORTH-BOC	JIII CRITIC	AL VOIC				
	THE SUM C	F CRITICA	AL VOLUM	ies		822	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS .	4	*
	CMA VALUE	3				0.514	
	LEVEL OF	SERVICE .	. 			А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 30, VICTORIA AVENUE AND VALENTINE ROAD
DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				*		RIGHT TURNS	S **
	LEFT	T	HROUGH	M	IN ON G	reen Mu	AX ON RED
WESTBOUND	71		971		0		2223
EASTBOUND	262	•	1602		19		0
NORTHBOUND			24		72		45
SOUTHBOUND	289		39		155		72
		**	NUMBER	OF LANE	S **		
APPROACH	LEFT	LEFT T	'HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	2	0	2	0	5
EASTBOUND	2	0	2	1	0	Ō	5
NORTHBOUND	0	1	0	0	1	Ö	2
SOUTHBOUND	2	1	0	0	1	0	4
		** ASSIG	NED LAN	E VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO	UCH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED	ONLY	SHARED
WESTBOUND	71	N/A		86	N/A	0	N/A
EASTBOUND	144	N/A	-	40	540	N/A	N/A N/A
NORTHBOUND	N/A	36		/A	N/A	72	N/A N/A
SOUTHBOUND	120	109		/A	N/A	155	N/A N/A
							·
	FACT_WECT	CRITICAL	TOT IME	C		620	
		TH CRITIC			• • • • • • • • •		
	THE SUM C	F CRITICA	L VOLUM	ES	• • • • • • • •	822	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS .	4*	•
	CMA VALUE		• • • • • •	• • • • • • • •	· • • • • • • • • • • • • • • • • • • •	0.514	
	LEVEL OF	SERVICE .				A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 31, RALSTON STREET AND JOHNSON DRIVE

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

							**
APPROACH	t nom	(D)	HROUGH	** MT	R. N ON GRI	IGHT TURNS	X ON RED
rancomposition.	LEFT 22	11	250	PIL.	N ON GR.	een Ma	22
WESTBOUND	31		72		0		49
EASTBOUND NORTHBOUND	129		380		0		22
SOUTHBOUND	44		195		85		16
SOUTHBOOMD	4.4		100		03		20
		**]	NUMBER C	F LANES	**		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND	1	0	1	0	1	0	3
SOUTHBOUND	1	0	1	0	1	0	3
•		** ASSIG	NED LANE	VOLUME	S **		
APPROACH	LEFT	LEFT	THROU	JGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONI		HARED	ONLY	SHARED
WESTBOUND	22	N/A	25	50	N/A	86	N/A
EASTBOUND	31	N/A	7	72	N/A	0	N/A
NORTHBOUND	129	N/A	38	30	N/A	0	N/A
SOUTHBOUND	44	N/A	19) 5	N/A	85	N/A
		CRITICAL					
	NORTH-SOU	TH CRITIC	AL VOLUM	MES	• • • • • •	424	
	THE SUM C	F CRITICA	L VOLUMI	ES	• • • • • •	705	
	NUMBER OF	CRITICAL	CLEARAN	NCE INTE	RVALS .	2*	
	CMA VALUE					0.441	
	LEVEL OF	SERVICE .	 .			A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 31, RALSTON STREET AND JOHNSON DRIVE

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	т	HROUGH	* 1 M1	RI	GHT TURNS	X ON RED
WESTBOUND	23	1	263	1.1.	91	3514 1-12-	23
EASTBOUND	33		76		0		52
NORTHBOUND			399		0		23
SOUTHBOUND			205		90		16
		**	NUMBER	OF LANES	5 **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND	_	0	1	0	1	0	3
SOUTHBOUND	1	0	1	0	1	0	3
		** ASSIG	NED LAN	E VOLUMI	3S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	ILY S	SHARED	ONLY	SHARED
WESTBOUND	23	N/A		:63	N/A	91	N/A
EASTBOUND	33	N/A		76	N/A	0	N/A
NORTHBOUND		N/A			N/A	0	N/A
SOUTHBOUND	46	N/A	2	:05	N/A	90	N/A
		CRITICAL					
	NORTH-SOU	JTH CRITIC	AL VOLU	MES	• • • • • • • •	445	
	THE SUM (OF CRITICA	L VOLUM	ies	• • • • • • • •	741	
	NUMBER OF	F CRITICAL	CLEARA	NCE INTE	ERVALS	2*	•
	CMA VALUE	3				0.463	
	LEVEL OF	SERVICE .			. 	A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 31, RALSTON STREET AND JOHNSON DRIVE

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	* 7 M 7	RIN ON GR	IGHT TURNS	x **
WESTBOUND	38		265	1.1.	91		23
EASTBOUND	33		78		0		52
NORTHBOUND	144		429		0		27
SOUTHBOUND	46		208		90		16
		**	NUMBER	OF LANES	5 **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND	1	0	1	0	1	0	3
SOUTHBOUND	1	0	1	0	1	0	3
		** ASS	GNED LAN	NE VOLUMI	ES **		
APPROACH	LEFT	LEFT	THRC	OUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE			SHARED	ONLY	SHARED
WESTBOUND	38	•		265	N/A	91	N/A
EASTBOUND	33	N/I			N/A	0	N/A
NORTHBOUND		•			N/A	0	N/A
SOUTHBOUND	46	N/A	A 2	208	N/A	90	N/A
	EAST-WES'				• • • • • • • •		
	THE SUM	OF CRITIC	CAL VOLUM	MES	• • • • • • •	773	
	NUMBER O	F CRITICA	AL CLEARA	NCE INTI	ERVALS .	2*	•
	CMA VALU	E	. .			0.483	
	LEVEL OF	SERVICE				A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 31, RALSTON STREET AND JOHNSON DRIVE

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	RI	GHT TURNS	**
	LEFT	TH	IROUGH	MI	N ON GRE	en ma	X ON RED
WESTBOUND	29		263		91		23
EASTBOUND	33		76		0		54
NORTHBOUND	143		406		0		24
SOUTHBOUND	46		209		90		16
		** 1	NUMBER O	F LANFS	**		
			Oriblic O.	r DWMDO			
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED		SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND	1	0	1	0	1	0	3
SOUTHBOUND	1	0	1	0	1	0	3
		** ASSIGN	NED LANE	VOLUME	S **		
APPROACH	LEFT	LEFT	THROU	GH :	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONL		HARED	ONLY	SHARED
WESTBOUND	29	N/A	26	3	N/A	91	N/A
EASTBOUND	33	N/A	7	6	N/A	0	N/A
NORTHBOUND	143	N/A	40	6	N/A	0	N/A
SOUTHBOUND	46	N/A	20:	9	N/A	90	N/A
	EAST-WEST	CRITICAL	VOLUMES			296	
		TH CRITICA					
					• • • • • • • •		
	THE SUM C	OF CRITICAL	VOLUME	s		748	
	NUMBER OF	F CRITICAL	CLEARAN	CE INTE	RVALS	2*	
	CMA VALUE			• • • • • • •		0.468	
	LEVEL OF	SERVICE	• • • • • •	• • • • • •	• • • • • • • •	A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 31, RALSTON STREET AND JOHNSON DRIVE

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND	LEFT 36	тн	IROUGH 273	* * MI	R N ON GR 91	IGHT TURNS EEN MA	** X ON RED 23
EASTBOUND NORTHBOUND SOUTHBOUND	33 138 46		76 411 208		0 0 90		52 32 16
		** N	UMBER (OF LANES	**		
APPROACH	LEFT ONLY		ROUGH ONLY	RIGHT SHARED	RIGHT ONLY	L/T/R SHARED	TOTAL LANES
WESTBOUND EASTBOUND	1 1	0	1	0	1 1	0	3 3
NORTHBOUND SOUTHBOUND	1	0 0	1 1	0	1 1	0 0	3 3
		** ASSIGN	ED LANI	E VOLUME	S **		
APPROACH	LEFT ONLY	LEFT SHARED	THROU ONI	LY S	RIGHT HARED	RIGHT ONLY	L/T/R SHARED
WESTBOUND EASTBOUND	36 33	N/A N/A	•		N/A N/A	91 0	N/A N/A
NORTHBOUND SOUTHBOUND	138 46	N/A N/A	20	11 08	N/A N/A	0 90	N/A N/A
		CRITICAL TH CRITICA					
	THE SUM O	F CRITICAL	VOLUMI	≅S	• • • • • • •	763	
	NUMBER OF	CRITICAL					
	CMA VALUE		• • • • • •	• • • • • • •	• • • • • • •	0.477	
	LEVEL OF	SERVICE	• • • • • •		• • • • • •	A	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 31, RALSTON STREET AND JOHNSON DRIVE

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT	TI	IROUGH	* M	* RI	IGHT TURNS	X ON RED
WESTBOUND	19		109	• •	2		25
EASTBOUND	82		203		7		106
NORTHBOUND	146		419		62		10
SOUTHBOUND	50		258		0		32
		**]	NUMBER	OF LANE	S **		
APPROACH	LEFT		IROUGH	RIGHT	_	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED		SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND		0	1	0	1	0	3
SOUTHBOUND	1	0	1	0	1	0	3
		** ASSIGN	NED LAN	E VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY :	SHARED	ONLY	SHARED
WESTBOUND	19	N/A	1	09	N/A	2	N/A
EASTBOUND	82	N/A		03	N/A	7	N/A
NORTHBOUND		N/A	4		N/A	62	N/A
SOUTHBOUND	50	N/A	2	58	N/A	0	N/A
		,					
	EAST-WEST	CRITICAL	VOLUME	s		222	
	NORTH-SOU	TH CRITICA	T AOTA	MES		469	
	THE SUM C	F CRITICAL	L VOLUM	ES	• • • • • • • •	691	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS .	2*	
	CMA VALUE		· • • • • • •		• • • • • • • • • • • • • • • • • • •	0.432	
	LEVEL OF	SERVICE			• • • • • • • •	A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 31, RALSTON STREET AND JOHNSON DRIVE DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	Ţ	HROUGH	* * M1	RI IN ON GRI	IGHT TURNS	X ON RED
WESTBOUND	20	.	115	114	2	3.2.1	26
EASTBOUND	86		213		8		111
NORTHBOUND	153		440		66		10
SOUTHBOUND	53		271		0		34
		**	NUMBER	OF LANES	S **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND	1	0	1	0	1	0	3
SOUTHBOUND	1	0	1	0	1	0	3
		** ASSIG	NED LAN	E VOLUME	3S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	${\tt L}/{\tt T}/{\tt R}$
	ONLY	SHARED	ON	ILY S	SHARED	ONLY	SHARED
WESTBOUND	20	N/A		.15	N/A	2	N/A
EASTBOUND	86	N/A	2		N/A	8	N/A
NORTHBOUND		N/A	4		N/A	66	N/A
SOUTHBOUND	53	N/A	2	71	N/A	0	N/A
		· 					
		r CRITICAL UTH CRITIC					
	THE SUM (OF CRITICA	L VOLUM	IES		726	
	NUMBER OF	F CRITICAL	CLEARA	NCE INTE	ERVALS .	2*	•
	CMA VALUI	Ξ				0.454	
	LEVEL OF	SERVICE .				А	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6 10-16-2001, 9:33 AM

INTERSECTION: 31, RALSTON STREET AND JOHNSON DRIVE

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				*:	*]	RIGHT TURNS	5 **
	LEFT	TH	ROUGH	M	IN ON G		AX ON RED
WESTBOUND	37		115		2		26
EASTBOUND	86		213		26		98
NORTHBOUND			459		73		18
SOUTHBOUND	53		315		0		34
		** N	UMBER (OF LANES	5 **		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND		0	1	0	1	0	3
SOUTHBOUND	1	0	1	0	1	0	3
		** ASSIGN	ED LAN	E VOLUME	3S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	SHARED	ONLY	SHARED
WESTBOUND	37	N/A	1:	15	N/A	2	N/A
EASTBOUND	86	N/A	2:	13	N/A	26	N/A
NORTHBOUND		N/A	4	59	N/A	73	N/A
SOUTHBOUND	53	N/A	3:	15	N/A	0	N/A
							·
	FACT_WECT	' CRITICAL	3 <i>7</i> ∩1 11M1⊐	C		252	
		TH CRITICAL			• • • • • • • •		
	THE SUM C	F CRITICAL	VOLUMI	ES	• • • • • • •	762	
	NUMBER OF	CRITICAL	CLEARAI	NCE INTE	ERVALS .	2*	
	CMA VALUE	• • • • • • • •	• • • • • •			0.476	
		050117.05					
	LEVEL OF	SERVICE	• • • • • •			A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 31, RALSTON STREET AND JOHNSON DRIVE

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	R]	GHT TURNS	**
AL LICOLOGI	LEFT	TH	ROUGH	MI	N ON GRE	en ma	X ON RED
WESTBOUND	20		115		2		26
EASTBOUND	86		213		58		112
NORTHBOUND	153		494		76		10
SOUTHBOUND	53		324		0		38
		** N	UMBER O	F LANES	**		
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND	1	0	1	0	1	0	3 3
SOUTHBOUND	1	0	1	0	1	0	3
		** ASSIGN	ED LANE	VOLUME	S **		
APPROACH	LEFT	LEFT	THROU	GH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ONL	Y S	HARED	ONLY	SHARED
WESTBOUND	20	N/A	11	_	N/A	2	N/A
EASTBOUND	86	N/A	21		N/A	58	N/A
NORTHBOUND	153	N/A	49		N/A	76	N/A
SOUTHBOUND	53	N/A	32	4	N/A	0	N/A
		•					
		CRITICAL			• • • • • • •	233	
	NORTH-SOU	TH CRITICA	T AOTOM	ies	• • • • • •	547	
	יינודי פוזאו <i>ר</i>	F CRITICAL	. VOLITME	25		780	
	THE SOM C	r chilichi	VOLUME		• • • • • •	, , , ,	
	NUMBER OF	CRITICAL	CLEARAN	ICE INTE	RVALS .	2*	•
	CMA VALUE					0.488	
	LEVEL OF	SERVICE				А	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 31, RALSTON STREET AND JOHNSON DRIVE

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				**	. 10	IGHT TURNS	· **
AFFROACH	LEFT	т	HROUGH	мт	N ON GR		X ON RED
WESTBOUND	39	-	115	• • • •	2		26
EASTBOUND	86		213		8		116
NORTHBOUND			466		73		20
SOUTHBOUND	53		287		0		34
		**	NUMBER	OF LANES	**		
APPROACH	LEFT		HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	0	1	0	1	0	3
EASTBOUND	1	0	1	0	1	0	3
NORTHBOUND		0	1	0	1	0	3 3
SOUTHBOUND	1	0	1	0	1	0	3
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	ily s	HARED	ONLY	SHARED
WESTBOUND	39	N/A	1	.15	N/A	2	N/A
EASTBOUND	86	N/A		13	N/A	8	N/A
NORTHBOUND	155	N/A		66	N/A	73	N/A
SOUTHBOUND	53	N/A	2	87	N/A	0	N/A
	שמע שמפרי	r CRITICAL	VOI IDEE	10		252	
		TH CRITICAL					
			,010		• • • • • • •		
	THE SUM (OF CRITICA	L VOLUM	ES		771	
	NUMBER OF	F CRITICAL	CLEARA	NCE INTE	RVALS .	2*	
	CMA VALUE	3		• • • • • • •		0.482	
	LEVEL OF	SERVICE .				A	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 32, JOHNSON DRIVE AND BRISTOL ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

3 DDD 03 GH				**	ום	GHT TURNS	**		
APPROACH	LEFT	טידי	IROUGH		N ON GRI		X ON RED		
WESTBOUND	844	4.1.	147	1.12	40		0		
EASTBOUND	8		48		52		Ö		
NORTHBOUND	39		392		0		203		
SOUTHBOUND	9		503		12		0		
500211200112	_								
		** N	UMBER (OF LANES	**				
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	0	1	0	0	3		
EASTBOUND	1	0	0	1	0	0	2		
NORTHBOUND	1	0	1	0	1	0	3		
SOUTHBOUND	1	0	0	1	0	0	2		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED		
WESTBOUND	464	N/A		/A	187	N/A	N/A		
EASTBOUND	8	N/A		/A	100	N/A	N/A		
NORTHBOUND	39	N/A		92	N/A	.0	N/A		
SOUTHBOUND	9	N/A	N,	/A	515	N/A	N/A		
	na om whon		NOT ITME	o.		564			
		CRITICAL TH CRITICA							
	THE SUM C	F CRITICAL	L VOLUM	ES		1118			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	3*			
	CMA VALUE					0.699			
	LEVEL OF	SERVICE				в			

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1 10-16-2001, 9:33 AM

INTERSECTION: 32, JOHNSON DRIVE AND BRISTOL ROAD

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				**	r R	IGHT TURNS	; **		
	LEFT	7	THROUGH	M)	IN ON GR	een ma	X ON RED		
WESTBOUND	887		155		42		0		
EASTBOUND	8		50		55		0		
NORTHBOUND			412		0		213		
SOUTHBOUND	9		529		13		0		
		**	NUMBER	OF LANES	3 **				
APPROACH	LEFT	LEFT 1	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	0	1	0	0	3		
EASTBOUND	1	0	0	1	Ō	Ö			
NORTHBOUND	1	0	1	0	1	0	2 3 2		
SOUTHBOUND	1	0	0	1	0	0	2		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHAREI	ON C	LY S	HARED	ONLY	SHARED		
WESTBOUND	488	N/A	N	/A	197	N/A	N/A		
EASTBOUND	8	N/A	N	/A	105	N/A	N/A		
NORTHBOUND		N/A		12	N/A	0	N/A		
SOUTHBOUND	9	N/A	N	/A	542	N/A	N/A		
		CRITICAL TTH CRITIC			• • • • • • • •				
	THE SUM C	F CRITICA	L VOLUM	ES	• • • • • • •	1176			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*			
	CMA VALUE		• • • • • • •			0.735			
	LEVEL OF	SERVICE .				C			

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 32, JOHNSON DRIVE AND BRISTOL ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

2 DDD 0 2 CH				**	דם	GHT TURNS	**		
APPROACH	LEFT	נוידי	ROUGH		N ON GRE		X ON RED		
WESTBOUND	908	111	155	1411	42	11114 11117	0		
EASTBOUND	908 8		50		58		Ö		
NORTHBOUND	44		458		0		219		
SOUTHBOUND	9		551		13		0		
SOUTHBOOKD	,		331						
		** N	UMBER OF	LANES	**				
APPROACH	LEFT	LEFT TH	ROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY S	HARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	0	1	0	0	3		
EASTBOUND	1	0	0	1	0	0	2		
NORTHBOUND	1	0	1	0	1	0	3		
SOUTHBOUND	1	0	0	1	0	0	2		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THROUG	3H 1	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ONLY	r Si	HARED	ONLY	SHARED		
WESTBOUND	499	N/A	N/A	1	197	N/A	N/A		
EASTBOUND	8	N/A	N/A	1	108	N/A	N/A		
NORTHBOUND	44	N/A	458	}	N/A	0	N/A		
SOUTHBOUND	9	N/A	N/A	4	564	N/A	N/A		
		CRITICAL							
	NORTH-SOU	TH CRITICA	L VOLUME	S		608			
				_					
	THE SUM C	F CRITICAL	VOLUMES	3		1215			
	NUMBER OF	CRITICAL	CLEARANC	CE INTE	RVALS	3*			
	CMA VALUE				• • • • • • •	0.759			
	LEVEL OF	SERVICE				с			

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3 10-16-2001, 9:33 AM

INTERSECTION: 32, JOHNSON DRIVE AND BRISTOL ROAD

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	I DOM		um arrarr	**		IGHT TURNS		
WESTBOUND	LEFT 888	1	HROUGH 155	MI	N ON GR 42	EEN MA	X ON RED	
EASTBOUND	8		50		61		0	
NORTHBOUND	51		433		0		213	
SOUTHBOUND	9		548		13		0	
500111200112	_						•	
		**	NUMBER	OF LANES	**			
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL	
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	2	0	0	1	0	0	3	
EASTBOUND	1	0	0	1	0	0	2	
NORTHBOUND	1	0	1	0	1	0	3 2	
SOUTHBOUND	1	0	0	1	0	0	2	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHARED	ON		HARED	ONLY	SHARED	
WESTBOUND	488	N/A	N	I/A	197	N/A	N/A	
EASTBOUND	8	N/A	N	I/A	111	N/A	N/A	
NORTHBOUND	51	N/A	4	:33	N/A	0	N/A	
SOUTHBOUND	9	N/A	N	I/A	561	N/A	N/A	
		CRITICAL						
	THE SUM C	F CRITICA	T AOTAW	ES		1211		
	NUMBER OF	' CRITICAL	CLEARA	NCE INTE	RVALS .	3*		
	CMA VALUE		• • • • • • •		• • • • • • •	0.757		
	LEVEL OF	SERVICE .				с		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 32, JOHNSON DRIVE AND BRISTOL ROAD

DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH				**	· p1	GHT TURNS	**
AFFROACH	LEFT	•	THROUGH	MI			X ON RED
WESTBOUND	923		155		43		0
EASTBOUND	8		50		60		0
NORTHBOUND			439		ő		222
SOUTHBOUND	 -		532		13		0
COCIIDOUI	_		332				Ū
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT '	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	1	0	0	1	0	0	2
NORTHBOUND	1	0	1	0	1	0	3
SOUTHBOUND	1	0	0	1	0	0	2
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	ILY S	HARED	ONLY	SHARED
WESTBOUND	508	N/A	N	T/A	198	N/A	N/A
EASTBOUND	8	N/A	N	I/A	110	N/A	N/A
NORTHBOUND	47	N/A	4	:39	N/A	0	N/A
SOUTHBOUND	9	N/A	N	I/A	545	N/A	N/A
		CRITICA OTH CRITIC			• • • • • • • • • • • • • • • • • • • •		
	THE SUM (OF CRITIC	AL VOLUM	ES		1210	
	NUMBER OF	F CRITICAL	L CLEARA	NCE INTE	RVALS	3*	•
	CMA VALUE	E				0.756	
		00011T 00				_	

LEVEL OF SERVICE C

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

^{*} Capacity assumed = 1600.

INTERSECTION: 32, JOHNSON DRIVE AND BRISTOL ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				*	* F	RIGHT TURNS	5 **
	LEFT	3	THROUGH	M	IN ON GE	REEN MA	AX ON RED
WESTBOUND	374		62		46		0
EASTBOUND	24		144		117		0
NORTHBOUND	76		543		0		973
SOUTHBOUND	27		656		17		0
		**	NUMBER	OF LANE	S **		
APPROACH	LEFT	LEFT I	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	1	0	0	1	0	0	2
NORTHBOUND	_	0	1	0	1	0	3
SOUTHBOUND	1	0	0	1	0	0	2
		** ASSIG	ENED LAN	E VOLUMI	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	SHARED	ONLY	SHARED
WESTBOUND	206	N/A	N	/A	108	N/A	N/A
EASTBOUND	24	N/A	N	/A	261	N/A	N/A
NORTHBOUND	76	N/A	5	43	N/A	0	N/A
SOUTHBOUND	27	N/A	N	/A	673	N/A	N/A
						·	. ,
	FAST-WEST	CRITICAL	. VOLIME	c		4.67	
	NORTH-SOL	TH CRITIC	'AT. VOLUME	MEC	• • • • • • •		
	NORTH BOO	III CKITIC	AL VOLU	MES	• • • • • • • •	749	
	THE SUM C	F CRITICA	L VOLUM	ES	• • • • • • •	1216	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS .	3*	
	CMA VALUE		• • • • • • •	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	0.760	
	LEVEL OF	SERVICE .	• • • • • • •	• • • • • • • •	• • • • • • • •	c	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5 10-16-2001, 9:33 AM

INTERSECTION: 32, JOHNSON DRIVE AND BRISTOL ROAD DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	raam	m	HROUGH	** MT	RI N ON GRE	GHT TURNS	X ON RED
WESTBOUND	LEFT 393	1	65	MT	.N ON GRE	PEN ME	ON RED
EASTBOUND	25		151		123		Ŏ
NORTHBOUND			571		0		1023
SOUTHBOUND	28		690		18		0
		**	NUMBER	OF LANES	; **		
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY		ONLY		ONLY		
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	1	0	0	1	0	0	2
NORTHBOUND		0	1	0	1	0	3
SOUTHBOUND	1	0	0	1	0	0	2
		** ASSIG	NED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT		UGH	RIGHT		L/T/R
	ONLY				HARED	ONLY	
WESTBOUND	216			/A		N/A	•
EASTBOUND				/A		N/A	N/A
NORTHBOUND		N/A			N/A	0	N/A
SOUTHBOUND	28	N/A	N	I/A	708	N/A	N/A
	EAST-WEST	' CRITICAL	VOLUME	!S		490	
		TH CRITIC					
	THE SUM C	F CRITICA	L VOLUM	ES		1278	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*	,
	CMA VALUE			• • • • • • • • •	• • • • • • • •	0.799	
	LEVEL OF	SERVICE .				C	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6 10-16-2001, 9:33 AM

INTERSECTION: 32, JOHNSON DRIVE AND BRISTOL ROAD

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 407 25 84 28	T	HROUGH 65 151 618 734	* * [M	RIN ON GRI 48 129 0 18	IGHT TURNS EEN MA	X ON RED 0 0 0 1054	
		**]	NUMBER	OF LANES	5 **			
		•		·				
APPROACH	LEFT ONLY	SHARED	HROUGH ONLY	RIGHT SHARED	RIGHT ONLY	L/T/R SHARED	TOTAL LANES	
WESTBOUND	2	0	0	1	0	0	3	
EASTBOUND	1	0	0	1	0	0	2	
NORTHBOUND	1	0	1	0	1	0	3	
SOUTHBOUND	1	0	0	1	0	0	2	
		** ASSIG	NED LAN	E VOLUME	ES **			
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHARED			SHARED	ONLY	SHARED	
WESTBOUND	224	N/A		I/A	113	N/A	N/A	
EASTBOUND	25	N/A		I/A	280	N/A	N/A	
NORTHBOUND		N/A		18	N/A	0	N/A	
SOUTHBOUND	28	N/A	N	I/A	752	N/A	N/A	
	EAST-WEST CRITICAL VOLUMES							
	LEVEL OF	SERVICE				D		
		CHICYLCH .	• • • • • •	• • • • • • •	• • • • • • •	D		

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 32, JOHNSON DRIVE AND BRISTOL ROAD

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**	10	IGHT TURN	s **
APPROACH	LEFT		THROUGH	MI			AX ON RED
WESTBOUND	393		65	1.17	48		0
EASTBOUND	25		151		140		ő
NORTHBOUND			647		0		1030
SOUTHBOUND	28		801		18		0
500112500115	20		00-				· ·
		**	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	2	0	0	1	0	0	3
EASTBOUND	1	0	0	1	0	Ö	2
NORTHBOUND	1	0	1	0	1	Ō	3
SOUTHBOUND	1	0	0	1	0	0	2
		** ASSI	IGNED LAI	NE VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	OUGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	ED OF	VLY S	HARED	ONLY	SHARED
WESTBOUND	216	N/A	A 1	I/A	113	N/A	N/A
EASTBOUND	25	N/I	<i>1</i>	I/A	291	N/A	N/A
NORTHBOUND	91	N/A	4 6	547	N/A	0	N/A
SOUTHBOUND	28	N/I	4 1	1/A	819	N/A	N/A
	EAST-WEST				• • • • • • •	• • • • • • • • • • • • • • • • • • • •	
	NORTH-SOU	TH CRITI	CAL VOLU	JMES	• • • • • • •	910	
	THE SUM C	אר כפודיו	אוו. זער זער	/RS		1417	
	1112 5011 0		J. 10201		• • • • • • •	141/	
	NUMBER OF	CRITICA	AL CLEAR	NCE INTE	RVALS .	31	•
	CMA VALUE	١				0.886	
	LEVEL OF	SERVICE			• • • • • • •	D	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

INTERSECTION: 32, JOHNSON DRIVE AND BRISTOL ROAD

DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT	rgr.	HROUGH	* 1	RI	IGHT TURNS	** AX ON RED		
WESTBOUND	410	1	65	141.	48	SEM ME	O A ON RED		
EASTBOUND	25		151		129		Ö		
NORTHBOUND			628		0		1058		
SOUTHBOUND			741		18		0		
							_		
		**	NUMBER	OF LANES	5 **				
APPROACH	LEFT		HROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	2	0	0	1	0	0	3		
EASTBOUND	1	0	0	1	0	0	2		
NORTHBOUND		0	1	0	1	0	3		
SOUTHBOUND	1	0	0	1	0	0	2		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON	LY S	SHARED	ONLY	SHARED		
WESTBOUND	226	N/A	N	/A	113	N/A	N/A		
EASTBOUND	25	N/A	N	/A	280	N/A	N/A		
NORTHBOUND		N/A	6	28	N/A	0	N/A		
SOUTHBOUND	28	N/A	N	/A	759	N/A	N/A		
	EXCT MECT	CRIMICAL	WOI IMP	c		506			
	NORTH-SOU	CRITICAL TH CRITIC	VOLUME ULIOV LA	MES	• • • • • • • • •				
	THE SUM O	F CRITICA	L VOLUM	ES	• • • • • • •	1351			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	3*			
	CMA VALUE	• • • • • • • •	• • • • • • •			0.844			
	LEVEL OF	SERVICE .	• • • • • • •			D			

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

INTERSECTION: 33, JOHNSON DRIVE AND NORTH BANK DRIVE DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH	LEFT	וידי	HROUGH	*· M	* RI	GHT TURNS	X ON RED
WESTBOUND EASTBOUND NORTHBOUND	82 593 11	11	23 23 133 1393	14.	0 247 54 68		3 6 0 124
SOUTHBOUND	2		1393		00		124
		**]	NUMBER	OF LANE	S **		
APPROACH	LEFT ONLY	LEFT TI SHARED	HROUGH ONLY	RIGHT SHARED		L/T/R SHARED	TOTAL LANES
WESTBOUND	1	1	1	0	1	0	4
EASTBOUND	2	1	1	0	1	0	5
NORTHBOUND		0	2	1	0	0	4
SOUTHBOUND	1	0	2	0	1	0	4
		** ASSIG	NED LAN	E VOLUM	ES **		
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED	ONLY	SHARED
WESTBOUND	41	N/A		23	N/A	0	N/A
EASTBOUND	217	N/A		23	N/A	247	N/A
NORTHBOUND		N/A		62	62	N/A	N/A
SOUTHBOUND	2	N/A	6	96	N/A	68	N/A
		CRITICAL TH CRITIC			• • • • • • • • •		
	THE SUM C	F CRITICAL	L VOLUM	ES	• • • • • • •	995	
	NUMBER OF	CRITICAL	CLEARA	NCE INT	ERVALS	9*	•
	CMA VALUE					0.622	
	LEVEL OF	SERVICE .				в	

Eastbound and Westbound approaches have opposed signal phases.

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR1
10-16-2001, 9:33 AM

INTERSECTION: 33, JOHNSON DRIVE AND NORTH BANK DRIVE DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH	raam		THROUGH	* * MT	F IN ON GE	RIGHT TURNS	**
WESTBOUND	LEFT 172		48	1417	IN ON Gr	CEEN MA	6
EASTBOUND	1241		48		517		12
NORTHBOUND	23		278		113		0
SOUTHBOUND	4		2914		144		258
		**	NUMBER	OF LANES	; **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	1	1	0	1	0	4
EASTBOUND	2	1	1	0	1	0	5
NORTHBOUND		0	2	1	0	0	4
SOUTHBOUND	1	0	2	0	1	0	4
		** ASSI	GNED LAN	E VOLUME	S **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	LY S	HARED	ONLY	SHARED
WESTBOUND	86	N/A		48	N/A	0	N/A
EASTBOUND	455	N/A			N/A	517	N/A
NORTHBOUND		N/A			130	N/A	N/A
SOUTHBOUND	4	N/A	. 14	:57	N/A	144	N/A
	EAST-WEST						
	THE SUM (OF CRITIC	AL VOLUM	ES		2083	
	NUMBER OF	CRITICA	L CLEARA	NCE INTE	RVALS .	9*	
	CMA VALUE	3				1.302	
	LEVEL OF	SERVICE				F	

^{*} Eastbound and Westbound approaches have opposed signal phases. Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR2
10-16-2001, 9:33 AM

INTERSECTION: 33, JOHNSON DRIVE AND NORTH BANK DRIVE DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH				**	_	IGHT TURNS			
	LEFT	TI	HROUGH	IM	N ON GR	REEN MA	X ON RED		
WESTBOUND	261		48		0		6		
EASTBOUND	1303		98		532		12		
NORTHBOUND	23		278		113		0		
SOUTHBOUND	4		2971		136		266		
		**]	NUMBER (OF LANES	; **				
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	1	1	0	1	0	4		
EASTBOUND	2	1	1	0	1	0	5		
NORTHBOUND	1	0	2	1	0	0	4		
SOUTHBOUND	1	0	2	0	1	0	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON		HARED	ONLY	SHARED		
WESTBOUND	130	N/A		48	N/A	0	N/A		
EASTBOUND	478	N/A		98	N/A	532	N/A		
NORTHBOUND	23	N/A		30	130	N/A	N/A		
SOUTHBOUND	4	N/A	14	86	N/A	136	N/A		
		CRITICAL TH CRITICA			· • • • • • • • • • • • • • • • • • • •				
	THE SUM C	F CRITICAL	L VOLUM	es		2171			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	9*	•		
	CMA VALUE					1.357			
	LEVEL OF	SERVICE .				F			

^{*} Eastbound and Westbound approaches have opposed signal phases. Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR3
10-16-2001, 9:33 AM

INTERSECTION: 33, JOHNSON DRIVE AND NORTH BANK DRIVE DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH				*:	k	RIGHT TUR	uns **	
	LEFT	Т	THROUGH	M:	IN ON G		MAX ON RED	
WESTBOUND	261		48		0		6	
EASTBOUND	1303		98		532		12	
NORTHBOUND			278		113		0	
SOUTHBOUND	4		2971		402		0	
		**	NUMBER	OF LANES	S **			
APPROACH	LEFT		THROUGH	RIGHT	RIGHT			
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES	
WESTBOUND	1	1	1	0	1	0	4	
EASTBOUND	2	1	1	0	1	0	5	
NORTHBOUND		0	2	1	0	0	4	
SOUTHBOUND	1	0	2	1	0	0	4	
** ASSIGNED LANE VOLUMES **								
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R	
	ONLY	SHARED	O <i>V</i>	ILY S	SHARED	ONLY	SHARED	
WESTBOUND	130	N/A		48	N/A	0	N/A	
EASTBOUND	478	N/A		98	N/A	532	N/A	
NORTHBOUND		N/A		.30	130	N/A	N/A	
SOUTHBOUND	4	N/A	11	.24	1124	N/A	N/A	
		CRITICAL TH CRITIC				66		
	THE SUM (OF CRITICA	L VOLUM	ies	· • • • • • •	180	- 9	
	NUMBER OF	F CRITICAL	CLEARA	NCE INTE	ERVALS		9*	
	CMA VALUE	3			• • • • • •	1.13	1	
	LEVEL OF	SERVICE .					F	

^{*} Eastbound and Westbound approaches have opposed signal phases.
Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR4
10-16-2001, 9:33 AM

INTERSECTION: 33, JOHNSON DRIVE AND NORTH BANK DRIVE DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	*1	*	IGHT TURNS	** AX ON RED
WESTBOUND	189		56	i*1.	IN ON GR	EEN MA	50 KED
EASTBOUND	1241	***	57		517		12
NORTHBOUND			279		113		0
SOUTHBOUND	31		2925		124		278
		**	NUMBER	OF LANES	S **		
APPROACH	LEFT	LEFT	THROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	1	1	0	1	0	4
EASTBOUND	2	1	1	0	1	0	5
NORTHBOUND	· 	0	2	1	0	0	4
SOUTHBOUND	1	0	2	0	1	0	4
		** ASSI	GNED LAN	IE VOLUMI	3S **		
APPROACH	LEFT	LEFT	' THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARE	D ON	ILY S	SHARED	ONLY	SHARED
WESTBOUND	94	N/A		56	N/A	0	N/A
EASTBOUND	455	N/A		57	N/A	517	N/A
NORTHBOUND	23	N/A		.31	131	N/A	N/A
SOUTHBOUND	31	N/A	. 14	62	N/A	124	N/A
	EAST-WEST					• • • • • • •	
	THE SUM (F CRITIC	AL VOLUM	ies		2096	
	NUMBER OF	F CRITICA	L CLEARA	NCE INTE	ERVALS .	2*	
	CMA VALUE	3		• • • • • • •	· • • • • • • • • • • • • • • • • • • •	1.310	
	LEVEL OF	SERVICE				F	

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR3
10-16-2001, 9:46 AM

INTERSECTION: 33, JOHNSON DRIVE AND NORTH BANK DRIVE DATE: 10-16-2001 INITIALS: KMY PERIOD: AM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH	LEFT		THROUGH	*· M	*	IGHT TURNS	** AX ON RED			
WESTBOUND EASTBOUND	313 1284		48 98	M	0 526	17 14 L.P.	6 12			
NORTHBOUND	23		278		113		0			
SOUTHBOUND	4		2987		84		318			
		**	NUMBER	OF LANE	S **					
APPROACH	LEFT		THROUGH	RIGHT	RIGHT	L/T/R	TOTAL			
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES			
WESTBOUND	1	1	1	0	1	0	4			
EASTBOUND	2	1	1	0	1	0	5			
NORTHBOUND		0	2	1	0	0	4			
SOUTHBOUND	1	0	2	0	1	0	4			
** ASSIGNED LANE VOLUMES **										
APPROACH	LEFT	LEFT			RIGHT	RIGHT	L/T/R			
	ONLY	SHARE			SHARED	ONLY	SHARED			
WESTBOUND	157	N/A		48	N/A	0	N/A			
EASTBOUND	471	N/A			N/A	526	N/A			
NORTHBOUND		N/A			130	N/A	N/A			
SOUTHBOUND	4	N/A	14	94	N/A	84	N/A			
	EAST-WEST NORTH-SOU					1517				
	THE SUM O	F CRITICA	AL VOLUM	ES	• • • • • • •	2200				
	NUMBER OF	CRITICAL	L CLEARA	NCE INT	ERVALS .	2*				
	CMA VALUE	• • • • • • •	• • • • • • • •	• • • • • • •		1.375				
	LEVEL OF	SERVICE	• • • • • • •	• • • • • • •	• • • • • • •	F				

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR3
10-16-2001, 9:42 AM

INTERSECTION: 33, JOHNSON DRIVE AND NORTH BANK DRIVE DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: EXISTING (2000)

** INPUT VOLUMES **

APPROACH				**	R	IGHT TURNS	; **		
	LEFT	T	HROUGH	MI	N ON GR	een ma	AX ON RED		
WESTBOUND	111		45		0		23		
EASTBOUND	1349		102		122		47		
NORTHBOUND	94		362		50		0		
SOUTHBOUND	25		1106		0		174		
		**	NUMBER	OF LANES	**				
APPROACH	LEFT	LEFT T	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	1	1	0	1	0	4		
EASTBOUND	2	1	1	0	1	0	5		
NORTHBOUND	1	0	2	1	0	0	4		
SOUTHBOUND	1	0	2	0	1	0	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO		RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED		
WESTBOUND	55	N/A		45	N/A	0	N/A		
EASTBOUND	495	N/A	1	02	N/A	122	N/A		
NORTHBOUND	94	N/A	1	37	137	N/A	N/A		
SOUTHBOUND	25	N/A	5	53	N/A	0	N/A		
		CRITICAL			• • • • • • •	550			
	NORTH-SOU	TH CRITIC	AL AOLO	MES	• • • • • •				
	THE CIM C	F CRITICA	T VALITM	T C	•	1197			
	Ing SUM C	F CRITICA	D AODOM	ES	• • • • • • •	119/			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS .	9*	r		
	CMA VALUE					0.748			

Eastbound and Westbound approaches have opposed signal phases.

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR5
10-16-2001, 9:33 AM

INTERSECTION: 33, JOHNSON DRIVE AND NORTH BANK DRIVE DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITHOUT PROJECT

** INPUT VOLUMES **

APPROACH				*:		RIGHT TURNS			
	LEFT	TI	IROUGH	M	IN ON GI	reen MA	X ON RED		
WESTBOUND	232		94		0		48		
EASTBOUND	2822		213		256		98		
NORTHBOUND SOUTHBOUND			757 2314		105 0		0 364		
SOUTHBOOM	52		2314		U		304		
7		** 1	NUMBER	OF LANES	3 **				
APPROACH	LEFT	LEFT TI	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL		
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES		
WESTBOUND	1	1	1	0	1	0	4		
EASTBOUND	2	1	1	0	1	0	5		
NORTHBOUND		0	2	1	0	0	4		
SOUTHBOUND	1	0	2	0	1	0	4		
** ASSIGNED LANE VOLUMES **									
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R		
	ONLY	SHARED	ON	LY S	SHARED	ONLY	SHARED		
WESTBOUND	116	N/A		94	N/A	0	N/A		
EASTBOUND	1035	N/A		13	N/A	256	N/A		
NORTHBOUND		N/A		87	287	N/A	N/A		
SOUTHBOUND	52	N/A	11	57	N/A	0	N/A		
		CRITICAL TH CRITICA				====			
	THE CIM (F CRITICAL	VOI IIM	TC.		2505			
	11115 3014 (OF CRITICAL	1 ACPOId	ES	• • • • • • •	2505			
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	ERVALS .	9*			
	CMA VALUE	3	• • • • • •		• • • • • •	1.566			
	LEVEL OF	SERVICE	• • • • • • •	• • • • • • • •	• • • • • •	F			

Eastbound and Westbound approaches have opposed signal phases.

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR6
10-16-2001, 9:33 AM

INTERSECTION: 33, JOHNSON DRIVE AND NORTH BANK DRIVE DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 327 2938 197 52	TH	ROUGH 94 336 757 2466	* * M3	IN ON G 270 105)) 5	S ** AX ON RED 48 98 0 364		
		** N	TUMBER (OF LANES	5 **				
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 2 1	LEFT TH SHARED 1 1 0 0	IROUGH ONLY 1 1 2 2	RIGHT SHARED 0 0 1	RIGHT ONLY 1 1 0 1	• •	TOTAL LANES 4 5 4 4		
** ASSIGNED LANE VOLUMES **									
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 164 1077 197 52	LEFT SHARED N/A N/A N/A	3.	LY S 94 36 87	RIGHT SHARED N/A N/A 287 N/A	RIGHT ONLY 0 270 N/A 0	L/T/R SHARED N/A N/A N/A N/A		
	NORTH-SOU		L VOLUM VOLUM CLEARAI	MES	RVALS	1430 2671 9	*		

^{*} Eastbound and Westbound approaches have opposed signal phases. Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR7
10-16-2001, 9:33 AM

INTERSECTION: 33, JOHNSON DRIVE AND NORTH BANK DRIVE DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH RIVERPARK PROJECT+MIT

** INPUT VOLUMES **

APPROACH	LEFT	TT	irough	*: M'	* R	IGHT TURNS	** X ON RED
WESTBOUND	327		94	1.1.	0		48
EASTBOUND	2938		336		270		98
NORTHBOUND			757		105		0
SOUTHBOUND	52		2466		364		0
		** 1	UMBER	OF LANE:	S **		
APPROACH	LEFT	LEFT TH	IROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	1	1	0	1	0	4
EASTBOUND	2	1	1	0	1	0	5
NORTHBOUND		0	2	1	0	0	4
SOUTHBOUND	1	0	2	1	0	0	4
		** ASSIGN	ED LAN	E VOLUMI	ES **		
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED			SHARED	ONLY	SHARED
WESTBOUND	164	N/A		94	N/A	0	N/A
EASTBOUND	1077	N/A		36	N/A	270	N/A
NORTHBOUND		N/A	2	87	287	N/A	N/A
SOUTHBOUND	52	N/A	9	43	943	N/A	N/A
		CRITICAL					
	NORTH-SOU	TH CRITICA	T AOTA	MES	• • • • • • • •	1140	
	THE SUM C	F CRITICAL	VOLUM	ES	• • • • • • • •	2381	
	NUMBER OF	' CRITICAL	CLEARA	NCE INTE	ERVALS .	9*	
	CMA VALUE			• • • • • • •		1.488	
	LEVEL OF	SERVICE		• • • • • • •		F	

Eastbound and Westbound approaches have opposed signal phases.

Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\TOT33 RR8
10-16-2001, 9:33 AM

CRAIN AND ASSOCIATES CMA CALCULATIONS

INTERSECTION: 33, JOHNSON DRIVE AND NORTH BANK DRIVE DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH PROJECT (W/ SC BRIDGE)

** INPUT VOLUMES **

APPROACH				**		RIGHT TURN	'C **
APPROACH	LEFT	וידי	HROUGH	MT	N ON G		AX ON RED
WESTBOUND	232		94	1.1.2	0		174
EASTBOUND	2822		247		256		98
NORTHBOUND	197		761		114		0
SOUTHBOUND	192		2339		0		371
30011111001111	174		2333		·		3,1
		** 1	NUMBER	OF LANES	**		
APPROACH	LEFT	LEFT TI	HROUGH	RIGHT	RIGHT	L/T/R	TOTAL
	ONLY	SHARED	ONLY	SHARED	ONLY	SHARED	LANES
WESTBOUND	1	1	1	0	1	0	4
EASTBOUND	2	1	1	0	1	0	5
NORTHBOUND	1	0	2	1	0	0	4
SOUTHBOUND	1	0	2	0	1	0	4
** ASSIGNED LANE VOLUMES **							
APPROACH	LEFT	LEFT	THRO	UGH	RIGHT	RIGHT	L/T/R
	ONLY	SHARED	ON	LY S	HARED	ONLY	SHARED
WESTBOUND	116	N/A		94	N/A	0	N/A
EASTBOUND	1035	N/A	2	47	N/A	256	N/A
NORTHBOUND	197	N/A	2	92	292	N/A	N/A
SOUTHBOUND	192	N/A	11	70	N/A	0	N/A
	EAST-WEST	CRITICAL	VOLUME	S		1129	
		TH CRITICA			• • • • • •		
4	THE SUM C	F CRITICAL	r Aoraw	ES		2496	
	NUMBER OF	CRITICAL	CLEARA	NCE INTE	RVALS	2	*
	CMA VALUE	B				1.560	
	LEVEL OF	SERVICE				F	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-BRDGE RR7
10-16-2001, 9:46 AM

CRAIN AND ASSOCIATES CMA CALCULATIONS

INTERSECTION: 33, JOHNSON DRIVE AND NORTH BANK DRIVE DATE: 10-16-2001 INITIALS: KMY PERIOD: PM PEAK HOUR

CASE: FUTURE (2020) WITH GENERAL PLAN PROJECT

** INPUT VOLUMES **

APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT 232 2822 197 52	n	THROUGH 94 408 757 2426	* * M	RIN ON GRE 0 383 105 0	IGHT TURNS EEN MA	X ON RED 164 98 0 364
		**	NUMBER	OF LANES	3 **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 1 2 1	LEFT TSHARED 1 0 0	THROUGH ONLY 1 2 2	RIGHT SHARED 0 0 1	RIGHT ONLY 1 1 0	L/T/R SHARED 0 0 0 0	TOTAL LANES 4 5 4 4
		** ASSIC	ENED LAN	E VOLUME	ES **		
APPROACH WESTBOUND EASTBOUND NORTHBOUND SOUTHBOUND	LEFT ONLY 116 1035 197 52	LEFT SHAREI N/A N/A N/A N/A	4		RIGHT SHARED N/A N/A 287 N/A	RIGHT ONLY 0 383 N/A 0	L/T/R SHARED N/A N/A N/A
EAST-WEST CRITICAL VOLUMES							
	THE SUM (F CRITICA	AL VOLUM	ES		2539	
	NUMBER OF	CRITICAL	L CLEARA	NCE INTE	ERVALS	2*	r
	CMA VALUE	3			· • • • • • • • • • • • • • • • • • • •	1.587	
	LEVEL OF	SERVICE .		• • • • • • • •	· • • • • • • • • • • • • • • • • • • •	F	

^{*} Capacity assumed = 1600.

K:\ICAP5\RIVERPRK\10-01\T-GP RR7
10-16-2001, 9:42 AM

APPENDIX 4.8

Air Quality Calculations

Page: 1

URBEMIS 7G For Windows 5.1.0

File Name:

C:\Program Files\URBEMIS 7G For Windows\Projects\riverpark.urb

106.35

84.27

Project Name:

Riverpark

Project Location:

Ventura County

SUMMARY REPORT (Tons/Year)

$\Lambda D \Box \Lambda$	COLIDCE	TMTSSTON	ESTIMATES

TOTALS (tpy, unmitigated)
TOTALS (tpy, mitigated)

TOTALS (tpy, unmitigated) TOTALS (tpy, mitigated)	ROG	NOx	CO	PM10	SOX
	25.13	8.90	3.69	0.02	0.00
	25.09	8.39	3.46	0.02	0.00
OPERATIONAL (VEHICLE) EMISSION	ESTIMATES ROG	NOx	CO	PM10	

189.45

149.60

593.96

468.18

64.13

52.89

Page: 1

URBEMIS 7G For Windows 5.1.0

File Name: Project Name:

C:\Program Files\URBEMIS 7G For Windows\Projects\riverpark.urb

Riverpark

Project Location:

Ventura County

DETAIL REPORT (Tons/Year)

AREA SOURCE EMISSION ESTIMAT:	ES				
Source	ROG	NOx	CO	PM10	SOX
Natural Gas	0.67	8.90	3.69	0.02	_
Wood Stoves	0.00	0.00	0.00	0.00	0.00
Fireplaces	0.00	0.00	0.00	0.00	0.00
Landscaping	0.00	0.00	0.00	0.00	0.00
Consumer Prdcts	24.46	_		_	_
TOTALS (tpy, unmitigated)	25.13	8.90	3.69	0.02	0.00
AREA SOURCE EMISSION ESTIMATI	ES				
Source	ROG	NOx	CO	PM10	SOX
Natural Gas	0.63	8.39	3.46	0.02	_
Wood Stoves	0.00	0.00	0.00	0.00	0.00
Fireplaces	0.00	0.00	0.00	0.00	0.00
Landscaping	0.00	0.00	0.00	0.00	0.00
Consumer Prdcts	24.46	_	_	_	-
TOTALS (tpy, mitigated)	25.09	8.39	3.46	0.02	0.00

Area Source Mitigation Measures

Central Water Heater: Rsdntl Space Heat.

Percent Reduction (ROG 9% NOx 8% CO 4% PM10 8.5% SOx 0%)

Central Water Heater: Cmrcl Space Heat.

Percent Reduction (ROG 0.5% NOx 0.5% CO 0.5% PM10 0.5% SOx 0.5%)

UNMITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	PM10
Single family housing	13.64	46.22	139.30	27.58
Apartments low rise	11.02	36.25	109.24	21.63
Elementary school	3.29	2.82	9.37	1.53
Hotel	3.48	8.82	27.63	4.74
Park/Open Space	0.65	0.89	2.79	0.48
Neighborhood Retail	1.30	3.81	12.79	1.91
Regional Retail	20.05	58.31	188.63	30.17
General office building	10.19	30.89	99.60	17.48
General light industry	0.51	1.44	4.62	0.83
TOTAL EMISSIONS (tons/year)	64.13	189.45	593.96	106.35

Includes correction for passby trips.
Includes a double counting reduction for internal trips.

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Temperature (F): 75 Season: Annual

EMFAC Version: EMFAC7G (10/96)

Summary of Land Uses:

Unit Type	Trip Rate	Size	Total Trips
Single family housing Apartments low rise Elementary school Hotel Park/Open Space	9.55 trips / dwelling units 8.01 trips / dwelling units 1.09 trips / students 9.45 trips / rooms 2.23 trips / Acres	1,416.00 1,324.00 1,600.00 600.00 257.00	13,522.80 10,605.24 1,744.00 5,670.00 573.11
Neighborhood Retail	81.16 trips / 1000 sq. ft.	40.00	3,246.40
Regional Retail	32.83 trips / 1000 sq. ft.	1,345.00	44,156.35
General office building	14.03 trips / 1000 sq. ft.	1,030.00	14,450.90
General light industry	6.97 trips / 1000 sq. ft.	81.00	564.57

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Duty Autos	75.00	1.16	98.58	0.26
Light Duty Trucks	10.00	0.13	99.54	0.33
Medium Duty Trucks	3.00	1.44	98.56	-
Lite-Heavy Duty Truck	s 1.00	19.56	40.00	40.44
MedHeavy Duty Truck		19.56	40.00	40.44
Heavy-Heavy Trucks	5.00	-		100.00
Urban Buses	2.00	-	_	100.00
Motorcycles	3.00	100.009	all fuels	
Travel Conditions			_	

	Residential			Commercial		
	Home-	Home-	Home-	Commuto	Non-Work	Customer
	Work	Shop	Other	Commute	MOII-MOT K	Customer
Urban Trip Length (miles)	12.0	7.8	10.0	10.0	4.7	4.7
Rural Trip Length (miles)		10.0	10.0	15.0	15.0	15.0
Trip Speeds (mph)	40.0	40.0	40.0	40.0	40.0	40.0
% of Trips - Residential	27.4	17.7	54.9			

MITIGATED OPERATIONAL EMISSIONS

	ROG	NOx	CO	PM10
Single family housing	11.72	38.55	115.95	23.00
Apartments low rise	9.52	30.23	90.93	18.04
Elementary school	3.09	2.17	7.21	1.17
Hotel	2.83	6.58	20.64	3.54
Park/Open Space	0.59	0.67	2.09	0.36
Neighborhood Retail	0.98	2.82	9.49	1.42
Regional Retail	15.39	43.22	139.91	22.37
General office building	8.33	24.22	78.29	13.71
General light industry	0.43	1.15	3.69	0.66
TOTAL EMISSIONS (tons/year)	52.89	149.60	468.18	84.27

OPERATIONAL (Vehicle) EMISSION ESTIMATES

Analysis Year: 2020 Temperature (F): 75 Season: Annual

EMFAC Version: EMFAC7G (10/96)

Summary of Land Uses:

Unit Type	Trip Rate	Size	Total Trips
Single family housing Apartments low rise Elementary school Hotel Park/Open Space Neighborhood Retail Regional Retail General office building General light industry	9.55 trips / dwelling units	1,416.00	13,522.80
	8.01 trips / dwelling units	1,324.00	10,605.24
	1.09 trips / students	1,600.00	1,744.00
	9.45 trips / rooms	600.00	5,670.00
	2.23 trips / Acres	257.00	573.11
	81.16 trips / 1000 sq. ft.	40.00	3,246.40
	32.83 trips / 1000 sq. ft.	1,345.00	44,156.35
	14.03 trips / 1000 sq. ft.	1,030.00	14,450.90
	6.97 trips / 1000 sq. ft.	81.00	564.57

Vehicle Assumptions:

Fleet Mix:

Vehicle Type	Percent Type	Non-Catalyst	Catalyst	Diesel
Light Duty Autos	75.00	1.16	98.58	0.26
Light Duty Trucks	10.00	0.13	99.54	0.33
Medium Duty Trucks	3.00	1.44	98.56	-
Lite-Heavy Duty Truck	s 1.00	19.56	40.00	40.44
MedHeavy Duty Truck		19.56	40.00	40.44
Heavy-Heavy Trucks	5.00	_	_	100.00
Urban Buses	2.00	-	_	100.00
Motorcycles	3.00	100.00	all fuels	

Travel Conditions		Residential			Commercia	1
Urban Trip Length (miles) Rural Trip Length (miles) Trip Speeds (mph) % of Trips - Residential	15.0 40.0	Home- Shop 7.8 10.0 40.0	Home- Other 10.0 10.0 40.0 54.9	Commute 10.0 15.0 40.0		Customer 4.7 15.0 40.0
% of Trips - Commercial Elementary school	(by land	use)		20.0	10.0	70.0

Page: 6

ENVIRONMENTAL FACTORS APPLICABLE TO THE PROJECT

16.0 /20 = 0.8 <- Bike Effectiveness Factor

Pedestrian Environment

```
Side Walks/Paths: Complete Coverage
3.0
               Street Trees Provide Shade: Moderate Coverage
1.0
               Pedestrian Circulation Access: Most Destinations
 3.0
               Visually Interesting Uses: Large Number and Variety
 5.0
               Street System Enhances Safety: Most Streets
 2.0
                Pedestrian Safety from Crime: High Degree of Safety
2.0
                Visually Interesting Walking Routes: High Level
2.0
       <- Pedestrian Environmental Credit
18.0
18.0
       /19 = 0.9 <- Pedestrian Effectiveness Factor
Transit Service
               Transit Service: <15 Minute Bus within 1/4 Mile
40.0
       <- Transit Effectiveness Credit
40.0
       <- Pedestrian Factor
18.0
58.0
       <-Total
                      <-Transit Effectiveness Factor
       /110 = 0.5
58.0
Bicycle Environment
                Interconnected Bikeways: High Coverage
 5.0
               Bike Routes Provide Paved Shoulders: Most Major Destinations
 3.0
                Safe Vehicle Speed Limits: Some Destinations
 1.0
                Safe School Routes: Primary and Secondary Schools
 2.0
                Uses w/in Cycling Distance: Large Number and Variety
 3.0
                Bike Parking Ordinance: Requires Secure Bike Parking
 2.0
     <- Bike Environmental Credit
```

```
MITIGATION MEASURES SELECTED FOR THIS PROJECT
(All mitigation measures are printed, even if
 the selected land uses do not constitute a mixed use.)
Transit Infrastructure Measures
% Trips Reduced
                            Measure
15.0
                Credit for Existing or Planned Community Transit Service
 6.0
                Project Density Meets Transit Level of Service Requirements
 2.0
                Provide Transit Shelters Benches
 0.5
                Provide Street Lighting
 0.5
                Provide Route Signs and Displays
 1.0
                Provide Bus Turnouts
25.0
        <- Totals
Pedestrian Enhancing Infrastructure Measures (Residential)
% Trips Reduced
                            Measure
 2.0
                Credit for Surrounding Pedestrian Environment
 3.0
                Mixed Use Project (Residential Oriented)
                Provide Sidewalks and/or Pedestrian Paths
 1.0
                Provide Direct Pedestrian Connections
 1.0
 0.5
                Provide Pedestrian Safety
 0.5
                Provide Street Furniture
                Provide Street Lighting
 0.5
 0.5
                Provide Pedestrian Signalization and Signage
 9.0
        <- Totals
Pedestrian Enhancing Infrastructure Measures (Non-Residential)
% Trips Reduced
                            Measure
 2.0
                Credit for Surrounding Pedestrian Environment
 1.0
                Provide Wide Sidewalks and Onsite Pedestrian Facilities
                Project Uses Parking Structures/Small Dispersed Lots
 1.0
 0.5
                Provide Street Lighting
 0.5
                Project Provides Shade Trees to Shade Sidewalks
 0.5
                Project Provides Street Art and/or Street Furniture
 0.5
                Project Uses Zero Bldg. Setback with Entrance on Street
 0.5
                Provide Pedestrian Safety Designs/Infrastructure at Crossings
 0.3
                Articulated Storefront(s) Display Windows with Visual Interest
 0.3
                No Long Uninterrupted Walls Along Pedestrian Walkways
 7.0
        <- Totals
Bicycle Enhancing Infratructure Measures (Residential)
% Trips Reduced
                            Measure
7.0
                Credit for Surrounding Bicycle Environment
                Provide Bike Lanes/Paths Connecting to Bikeway System
 2.0
 9.0
        <- Totals
Bike Enhancing Infrastructure Measures (Non-Residential)
```

```
% Trips Reduced Measure
5.0 Credit for Surrounding Area Bike Environment
2.0 Provide Bike Lanes/Paths Connecting to Bikeway System
1.0 Provide Securre Bicycle Parking
8.0 <- Totals</pre>
```

Operational Measures (Applying to Commute Trips)

% Trips Reduced Measure

1.0 Day Care Center Onsite or Within 1/2 Mile 1.0 <- Totals

Operational Measures (Applying to Employee Non-Commute Trips)

% Trips Reduced Measure

Many Frequently Needed Services Provided

5.0 <- Totals

Operational Measures (Applying to Customer Trips)

% Trips Reduced

Measure

0.0 <- Totals

Measures Reducing VMT (Non-Residential)

VMT Reduced

Measure

0.0 <- Totals

Measures Reducing VMT (Residential)

Measure

VMT Reduced 0.0 <- Totals

Page: 10

Changes made to the default values for Area The landscape option switch changed from on to off. The area souce mitigation measure option switch changed from off to on. Mitigation measure Central Water Heater: Rsdntl Space Heat. has been changed from off to on. Mitigation measure Central Water Heater: Cmrcl Space Heat. has been changed from off to on. Changes made to the default values for Operations The road dust option switch changed from off to on. The pass by trips option switch changed from off to on. The double counting option switch changed from off to on. The mitigation option switch changed from off to on. The operational emission year changed from 2000 to 2020. The double counting internal work trip limit changed from to 6611.08296. The double counting shopping trip limit changed from to 3474.55525. The double counting other trip limit changed from to 13246.29396. The travel mode environment settings changed from both to: both The default/nodefault travel setting changed from nodefault to: nodefault Side Walks and Pedestrian Paths: Most Destinations Covered changed to: Side Walks/Paths: Complete Coverage Street Trees Provide Shade Canopy: Some Coverage changed to: Street Trees Provide Shade: Moderate Coverage Pedestrian Circulation Provides Direct Access: No Destinations changed to: Pedestrian Circulation Access: Most Destinations Mixture of Uses to Attract Pedestrians: Large Number and Variety of Uses changed to: Visually Interesting Uses: Large Number and Variety Street System Designed to Enhance Pedestrian Safety: Few Streets Designed This Way changed to: Street System Enhances Safety: Most Streets Pedestrian Routes Provide Safety from Crime: No Degree of Perceived Safety Along Routes changed to: Pedestrian Safety from Crime: High Degree of Safety Walking Routes Provide Visual Interest: No Visual Interest changed to: Visually Interesting Walking Routes: High Level Level of Transit Service: Commuter Rail within 1/2 mile (e.g. CALTRAIN) changed to: Transit Service: <15 Minute Bus within 1/4 Mile Area Served by Interconnected Bikeways: No Bikeway Coverage changed to: Interconnected Bikeways: High Coverage Bike Routes Provide Wide Paved Shoulders and Few Curb Cuts: No Routes Provide These Features changed to: Bike Routes Provide Paved Shoulders: Most Major Destinations Speed Limits 30 MPH or Less on Streets with Bike Routes: No Routes Provided changed to: Safe Vehicle Speed Limits: Some Destinations Schools with Safe Route: No Schools changed to: Safe School Routes: Primary and Secondary Schools Mixture of Uses to Attract Bicyclists within Easy Cycling Distance: No Uses Within Cycling Dista changed to: Uses w/in Cycling Distance: Large Number and Variety Community Has Bike Parking Ordinance: No Ordinance or Ordinance Has No Enforceable Provisions changed to: Bike Parking Ordinance: Requires Secure Bike Parking Mitigation measure Project Density Meets Transit Level of Service Requirements:6 has been changed from off to on. Mitigation measure Provide Transit Shelters Benches:2 has been changed from off to on. Mitigation measure Provide Street Lighting: 0.5 has been changed from off to on. Mitigation measure Provide Route Signs and Displays:0.5 has been changed from off to on. Mitigation measure Provide Bus Turnouts:1 has been changed from off to on. Mitigation measure Mixed Use Project (Residential Oriented):3 has been changed from off to on.

Mitigation measure Provide Sidewalks and/or Pedestrian Paths:1 has been changed from off to on. Mitigation measure Provide Direct Pedestrian Connections:1 has been changed from off to on. Mitigation measure Provide Pedestrian Safety: 0.5 has been changed from off to on. Mitigation measure Provide Street Furniture: 0.5 has been changed from off to on. Mitigation measure Provide Street Lighting: 0.5 has been changed from off to on. Mitigation measure Provide Pedestrian Signalization and Signage: 0.5 has been changed from off to on. Mitigation measure Provide Wide Sidewalks and Onsite Pedestrian Facilities:1 has been changed from off to on. Mitigation measure Project Uses Parking Structures/Small Dispersed Lots:1 has been changed from off to on. Mitigation measure Provide Street Lighting: 0.5 has been changed from off to on. Mitigation measure Project Provides Shade Trees to Shade Sidewalks:0.5 has been changed from off to on. Mitigation measure Project Provides Street Art and/or Street Furniture:0.5 has been changed from off to on. Mitigation measure Project Uses Zero Bldg. Setback with Entrance on Street:0.5 has been changed from off to on. Mitigation measure Provide Pedestrian Safety Designs/Infrastructure at Crossings:0.5 has been changed from off to on. Mitigation measure Articulated Storefront(s) Display Windows with Visual Interest:0.25 has been changed from off to on. Mitigation measure No Long Uninterrupted Walls Along Pedestrian Walkways:0.25 has been changed from off to on. Mitigation measure Provide Bike Lanes/Paths Connecting to Bikeway System: 2 has been changed from off to on. Mitigation measure Provide Bike Lanes/Paths Connecting to Bikeway System: 2 has been changed from off to on. Mitigation measure Provide Securre Bicycle Parking:1 has been changed from off to on. Mitigation measure Day Care Center Onsite or Within 1/2 Mile:1 has been changed from off to on. Mitigation measure Many Frequently Needed Services Provided: 5 has been changed from off to on. Mitigation measuremitop5: Park and Ride Lots has been changed from on to off.

Project Title:

Riverpark

Intersection:

Analysis Condition:

Oxnard Boulevard & Gonzales Road Existing Traffic Volumes

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

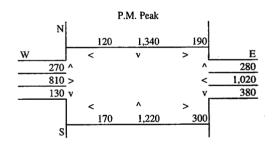
3.7 2.0 0.7

Persistence Factor:

Analysis Year:

2000

None


			No. of Average Cruise		ruise Speed
		Roadway Type	Lanes	A.M.	P.M.
North-South Roadway:	Oxnard Boulevard	At Grade	6	20	20
East-West Roadway:	Gonzales Road	At Grade	6	20	20

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	ge Speed (m	iles per houi	.)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

		A.M. Peak		
N	70	000	120	
	70	880	130	
W	<	v	> [E
230	^		^_	230
890	>		<	410
120	v		v	140
	<	٨	>	
	130	870	140	
s				

Representative Traffic Volumes (Vehicles per Hour)

N-S Road 2,410 E-W Road 1,940 N-S Road 3,540 E-W Road 2,980

Referen	ce CO Conce	ntrations		Traffic		Emission		
50 Feet	100 Feet	300 Feet	Volume			Factor		
4.9	3.5	1.6	*	2,410	*	10.75	÷	100,000
2.0	1.7	1.1	*	1,940	*	10.75	÷	100,000
4.9	3.5	1.6	*	3,540	*	10.75	÷	100,000
2.0	1.7	1.1	*	2,980	*	10.75	÷	100,000
	50 Feet 4.9 2.0	50 Feet 100 Feet 4.9 3.5 2.0 1.7 4.9 3.5	4.9 3.5 1.6 2.0 1.7 1.1 4.9 3.5 1.6	50 Feet 100 Feet 300 Feet 4.9 3.5 1.6 * 2.0 1.7 1.1 * 4.9 3.5 1.6 *	50 Feet 100 Feet 300 Feet Volume 4.9 3.5 1.6 * 2,410 2.0 1.7 1.1 * 1,940 4.9 3.5 1.6 * 3,540	50 Feet 100 Feet 300 Feet Volume 4.9 3.5 1.6 * 2,410 * 2.0 1.7 1.1 * 1,940 * 4.9 3.5 1.6 * 3,540 *	Telephone Tele	50 Feet 100 Feet 300 Feet Volume Factor 4.9 3.5 1.6 * 2,410 * 10.75 ÷ 2.0 1.7 1.1 * 1,940 * 10.75 ÷ 4.9 3.5 1.6 * 3,540 * 10.75 ÷

m)	nnı	VC.	1OI	ΔΤ	TR	אשי	M	\sim	സ	. T	ንፐ ለ	TI	
ı	w	CI	. ECJI	Αı	ΙK	.ru	31 N 1	ı.ı		м.	JI A		

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.4	6.2	3.8
100 Feet from Roadway Edge	5.0	5.6	3.3
300 Feet from Roadway Edge	4.3	4.7	2.7

Project Title:

Intersection:

Riverpark

Johnson Drive & Bristol Road

Existing Traffic Volumes

Analysis Condition: Nearest Air Monitoring Station measuring CO:

Background 1-hour CO Concentration (ppm):

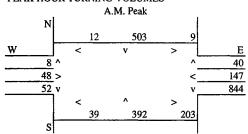
None 3.7 2.0

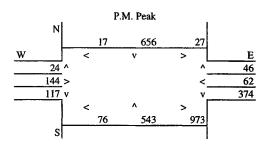
Background 8-hour CO Concentration (ppm):

0.7

Persistence Factor:

Analysis Year:


2000


			No. of	Average Ci	ruise Speed
		Roadway Type	Lanes	A.M.	P.M.
North-South Roadway:	Johnson Drive	At Grade	4	20	20
East-West Roadway:	Bristol Road	At Grade	4	15	15

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

	Average Speed (miles per hour)										
Year	10	15	20	25	30	35	40	45	50	55	
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88	
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46	
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03	
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73	
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43	
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14	
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84	
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54	
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83	

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 2,033

1,291

N-S Road E-W Road 2,739 1,626

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic	Emission			
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	2,033	*	10.75	÷	100,000
E-W Road	2.2	1.7	1.1	*	1,291	*	14.17	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	2,739	*	10.75	÷	100,000
E-W Road	2.2	1.7	1.1	*	1,626	*	14.17	÷	100,000

	A.M.	P.M.		
	Peak Hour	Peak Hour	8-Hour	
50 Feet from Roadway Edge	5.3	5.8	3.5	
100 Feet from Roadway Edge	4.8	5.2	3.1	
300 Feet from Roadway Edge	4.3	4.4	2.5	

Project Title:

Rivernark

Intersection:

Johnson Drive & North Bank Drive

Analysis Condition:

Existing Traffic Volumes

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm): None 3.7

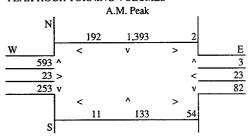
Background 8-hour CO Concentration (ppm): Persistence Factor:

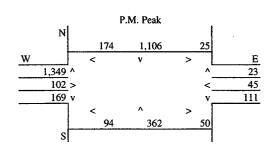
2.0

Analysis Year:

2000

North-South Roadway:
Fact-Weet Poadway:


Johnson Drive	
North Bank Drive	


		140. 01	Average	ruise speed
	Roadway Type	Lanes	A.M.	P.M.
_	At Grade	4	20	20
	At Grade	4	15	15

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

	Average Speed (miles per hour)									
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road 2,316 E-W Road 1,095 N-S Road 3,039 E-W Road 1,933

Referen	ce CO Conce	ntrations		Traffic		Emission		
50 Feet	100 Feet	300 Feet		Volume		Factor		
5.4	3.8	1.6	*	2,316	*	10.75	÷	100,000
2.2	1.7	1.1	*	1,095	*	14.17	÷	100,000
5.4	3.8	1.6	*	3,039	*	10.75	÷	100,000
2.2	1.7	1.1	*	1,933	*	14.17	÷	100,000
	50 Feet 5.4 2.2 5.4	50 Feet 100 Feet 5.4 3.8 2.2 1.7 5.4 3.8	5.4 3.8 1.6 2.2 1.7 1.1 5.4 3.8 1.6	50 Feet 100 Feet 300 Feet 5.4 3.8 1.6 * 2.2 1.7 1.1 * 5.4 3.8 1.6 *	50 Feet 100 Feet 300 Feet Volume 5.4 3.8 1.6 * 2,316 2.2 1.7 1.1 * 1,095 5.4 3.8 1.6 * 3,039	50 Feet 100 Feet 300 Feet Volume 5.4 3.8 1.6 * 2,316 * 1,095 * 5.4 3.8 1.6 * 3,039 *	50 Feet 100 Feet 300 Feet Volume Factor 5.4 3.8 1.6 * 2,316 * 10.75 2.2 1.7 1.1 * 1,095 * 14.17 5.4 3.8 1.6 * 3,039 * 10.75	50 Feet 100 Feet 300 Feet Volume Factor 5.4 3.8 1.6 * 2,316 * 10.75 ÷ 2.2 1.7 1.1 * 1,095 * 14.17 ÷ 5.4 3.8 1.6 * 3,039 * 10.75 ÷

TOTAL CO CONCENTRATIONS	(ppm)
-------------------------	-------

A.M.	P.M.	
Peak Hour	Peak Hour	8-Hour
5.4	6.1	3.7
4.9	5.4	3.2
4.3	4.5	2.6
	Peak Hour 5.4 4.9	Peak Hour Peak Hour 5.4 6.1 4.9 5.4

Project Title:

Intersection:

Riverpark

Johnson Drive & Ralston Street

Analysis Condition:

Existing Traffic Volumes None

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

Nearest Air Monitoring Station measuring CO:

3.7

2.0

Persistence Factor:

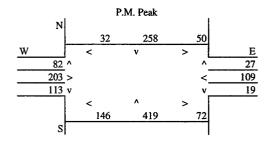
Analysis Year:

0.7 2000

North-South Roadway: East-West Roadway:

Johnson Drive Ralston Street

110. 01	Tiverage C	uise opecu
Lanes	A.M.	P.M.
2	20	20
2	20	20
	Lanes 2	Lanes A.M. 2 20


No. of Average Cruise Speed

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

10			Average Speed (miles per hour)							
10	15	20	25	30	35	40	45	50	55	
24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88	
22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46	
21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03	
19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73	
18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43	
16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14	
15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84	
14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54	
10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83	
	22.93 21.02 19.63 18.24 16.86 15.47 14.08	22.93 15.46 21.02 14.17 19.63 13.24 18.24 12.31 16.86 11.37 15.47 10.44 14.08 9.51	22.93 15.46 11.73 21.02 14.17 10.75 19.63 13.24 10.04 18.24 12.31 9.33 16.86 11.37 8.63 15.47 10.44 7.92 14.08 9.51 7.21	22.93 15.46 11.73 9.50 21.02 14.17 10.75 8.70 19.63 13.24 10.04 8.13 18.24 12.31 9.33 7.55 16.86 11.37 8.63 6.98 15.47 10.44 7.92 6.40 14.08 9.51 7.21 5.83	22.93 15.46 11.73 9.50 8.00 21.02 14.17 10.75 8.70 7.33 19.63 13.24 10.04 8.13 6.85 18.24 12.31 9.33 7.55 6.36 16.86 11.37 8.63 6.98 5.88 15.47 10.44 7.92 6.40 5.39 14.08 9.51 7.21 5.83 4.91	22.93 15.46 11.73 9.50 8.00 6.93 21.02 14.17 10.75 8.70 7.33 6.35 19.63 13.24 10.04 8.13 6.85 5.93 18.24 12.31 9.33 7.55 6.36 5.52 16.86 11.37 8.63 6.98 5.88 5.10 15.47 10.44 7.92 6.40 5.39 4.69 14.08 9.51 7.21 5.83 4.91 4.27	22.93 15.46 11.73 9.50 8.00 6.93 6.14 21.02 14.17 10.75 8.70 7.33 6.35 5.63 19.63 13.24 10.04 8.13 6.85 5.93 5.27 18.24 12.31 9.33 7.55 6.36 5.52 4.90 16.86 11.37 8.63 6.98 5.88 5.10 4.54 15.47 10.44 7.92 6.40 5.39 4.69 4.17 14.08 9.51 7.21 5.83 4.91 4.27 3.81	22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52	22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 5.35 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 4.92 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 4.62 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 4.32 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 4.01 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 3.71 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52 3.41	

PEAK HOUR TURNING VOLUMES

		Α	M. Peak		
	N	101	195	44	
W		<	v	>	Е
	31 ^			^	108
	72 >			<	250
	49 v			v	22
		<	٨	>	
		129	380	22	
	s				

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 859 632 N-S Road E-W Road 1,027 685

ROADWAY CO CONTRIBUTIONS

Reference CO Concentrations				Traffic		Emission		
50 Feet	100 Feet	300 Feet		Volume		Factor		
5.7	4.0	1.7	*	859	*	10.75	÷	100,000
2.2	1.7	1.0	*	632	*	10.75	÷	100,000
5.7	4.0	1.7	*	1,027	*	10.75	÷	100,000
2.2	1.7	1.0	*	685	*	10.75	÷	100,000
	50 Feet 5.7 2.2	50 Feet 100 Feet 5.7 4.0 2.2 1.7 5.7 4.0	50 Feet 100 Feet 300 Feet 5.7 4.0 1.7 2.2 1.7 1.0 5.7 4.0 1.7	50 Feet 100 Feet 300 Feet 5.7 4.0 1.7 * 2.2 1.7 1.0 * 5.7 4.0 1.7 *	50 Feet 100 Feet 300 Feet Volume 5.7 4.0 1.7 * 859 2.2 1.7 1.0 * 632 5.7 4.0 1.7 * 1,027	50 Feet 100 Feet 300 Feet Volume 5.7 4.0 1.7 * 859 * 632 * 5.7 4.0 1.7 * 1,027 *	50 Feet 100 Feet 300 Feet Volume Factor 5.7 4.0 1.7 * 859 * 10.75 2.2 1.7 1.0 * 632 * 10.75 5.7 4.0 1.7 * 1,027 * 10.75	50 Feet 100 Feet 300 Feet Volume Factor 5.7 4.0 1.7 * 859 * 10.75 ÷ 2.2 1.7 1.0 * 632 * 10.75 ÷ 5.7 4.0 1.7 * 1,027 * 10.75 ÷

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.4	4.5	2.6
100 Feet from Roadway Edge	4.2	4.3	2.4
300 Feet from Roadway Edge	3.9	4.0	2.2

Project Title:

Riverpark

Intersection:

Victoria Avenue & Ralston Street **Existing Traffic Volumes**

Analysis Condition:

Nearest Air Monitoring Station measuring CO:

None

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm): 3.7

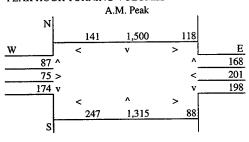
Persistence Factor:

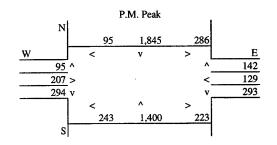
2.0

Analysis Year:

0.7 2000

North-South Roadway:
Fast-West Roadway:


Victoria	Avenue
Ralston	Street


	No. of	Average C	ruise Spee
Roadway Type	Lanes	A.M.	P.M.
At Grade	6	20	20
At Grade	4	20	20

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	e Speed (m	iles per hou	r)			
Year	10	15	20	25	30	35	40	45	50	. 55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

3,522 N-S Road 925 E-W Road

N-S Road 4,298 E-W Road 1,280

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	4.9	3.5	1.6	*	3,522	*	10.75	÷	100,000
E-W Road	2.2	1.7	1.1	*	925	*	10.75	÷	100,000
P.M. Peak Hour									
N-S Road	4.9	3.5	1.6	*	4,298	*	10.75	÷	100,000
E-W Road	2.2	1.7	1.1	*	1,280	*	10.75	÷	100,000

mom + T	GO GONIGEN	TOTAL OTTAL	()
TOTAL	CO CONCE	NIKAHUN	o (ppiii)

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.8	6.3	3.8
100 Feet from Roadway Edge	5.2	5.6	3.3
300 Feet from Roadway Edge	4.4	4.6	2.6

Project Title:

Intersection:

Riverpark

Victoria Avenue & Telephone Road

Analysis Condition:

Existing Traffic Volumes None

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

3.7

Background 8-hour CO Concentration (ppm):

2.0

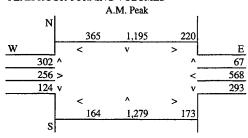
Persistence Factor:

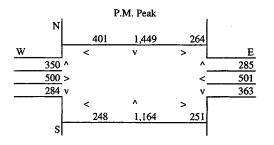
0.7

Analysis Year:

2000

North-South Roadway: East-West Roadway:


Victoria Avenue Telephone Road


	No. of	Average Cruise Speed			
Roadway Type	Lanes	A.M.	P.M.		
At Grade	8	20	20		
At Grade	6	20	20		

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	e Speed (m	iles per hou)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 3,428 1,779 N-S Road E-W Road 3,913 2,284

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	4.6	3.4	1.5	*	3,428	*	10.75	÷	100,000
E-W Road	2.0	1.7	1.1	*	1,779	*	10.75	÷	100,000
P.M. Peak Hour									
N-S Road	4.6	3.4	1.5	*	3,913	*	10.75	÷	100,000
E-W Road	2.0	1.7	1.1	*	2,284	*	10.75	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.8	6.1	3.7
100 Feet from Roadway Edge	5.3	5.5	3.3
300 Feet from Roadway Edge	4.5	4.6	2.6

Project Title:

Riverpark

Intersection:

Valentine Road & US 101 (SB) **Existing Traffic Volumes**

Analysis Condition:

Nearest Air Monitoring Station measuring CO:

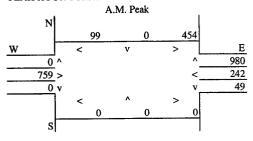
None

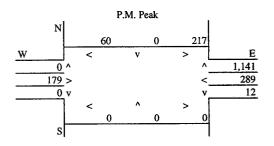
Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm): 3.7

Persistence Factor:

2.0

Analysis Year:


0.7 2000


			No. of	Average C	ruise Speed	
		Roadway Type	Lanes	A.M.	P.M.	
North-South Roadway:	US 101 (SB)	At Grade	4	15	15	
East-West Roadway:	Valentine Road	At Grade	4	15	15	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	ge Speed (m	iles per hou	r)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 1,533

2,484

N-S Road E-W Road 1,418 1,838

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	2.2	1.7	1.1	*	1,533	*	14.17	÷	100,000
E-W Road	5.4	3.8	1.6	*	2,484	*	14.17	÷	100,000
P.M. Peak Hour									
N-S Road	2.2	1.7	1.1	*	1,418	*	14.17	÷	100,000
E-W Road	5.4	3.8	1.6	*	1,838	*	14.17	÷	100,000

TOTAL	COCC	NCENTR	ATIONS	(mnm)
IUIAL	ω	MCCMIN	CALIOIAN	(DDIII)

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	6.1	5.5	3.7
100 Feet from Roadway Edge	5.4	5.0	3.2
300 Feet from Roadway Edge	4.5	4.3	2.6

Project Title:

Intersection:

Riverpark

Victoria Avenue & Valentine Road **Existing Traffic Volumes**

Analysis Condition:

Nearest Air Monitoring Station measuring CO:

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm): None 3.7 2.0

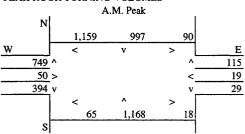
Persistence Factor:

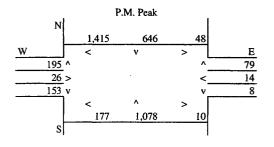
0.7

Analysis Year:

2000

North-South Roadway:	
East-West Roadway:	


Victoria Avenue	
Valentine Road	


	IVO. OI	Average C	ruise Speed
Roadway Type	Lanes	A.M.	P.M.
At Grade	4	20	20
At Grade	2	15	15

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	ge Speed (m	iles per hou	r)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road 4,278 E-W Road 2,436 N-S Road 3,461 E-W Road 1,980

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	4,278	*	10.75	÷	100,000
E-W Road	2.2	1.7	1.0	*	2,436	*	14.17	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	3,461	*	10.75	÷	100,000
E-W Road	2.2	1.7	1.0	*	1,980	*	14.17	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	6.9	6.3	4.3
100 Feet from Roadway Edge	6.0	5.6	3.6
300 Feet from Roadway Edge	4.8	4.6	2.8

Project Title:

Riverpark

Intersection:

Ventura Road & Gonzales Road

Analysis Condition:

Existing Traffic Volumes

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

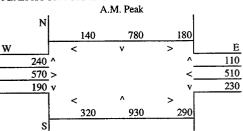
None 3.7

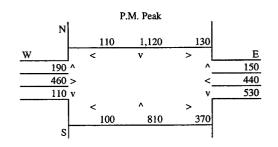
Background 8-hour CO Concentration (ppm): Persistence Factor:

2.0

Persistence Facto Analysis Year: 0.7 2000

North-South Roadway:	
East-West Roadway:	


Ventura Road
Gonzales Road


	No. of	Average Cruise Sp		
Roadway Type	Lanes	A.M.	P.M.	
At Grade	4	20	20	
At Grade	4	20	20	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

Year	Average Speed (miles per hour)										
	10	15	20	25	30	35	40	45	50	55	
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88	
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46	
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03	
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73	
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43	
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14	
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84	
2005	14.08	9.51	7.21	5.83	4,91	4.27	3.81	3.52	3.41	3.54	
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83	

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 2,740

1,970

N-S Road E-W Road 3,040 2,080

ROADWAY CO CONTRIBUTIONS

	Reference CO Concentrations				Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	2,740	*	10.75	÷	100,000
E-W Road	2.2	1.7	1.1	*	1,970	*	10.75	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	3,040	*	10.75	÷	100,000
E-W Road	2.2	1.7	1.1	*	2,080	*	10.75	÷	100,000

A.M.	P.M.	
Peak Hour	Peak Hour	8-Hour
5.8	6.0	3.6
5.2	5.3	3.1
4.4	4.5	2.5
	Peak Hour 5.8 5.2	Peak Hour Peak Hour 5.8 6.0 5.2 5.3

Project Title:

Riverpark

Intersection:

Ventura Road & Town Center Drive

Analysis Condition:

Existing Traffic Volumes None

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

3.7

Background 8-hour CO Concentration (ppm):

2.0

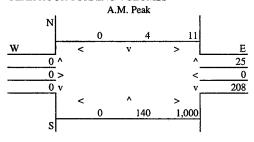
Persistence Factor:

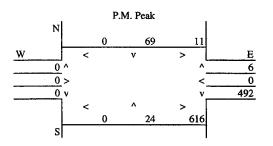
0.7

Analysis Year:

2000

North-South Roadway: East-West Roadway:


Ventura Road Town Center Drive


	No. of	Average Cruise Speed			
Roadway Type	Lanes	A.M.	P.M.		
At Grade	4	15	15		
At Grade	4	15	15		

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

Year	Average Speed (miles per hour)									
	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 1,352 1,244 N-S Road E-W Road 1,201 1,125

ROADWAY CO CONTRIBUTIONS

	Reference CO Concentrations				Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	1,352	*	14.17	÷	100,000
E-W Road	2.2	1.7	1.1	*	1,244	*	14.17	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	1,201	*	14.17	÷	100,000
E-W Road	2.2	1.7	1.1	*	1,125	*	14.17	÷	100,000
					,			÷	

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.1	5.0	3.0
100 Feet from Roadway Edge	4.7	4.6	2.7
300 Feet from Roadway Edge	4.2	4.1	2.4

Project Title:

Rivernark

Intersection:

Ventura Road & Vineyard Avenue

Analysis Condition:

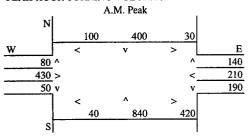
Existing Traffic Volumes

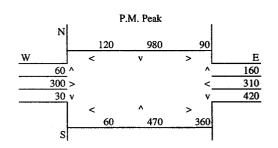
Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm): None 3.7 2.0

Persistence Factor:
Analysis Year:

0.7 2000

North-South Roadway:
East-West Roadway:


Ventura Road	
Vinevard Boulevard	


	No. of	Average Cruise Speed			
Roadway Type	Lanes	A.M.	P.M.		
At Grade	4	20	20		
At Grade	4	20	20		

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

	Average Speed (miles per hour)									
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 1,940 1,420 N-S Road E-W Road 2,320 1,640

ROADWAY CO CONTRIBUTIONS

	Reference CO Concentrations				Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	1,940	*	10.75	÷	100,000
E-W Road	2.2	1.7	1.1	*	1,420	*	10.75	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	2,320	*	10.75	÷	100,000
E-W Road	2.2	1.7	1.1	*	1,640	*	10.75	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.2	5.4	3.2
100 Feet from Roadway Edge	4.8	4.9	2.9
300 Feet from Roadway Edge	4.2	4.3	2.4

Project Title:

Intersection:

Riverpark

Ventura Road & Wagon Wheel Road

Analysis Condition:

Existing Traffic Volumes None

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

3.7

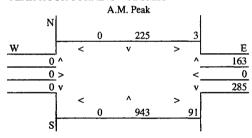
Background 8-hour CO Concentration (ppm):

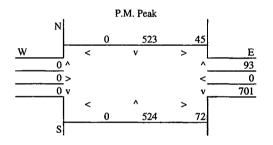
2.0

Persistence Factor:

0.7

Analysis Year:


2000


			No. of	Average C	ruise Speed	
		Roadway Type	Lanes	A.M.	P.M	
North-South Roadway:	Ventura Road	At Grade	4	15	15	
East-West Roadway:	Wagon Wheel Road	At Grade	2	15	15	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	ge Speed (m	iles per hou	r)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 1,544

542

N-S Road E-W Road 1,820 911

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic	Traffic Emission			
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	1,544	*	14.17	÷	100,000
E-W Road	2.2	1.7	1.0	*	542	*	14.17	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	1,820	*	14.17	÷	100,000
E-W Road	2.2	1.7	1.0	*	911	*	14.17	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.1	5.4	3.2
100 Feet from Roadway Edge	4.7	4.9	2.8
300 Feet from Roadway Edge	4.1	4.2	2.4

Project Title:

Intersection:

Vineyard Avenue & Espanade Drive

Analysis Condition:

Existing Traffic Volumes

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

None 3.7

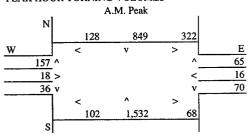
Persistence Factor:

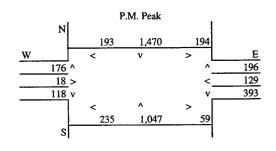
2.0

Analysis Year:

0.7 2000

North-South Roadway:	
East-West Roadway:	


Vineyard Avenue
Espanade Drive


	No. of	Average Cruise Spee		
Roadway Type	Lanes	A.M.	P.M.	
At Grade	6	15	15	
At Grade	4	10	10	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	e Speed (m	iles per houi	•)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 3,053 559

N-S Road E-W Road 3,322 989

ROADWAY CO CONTRIBUTIONS

	Referen	Reference CO Concentrations			Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	4.9	3.5	1.6	*	3,053	*	14.17	÷	100,000
E-W Road	2.2	1.7	1.1	*	559	*	21.02	÷	100,000
P.M. Peak Hour									
N-S Road	4.9	3.5	1.6	*	3,322	*	14.17	÷	100,000
E-W Road	2.2	1.7	1.1	*	989	*	21.02	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	6.1	6.5	3.9
100 Feet from Roadway Edge	5.4	5.7	3.4
300 Feet from Roadway Edge	4.5	4.7	2.7

Project Title:

Intersection:

Riverpark

Vineyard Avenue & Oxnard Boulevard **Existing Traffic Volumes**

Analysis Condition:

Nearest Air Monitoring Station measuring CO:

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm): 3.7

Persistence Factor:

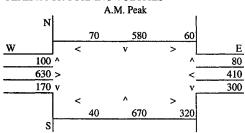
2.0

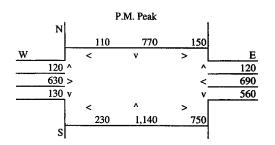
0.7

Analysis Year:

2000

North-South Roadway:
Fast-West Roadway


Vineyard Avenue	
Oxnard Boulevard	


	No. of	Average C	ruise Speed
Roadway Type	Lanes	A.M.	P.M.
At Grade	6	15	15
At Grade	6	25	25

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

			Averag	e Speed (m	iles per houi	T)			
10	15	20	25	30	35	40	45	50	55
24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83
	24.84 22.93 21.02 19.63 18.24 16.86 15.47 14.08	24.84 16.74 22.93 15.46 21.02 14.17 19.63 13.24 18.24 12.31 16.86 11.37 15.47 10.44 14.08 9.51	24.84 16.74 12.71 22.93 15.46 11.73 21.02 14.17 10.75 19.63 13.24 10.04 18.24 12.31 9.33 16.86 11.37 8.63 15.47 10.44 7.92 14.08 9.51 7.21	24.84 16.74 12.71 10.30 22.93 15.46 11.73 9.50 21.02 14.17 10.75 8.70 19.63 13.24 10.04 8.13 18.24 12.31 9.33 7.55 16.86 11.37 8.63 6.98 15.47 10.44 7.92 6.40 14.08 9.51 7.21 5.83	24.84 16.74 12.71 10.30 8.67 22.93 15.46 11.73 9.50 8.00 21.02 14.17 10.75 8.70 7.33 19.63 13.24 10.04 8.13 6.85 18.24 12.31 9.33 7.55 6.36 16.86 11.37 8.63 6.98 5.88 15.47 10.44 7.92 6.40 5.39 14.08 9.51 7.21 5.83 4.91	24.84 16.74 12.71 10.30 8.67 7.50 22.93 15.46 11.73 9.50 8.00 6.93 21.02 14.17 10.75 8.70 7.33 6.35 19.63 13.24 10.04 8.13 6.85 5.93 18.24 12.31 9.33 7.55 6.36 5.52 16.86 11.37 8.63 6.98 5.88 5.10 15.47 10.44 7.92 6.40 5.39 4.69 14.08 9.51 7.21 5.83 4.91 4.27	24.84 16.74 12.71 10.30 8.67 7.50 6.65 22.93 15.46 11.73 9.50 8.00 6.93 6.14 21.02 14.17 10.75 8.70 7.33 6.35 5.63 19.63 13.24 10.04 8.13 6.85 5.93 5.27 18.24 12.31 9.33 7.55 6.36 5.52 4.90 16.86 11.37 8.63 6.98 5.88 5.10 4.54 15.47 10.44 7.92 6.40 5.39 4.69 4.17 14.08 9.51 7.21 5.83 4.91 4.27 3.81	24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52	24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 5.78 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 5.35 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 4.92 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 4.62 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 4.32 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 4.01 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 3.71 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52 3.41

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 2,080

1,800

N-S Road E-W Road 3,580 2,900

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	4.9	3.5	1.6	*	2,080	*	14.17	÷	100,000
E-W Road	2.0	1.7	1.1	*	1,800	*	8.70	÷	100,000
P.M. Peak Hour									
N-S Road	4.9	3.5	1.6	*	3,580	*	14.17	÷	100,000
E-W Road	2.0	1.7	1.1	*	2,900	*	8.70	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.5	6.7	4.1
100 Feet from Roadway Edge	5.0	5.9	3.5
300 Feet from Roadway Edge	4.3	4.8	2.8

Project Title:

Vineyard Avenue & Stroube Street

Intersection:

Analysis Condition:

Nearest Air Monitoring Station measuring CO:

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

Persistence Factor: Analysis Year:

Existing Traffic Volumes None 3.7

2.0 0.7 2000

North-South Roadway:
East-West Roadway:

Vineyard Avenue
Stroube Street


		NO. OI	Average Cruise Spee		
	Roadway Type	Lanes	A.M.	P.M.	
	At Grade	4	15	15	
	At Grade	2	10	10	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

10	1.5		Average Speed (miles per hour)								
	15	20	25	30	35	40	45	50	55		
24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88		
22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46		
21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03		
19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73		
18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43		
16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14		
15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84		
14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54		
10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83		
	22.93 21.02 19.63 18.24 16.86 15.47 14.08	22.93 15.46 21.02 14.17 19.63 13.24 18.24 12.31 16.86 11.37 15.47 10.44 14.08 9.51	22.93 15.46 11.73 21.02 14.17 10.75 19.63 13.24 10.04 18.24 12.31 9.33 16.86 11.37 8.63 15.47 10.44 7.92 14.08 9.51 7.21	22.93 15.46 11.73 9.50 21.02 14.17 10.75 8.70 19.63 13.24 10.04 8.13 18.24 12.31 9.33 7.55 16.86 11.37 8.63 6.98 15.47 10.44 7.92 6.40 14.08 9.51 7.21 5.83	22.93 15.46 11.73 9.50 8.00 21.02 14.17 10.75 8.70 7.33 19.63 13.24 10.04 8.13 6.85 18.24 12.31 9.33 7.55 6.36 16.86 11.37 8.63 6.98 5.88 15.47 10.44 7.92 6.40 5.39 14.08 9.51 7.21 5.83 4.91	22.93 15.46 11.73 9.50 8.00 6.93 21.02 14.17 10.75 8.70 7.33 6.35 19.63 13.24 10.04 8.13 6.85 5.93 18.24 12.31 9.33 7.55 6.36 5.52 16.86 11.37 8.63 6.98 5.88 5.10 15.47 10.44 7.92 6.40 5.39 4.69 14.08 9.51 7.21 5.83 4.91 4.27	22.93 15.46 11.73 9.50 8.00 6.93 6.14 21.02 14.17 10.75 8.70 7.33 6.35 5.63 19.63 13.24 10.04 8.13 6.85 5.93 5.27 18.24 12.31 9.33 7.55 6.36 5.52 4.90 16.86 11.37 8.63 6.98 5.88 5.10 4.54 15.47 10.44 7.92 6.40 5.39 4.69 4.17 14.08 9.51 7.21 5.83 4.91 4.27 3.81	22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52	22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 5.35 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 4.92 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 4.62 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 4.32 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 4.01 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 3.71 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52 3.41		

PEAK HOUR TURNING VOLUMES

N	A	.M. Peak	ı	
IN	65	1,188	39	
W	<	v	>	E
125 ^			^	27
30 >			<	17
22 v			v	105
	<	٨	> [
	24	866	56	
s				

1,849

365

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 2,310 283

N-S Road E-W Road

ROADWAY CO CONTRIBUTIONS

100 Feet	300 Feet		Volume		Factor		
3.8	1.6	*	2,310	*	14.17	÷	100,000
1.7	1.0	*	283	*	21.02	÷	100,000
3.8	1.6	*	1,849	*	14.17	÷	100,000
1.7	1.0	*	365	*	21.02	÷	100,000
	3.8	3.8 1.6	3.8 1.6 *	3.8 1.6 * 1,849	3.8 1.6 * 1,849 *	3.8 1.6 * 1,849 * 14.17	3.8 1.6 * 1,849 * 14.17 ÷

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.6	5.3	3.3
100 Feet from Roadway Edge	5.0	4.8	2.9
300 Feet from Roadway Edge	4.3	4.2	2.4

Project Title:

Riverpark

Intersection:

Vineyard Avenue & Myrtle Street

Analysis Condition:

Existing Traffic Volumes

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

None 3.7

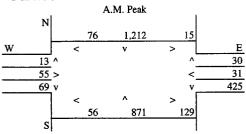
Background 8-hour CO Concentration (ppm): Persistence Factor:

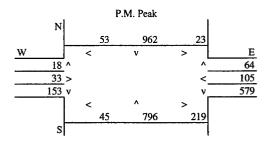
2.0 0.7

Analysis Year:

2000

North-South Roadway:	
Fast-West Roadway	


Vineyard Avenue Myrtle Street


	No. of	Average Cruise Speed		
Roadway Type	Lanes	A.M.	P.M.	
At Grade	4	15	15	
At Grade	2	10	10	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	e Speed (m	iles per hou	7)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road 2,762 E-W Road 685 N-S Road 2,754 E-W Road 1,023

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	2,762	*	14.17	÷	100,000
E-W Road	2.2	1.7	1.0	*	685	*	21.02	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	2,754	*	14.17	÷	100,000
E-W Road	2.2	1.7	1.0	*	1,023	*	21.02	÷	100,000

-	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	6.1	6.3	3.8
100 Feet from Roadway Edge	5.4	5.5	3.3
300 Feet from Roadway Edge	4.5	4.5	26

Project Title:

Riverpark

Intersection:

Wagon Wheel Road & Southbound 101 Exit

Analysis Condition:

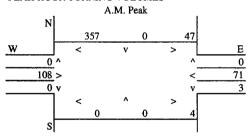
Existing Traffic Volumes None

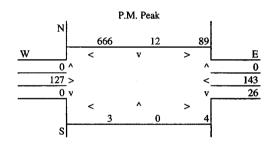
Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

3.7 2.0

Persistence Factor: Analysis Year: 0.7 2000

North-South Roadway: East-West Roadway:


Southbound 101 Exit Wagon Wheel Road


	No. of	Average C	ruise Speed
Roadway Type	Lanes	A.M.	P.M.
At Grade	2	15	15
At Grade	2	10	10

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

			Averag	ge Speed (m	iles per hou	r)			
10	15	20	25	30	35	40	45	50	55
24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83
	24.84 22.93 21.02 19.63 18.24 16.86 15.47 14.08	24.84 16.74 22.93 15.46 21.02 14.17 19.63 13.24 18.24 12.31 16.86 11.37 15.47 10.44 14.08 9.51	24.84 16.74 12.71 22.93 15.46 11.73 21.02 14.17 10.75 19.63 13.24 10.04 18.24 12.31 9.33 16.86 11.37 8.63 15.47 10.44 7.92 14.08 9.51 7.21	10 15 20 25 24.84 16.74 12.71 10.30 22.93 15.46 11.73 9.50 21.02 14.17 10.75 8.70 19.63 13.24 10.04 8.13 18.24 12.31 9.33 7.55 16.86 11.37 8.63 6.98 15.47 10.44 7.92 6.40 14.08 9.51 7.21 5.83	10 15 20 25 30 24.84 16.74 12.71 10.30 8.67 22.93 15.46 11.73 9.50 8.00 21.02 14.17 10.75 8.70 7.33 19.63 13.24 10.04 8.13 6.85 18.24 12.31 9.33 7.55 6.36 16.86 11.37 8.63 6.98 5.88 15.47 10.44 7.92 6.40 5.39 14.08 9.51 7.21 5.83 4.91	10 15 20 25 30 35 24.84 16.74 12.71 10.30 8.67 7.50 22.93 15.46 11.73 9.50 8.00 6.93 21.02 14.17 10.75 8.70 7.33 6.35 19.63 13.24 10.04 8.13 6.85 5.93 18.24 12.31 9.33 7.55 6.36 5.52 16.86 11.37 8.63 6.98 5.88 5.10 15.47 10.44 7.92 6.40 5.39 4.69 14.08 9.51 7.21 5.83 4.91 4.27	24.84 16.74 12.71 10.30 8.67 7.50 6.65 22.93 15.46 11.73 9.50 8.00 6.93 6.14 21.02 14.17 10.75 8.70 7.33 6.35 5.63 19.63 13.24 10.04 8.13 6.85 5.93 5.27 18.24 12.31 9.33 7.55 6.36 5.52 4.90 16.86 11.37 8.63 6.98 5.88 5.10 4.54 15.47 10.44 7.92 6.40 5.39 4.69 4.17 14.08 9.51 7.21 5.83 4.91 4.27 3.81	10 15 20 25 30 35 40 45 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52	10 15 20 25 30 35 40 45 50 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 5.78 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 5.35 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 4.92 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 4.62 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 4.32 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 4.01 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 3.71 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52 3.41

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road 404 E-W Road 536 N-S Road 767 E-W Road 939

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	2.2	1.7	1.0	*	404	*	14.17	÷	100,000
E-W Road	5.7	4.0	1.7	*	536	*	21.02	÷	100,000
P.M. Peak Hour									
N-S Road	2.2	1.7	1.0	*	767	*	14.17	÷	100,000
E-W Road	5.7	4.0	1.7	*	939	*	21.02	÷	100,000

TOTAL	CO	CONCENTRATIONS	(ppm)
-------	----	----------------	-------

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.5	5.1	3.0
100 Feet from Roadway Edge	4.2	4.7	2.7
300 Feet from Roadway Edge	3.9	4.1	2.3

Project Title:

Riverpark

Intersection:

Oxnard Boulevard & Gonzales Road

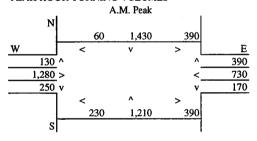
Analysis Condition:

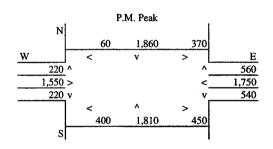
Nearest Air Monitoring Station measuring CO:

Future (2020) With Project None

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm): 3.7 2.0

Persistence Factor: Analysis Year:


0.7 2010


			No. of	Average C	ruise Speed
		Roadway Type	Lanes	A.M.	P.M.
North-South Roadway:	Oxnard Boulevard	At Grade	6	20	20
East-West Roadway:	Gonzales Road	At Grade	6	20	20

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	e Speed (m	iles per houi	:)			
Year	10	15	20	25	30	35	40	45	50	.55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road

3,680

E-W Road 3,350 N-S Road E-W Road 5,280 5,220

Reference CO Concentrations				Traffic		Emission		
50 Feet	100 Feet	300 Feet		Volume		Factor		
4.9	3.5	1.6	*	3,680	*	5.52	÷	100,000
2.0	1.7	1.1	*	3,350	*	5.52	÷	100,000
4.9	3.5	1.6	*	5,280	*	5.52	÷	100,000
2.0	1.7	1.1	*	5,220	*	5.52	÷	100,000
	50 Feet 4.9 2.0	50 Feet 100 Feet 4.9 3.5 2.0 1.7	50 Feet 100 Feet 300 Feet 4.9 3.5 1.6 2.0 1.7 1.1 4.9 3.5 1.6	50 Feet 100 Feet 300 Feet 4.9 3.5 1.6 * 2.0 1.7 1.1 *	50 Feet 100 Feet 300 Feet Volume 4.9 3.5 1.6 * 3,680 2.0 1.7 1.1 * 3,350 4.9 3.5 1.6 * 5,280	50 Feet 100 Feet 300 Feet Volume 4.9 3.5 1.6 * 3,680 * 2.0 1.7 1.1 * 3,350 * 4.9 3.5 1.6 * 5,280 *	50 Feet 100 Feet 300 Feet Volume Factor 4.9 3.5 1.6 * 3,680 * 5.52 2.0 1.7 1.1 * 3,350 * 5.52 4.9 3.5 1.6 * 5,280 * 5.52	50 Feet 100 Feet 300 Feet Volume Factor 4.9 3.5 1.6 * 3,680 * 5.52 ÷ 2.0 1.7 1.1 * 3,350 * 5.52 ÷ 4.9 3.5 1.6 * 5,280 * 5.52 ÷

TOTAL CO CONCENTRATIONS (ppm)			
	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.1	5.7	3.4
100 Feet from Roadway Edge	4.7	5.2	3.1
300 Feet from Roadway Edge	4.2	4.5	2.5

Project Title:

Intersection:

Riverpark

Johnson Drive & Bristol Road Future (2020) With Project

Analysis Condition:

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

Nearest Air Monitoring Station measuring CO:

3.7

2.0

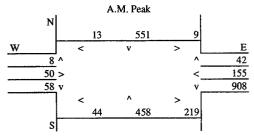
Persistence Factor:

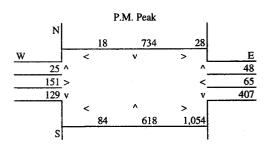
0.7

Analysis Year:

2010

North-South Roadway: East-West Roadway:


Johnson Drive **Bristol Road**


Average Cruise Speed No. of Roadway Type Lanes A.M. P.M. 20 20 At Grade 4 At Grade 15 15

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

Average Speed (miles per hour)											
10	15	20	25	30	35	40	45	50	55		
24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88		
22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46		
21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03		
19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73		
18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43		
16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14		
15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84		
14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54		
10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83		
	24.84 22.93 21.02 19.63 18.24 16.86 15.47 14.08	24.84 16.74 22.93 15.46 21.02 14.17 19.63 13.24 18.24 12.31 16.86 11.37 15.47 10.44 14.08 9.51	24.84 16.74 12.71 22.93 15.46 11.73 21.02 14.17 10.75 19.63 13.24 10.04 18.24 12.31 9.33 16.86 11.37 8.63 15.47 10.44 7.92 14.08 9.51 7.21	10 15 20 25 24.84 16.74 12.71 10.30 22.93 15.46 11.73 9.50 21.02 14.17 10.75 8.70 19.63 13.24 10.04 8.13 18.24 12.31 9.33 7.55 16.86 11.37 8.63 6.98 15.47 10.44 7.92 6.40 14.08 9.51 7.21 5.83	10 15 20 25 30 24.84 16.74 12.71 10.30 8.67 22.93 15.46 11.73 9.50 8.00 21.02 14.17 10.75 8.70 7.33 19.63 13.24 10.04 8.13 6.85 18.24 12.31 9.33 7.55 6.36 16.86 11.37 8.63 6.98 5.88 15.47 10.44 7.92 6.40 5.39 14.08 9.51 7.21 5.83 4.91	10 15 20 25 30 35 24.84 16.74 12.71 10.30 8.67 7.50 22.93 15.46 11.73 9.50 8.00 6.93 21.02 14.17 10.75 8.70 7.33 6.35 19.63 13.24 10.04 8.13 6.85 5.93 18.24 12.31 9.33 7.55 6.36 5.52 16.86 11.37 8.63 6.98 5.88 5.10 15.47 10.44 7.92 6.40 5.39 4.69 14.08 9.51 7.21 5.83 4.91 4.27	10 15 20 25 30 35 40 24.84 16.74 12.71 10.30 8.67 7.50 6.65 22.93 15.46 11.73 9.50 8.00 6.93 6.14 21.02 14.17 10.75 8.70 7.33 6.35 5.63 19.63 13.24 10.04 8.13 6.85 5.93 5.27 18.24 12.31 9.33 7.55 6.36 5.52 4.90 16.86 11.37 8.63 6.98 5.88 5.10 4.54 15.47 10.44 7.92 6.40 5.39 4.69 4.17 14.08 9.51 7.21 5.83 4.91 4.27 3.81	10 15 20 25 30 35 40 45 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52	10 15 20 25 30 35 40 45 50 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 5.78 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 5.35 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 4.92 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 4.62 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 4.32 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 4.01 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 3.71 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52 3.41		

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 2,238 1,383 N-S Road E-W Road 3,026 1,753

ROADWAY CO CONTRIBUTIONS

ICICICI	Reference CO Concentrations			Traffic		Emission		
50 Feet	100 Feet	300 Feet		Volume		Factor		
5.4	3.8	1.6	*	2,238	*	5.52	÷	100,000
2.2	1.7	1.1	*	1,383	*	7.30	÷	100,000
5.4	3.8	1.6	*	3,026	*	5.52	÷	100,000
2.2	1.7	1.1	*	1,753	*	7.30	÷	100,000
	5.4 2.2 5.4	5.4 3.8 2.2 1.7 5.4 3.8	5.4 3.8 1.6 2.2 1.7 1.1 5.4 3.8 1.6	5.4 3.8 1.6 * 2.2 1.7 1.1 * 5.4 3.8 1.6 *	5.4 3.8 1.6 * 2,238 2.2 1.7 1.1 * 1,383 5.4 3.8 1.6 * 3,026	5.4 3.8 1.6 * 2,238 * 2.2 1.7 1.1 * 1,383 * 5.4 3.8 1.6 * 3,026 *	5.4 3.8 1.6 * 2,238 * 5.52 2.2 1.7 1.1 * 1,383 * 7.30 5.4 3.8 1.6 * 3,026 * 5.52	5.4 3.8 1.6 * 2,238 * 5.52 ÷ 2.2 1.7 1.1 * 1,383 * 7.30 ÷ 5.54 3.8 1.6 * 3,026 * 5.52 ÷

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.6	4.9	2.8
100 Feet from Roadway Edge	4.3	4.6	2.6
300 Feet from Roadway Edge	4.0	4.1	2.3

Project Title:

Riverpark

Intersection:

Analysis Condition:

Johnson Drive & North Bank Drive Future (2020) With Project

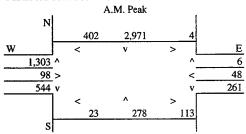
Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

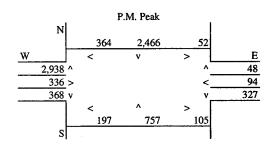
None 3.7

Background 8-hour CO Concentration (ppm): Persistence Factor:

2.0

Analysis Year:


0.7 2010


			No. of	Average Cruise Speed		
		Roadway Type	Lanes	A.M.	P.M.	
North-South Roadway:	Johnson Drive	At Grade	4	20	20	
East-West Roadway:	North Bank Drive	At Grade	4	15	15	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

	Average Speed (miles per hour)											
Year	10	15	20	25	30	35	40	45	50	55		
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88		
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46		
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03		
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73		
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43		
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14		
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84		
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54		
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83		
2010	10.70	7.50	2.22	1.10	3.17	5.20	2.70		2.02			

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road

4,964 2,418

E-W Road

N-S Road E-W Road 6,625 4,297

	Reference CO Concentrations				Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	4,964	*	5.52	÷	100,000
E-W Road	2.2	1.7	1.1	*	2,418	*	7.30	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	6,625	*	5.52	÷	100,000
E-W Road	2.2	1.7	1.1	*	4,297	*	7.30	÷	100,000
D // Road		•••			-,				,

TOTAL CO CONCENTRATIONS (ppm)			
	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.6	6.4	3.9
100 Feet from Roadway Edge	5.0	5.6	3.3
300 Feet from Roadway Edge	4.3	4.6	2.7

Project Title:

Intersection:

Riverpark

Johnson Drive & Ralston Street Future (2020) With Project

Analysis Condition:

Nearest Air Monitoring Station measuring CO:

None

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

3.7

Persistence Factor:

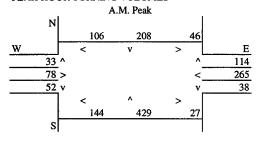
2.0

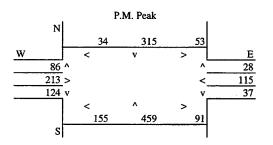
0.7

Analysis Year:

2010

North-South Roadway: East-West Roadway:


Johnson Drive Ralston Street


140. 01	Average Crusse opeco			
Lanes	A.M.	P.M.		
2	20	20		
2	20	20		
	Lanes 2 2	Lanes A.M. 2 20		

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

	Average Speed (miles per hour)											
Year	10	15	20	25	30	35	40	45	50	55		
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88		
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46		
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03		
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73		
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43		
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14		
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84		
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54		
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83		

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 936 678

N-S Road E-W Road 1,181 727

ROADWAY CO CONTRIBUTIONS

	Reference CO Concentrations				Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.7	4.0	1.7	*	936	*	5.52	÷	100,000
E-W Road	2.2	1.7	1.0	*	678	*	5.52	÷	100,000
P.M. Peak Hour									
N-S Road	5.7	4.0	1.7	*	1,181	*	5.52	÷	100,000
E-W Road	2.2	1.7	1.0	*	727	*	5.52	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.1	4.2	2.3
100 Feet from Roadway Edge	4.0	4.0	2.2
300 Feet from Roadway Edge	3.8	3,9	2.1

Project Title:

Riverpark

Intersection:

Victoria Avenue & Ralston Street

Analysis Condition:

Future (2020) With Project

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

None 3.7

Background 8-hour CO Concentration (ppm): Persistence Factor:

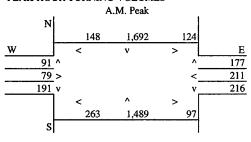
2.0

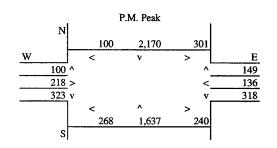
Analysis Year:

0.7 2010

North-South Roadway: East-West Roadway:

Victoria Avenue Ralston Street
 Roadway Type
 No. of Lanes
 Average Cruise Speed


 At Grade
 6
 20
 20


 At Grade
 4
 20
 20

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	e Speed (m	iles per hou	•)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road 3,948 E-W Road 983 N-S Road 4,956 E-W Road 1,362

Factor		
5.52	÷	100,000
5.52	÷	100,000
5.52	÷	100,000
5.52	÷	100,000

TOTAL	സ	CONCENT	TRATION	(mnm) 21
IVIAL	\sim	CONCER	INALION	O (DUILL)

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.9	5.2	3.1
100 Feet from Roadway Edge	4.6	4.8	2.8
300 Feet from Roadway Edge	4.1	4.2	2.4

Project Title:

Riverpark

Intersection:

Victoria Avenue & Telephone Road

Analysis Condition:

Future (2020) With Project None

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

3.7

Background 8-hour CO Concentration (ppm):

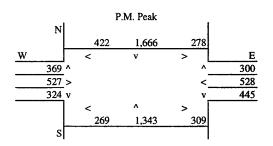
2.0

Persistence Factor:

0.7

Analysis Year:

2010


			INO. OI	Average	ruise spee
		Roadway Type	Lanes	A.M.	P.M.
North-South Roadway:	Victoria Avenue	At Grade	8	20	20
East-West Roadway:	Telephone Road	At Grade	6	20	20

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	ge Speed (m	iles per hou	r)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

	Α	M. Peak		
N			i	
1	384	1,323	232	
W	<	v	>	E
318 ^			^_	71
270 >			<_	598
151 v			v_	340
	<	٨	>	
	180	1,420	209	
s				

Representative Traffic Volumes (Vehicles per Hour)

N-S Road 3,748 E-W Road 1,901 N-S Road 4,378 E-W Road 2,439

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	4.6	3.4	1.5	*	3,748	*	5.52	÷	100,000
E-W Road	2.0	1.7	1.1	*	1,901	*	5.52	÷	100,000
P.M. Peak Hour									
N-S Road	4.6	3.4	1.5	*	4,378	*	5.52	÷	100,000
E-W Road	2.0	1.7	1.1	*	2,439	*	5.52	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.9	5.1	3.0
100 Feet from Roadway Edge	4.6	4.8	2.7
300 Feet from Roadway Edge	4,1	4.2	2.4

Project Title:

Intersection:

Valentine Road & US 101 (SB)

Analysis Condition:

Future (2020) With Project

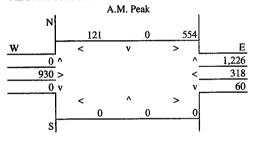
Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

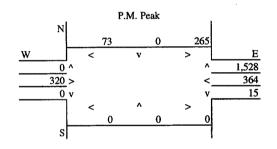
None 3.7

Persistence Factor:

2.0

Analysis Year:


0.7 2010


			No. of	Average C	ruise Speed	
		Roadway Type	Lanes	A.M.	P.M.	
North-South Roadway:	US 101 (SB)	At Grade	4	15	15	
East-West Roadway:	Valentine Road	At Grade	4	15	15	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	e Speed (m	iles per hour)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road

1,901

E-W Road 3,088 N-S Road E-W Road 1,866 2,492

Reference CO Concentrations				Traffic		Emission		
50 Feet	100 Feet	300 Feet		Volume		Factor		
2.2	1.7	1.1	*	1,901	*	7.30	÷	100,000
5.4	3.8	1.6	*	3,088	*	7.30	÷	100,000
2.2	1.7	1.1	*	1,866	*	7.30	÷	100,000
5.4	3.8	1.6	*	2,492	*	7.30	÷	100,000
	2.2 5.4	50 Feet 100 Feet 2.2 1.7 5.4 3.8 2.2 1.7	50 Feet 100 Feet 300 Feet 2.2 1.7 1.1 5.4 3.8 1.6 2.2 1.7 1.1	50 Feet 100 Feet 300 Feet 2.2 1.7 1.1 * 5.4 3.8 1.6 * 2.2 1.7 1.1 *	50 Feet 100 Feet 300 Feet Volume 2.2 1.7 1.1 * 1,901 5.4 3.8 1.6 * 3,088 2.2 1.7 1.1 * 1,866	50 Feet 100 Feet 300 Feet Volume 2.2 1.7 1.1 * 1,901 * 5.4 3.8 1.6 * 3,088 * 2.2 1.7 1.1 * 1,866 *	50 Feet 100 Feet 300 Feet Volume Factor 2.2 1.7 1.1 * 1,901 * 7.30 5.4 3.8 1.6 * 3,088 * 7.30 2.2 1.7 1.1 * 1,866 * 7.30	50 Feet 100 Feet 300 Feet Volume Factor 2.2 1.7 1.1 * 1,901 * 7.30 ÷ 5.4 3.8 1.6 * 3,088 * 7.30 ÷ 2.2 1.7 1.1 * 1,866 * 7.30 ÷

TOTAL.	CO	CONCENTRATIONS	(mpm)

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.2	5.0	3.1
100 Feet from Roadway Edge	4.8	4.6	2.8
300 Feet from Roadway Edge	4.2	4.1	2.4

Project Title:

Riverpark

Intersection:

Victoria Avenue & Valentine Road Future (2020) With Project

Analysis Condition:

Nearest Air Monitoring Station measuring CO:

Background 1-hour CO Concentration (ppm):

Background 8-hour CO Concentration (ppm):

None 3.7

Persistence Factor:

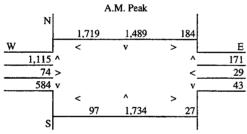
2.0

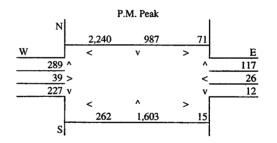
0.7

Analysis Year:

2010

North-South Roadway: East-West Roadway:


Victoria Avenue Valentine Road


No. of Average Cruise Speed Roadway Type A.M. P.M. Lanes At Grade 4 20 20 At Grade 2 15 15

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

	Average Speed (miles per hour)										
Year	10	15	20	25	30	35	40	45	50	55	
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88	
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46	
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03	
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73	
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43	
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14	
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84	
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54	
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83	

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road

6,412 3,618 N-S Road E-W Road

5,307 3,083

ROADWAY CO CONTRIBUTIONS

	Reference CO Concentrations				Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	6,412	*	5.52	÷	100,000
E-W Road	2.2	1.7	1.0	*	3,618	*	7.30	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	5,307	*	5.52	÷	100,000
E-W Road	2.2	1.7	1.0	*	3,083	*	7.30	÷	100,000
N-S Road									

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	6.2	5.8	3.7
100 Feet from Roadway Edge	5.5	5.2	3.3
300 Feet from Roadway Edge	4.5	4.4	2.6

Project Title:

Riverpark

Intersection:

Analysis Condition:

Future (2020) With Project

Ventura Road & Gonzales Road

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

None 3.7

Background 8-hour CO Concentration (ppm): Persistence Factor:

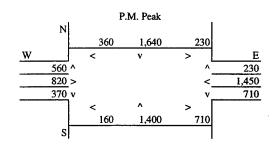
2.0

Analysis Year:

0.7 2010

North-South Roadway: East-West Roadway:

Ventura Road Gonzales Road


No. of Average Cruise Speed Roadway Type Lanes A.M. P.M. 20 At Grade 4 20 At Grade 4 20 20

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

Average Speed (miles per hour)											
10	15	20	25	30	35	40	45	50	55		
24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88		
22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46		
21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03		
19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73		
18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43		
16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14		
15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84		
14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54		
10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83		
	24.84 22.93 21.02 19.63 18.24 16.86 15.47 14.08	24.84 16.74 22.93 15.46 21.02 14.17 19.63 13.24 18.24 12.31 16.86 11.37 15.47 10.44 14.08 9.51	24.84 16.74 12.71 22.93 15.46 11.73 21.02 14.17 10.75 19.63 13.24 10.04 18.24 12.31 9.33 16.86 11.37 8.63 15.47 10.44 7.92 14.08 9.51 7.21	10 15 20 25 24.84 16.74 12.71 10.30 22.93 15.46 11.73 9.50 21.02 14.17 10.75 8.70 19.63 13.24 10.04 8.13 18.24 12.31 9.33 7.55 16.86 11.37 8.63 6.98 15.47 10.44 7.92 6.40 14.08 9.51 7.21 5.83	10 15 20 25 30 24.84 16.74 12.71 10.30 8.67 22.93 15.46 11.73 9.50 8.00 21.02 14.17 10.75 8.70 7.33 19.63 13.24 10.04 8.13 6.85 18.24 12.31 9.33 7.55 6.36 16.86 11.37 8.63 6.98 5.88 15.47 10.44 7.92 6.40 5.39 14.08 9.51 7.21 5.83 4.91	10 15 20 25 30 35 24.84 16.74 12.71 10.30 8.67 7.50 22.93 15.46 11.73 9.50 8.00 6.93 21.02 14.17 10.75 8.70 7.33 6.35 19.63 13.24 10.04 8.13 6.85 5.93 18.24 12.31 9.33 7.55 6.36 5.52 16.86 11.37 8.63 6.98 5.88 5.10 15.47 10.44 7.92 6.40 5.39 4.69 14.08 9.51 7.21 5.83 4.91 4.27	10 15 20 25 30 35 40 24.84 16.74 12.71 10.30 8.67 7.50 6.65 22.93 15.46 11.73 9.50 8.00 6.93 6.14 21.02 14.17 10.75 8.70 7.33 6.35 5.63 19.63 13.24 10.04 8.13 6.85 5.93 5.27 18.24 12.31 9.33 7.55 6.36 5.52 4.90 16.86 11.37 8.63 6.98 5.88 5.10 4.54 15.47 10.44 7.92 6.40 5.39 4.69 4.17 14.08 9.51 7.21 5.83 4.91 4.27 3.81	10 15 20 25 30 35 40 45 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52	10 15 20 25 30 35 40 45 50 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 5.78 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 5.35 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 4.92 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 4.62 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 4.32 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 4.01 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 3.71 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52 3.41		

PEAK HOUR TURNING VOLUMES

		Α	.M. Peak		
	N				
		310	1,060	200	
w		<	v	>	E
	490 ^			^_	220
	870 >			<	1,000
	350 v			v	450
		<	٨	>	
		540	1,390	390	
	s				

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road

4,180 3,560

N-S Road E-W Road 4,990 4,150

ROADWAY CO CONTRIBUTIONS

Reference CO Concentrations				Traffic		Emission		
50 Feet	100 Feet	300 Feet		Volume		Factor		
5.4	3.8	1.6	*	4,180	*	5.52	÷	100,000
2.2	1.7	1.1	*	3,560	*	5.52	÷	100,000
5.4	3.8	1.6	*	4,990	*	5.52	÷	100,000
2.2	1.7	1.1	*	4,150	*	5.52	÷	100,000
	50 Feet 5.4 2.2 5.4	50 Feet 100 Feet 5.4 3.8 2.2 1.7 5.4 3.8	50 Feet 100 Feet 300 Feet 5.4 3.8 1.6 2.2 1.7 1.1 5.4 3.8 1.6	50 Feet 100 Feet 300 Feet 5.4 3.8 1.6 * 2.2 1.7 1.1 * 5.4 3.8 1.6 *	50 Feet 100 Feet 300 Feet Volume 5.4 3.8 1.6 * 4,180 2.2 1.7 1.1 * 3,560 5.4 3.8 1.6 * 4,990	50 Feet 100 Feet 300 Feet Volume 5.4 3.8 1.6 * 4,180 * 2.2 1.7 1.1 * 3,560 * 5.4 3.8 1.6 * 4,990 *	50 Feet 100 Feet 300 Feet Volume Factor 5.4 3.8 1.6 * 4,180 * 5.52 2.2 1.7 1.1 * 3,560 * 5.52 5.4 3.8 1.6 * 4,990 * 5.52	50 Feet 100 Feet 300 Feet Volume Factor 5.4 3.8 1.6 * 4,180 * 5.52 ÷ 2.2 1.7 1.1 * 3,560 * 5.52 ÷ 5.4 3.8 1.6 * 4,990 * 5.52 ÷

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.4	5.7	3.4
100 Feet from Roadway Edge	4.9	5.1	3.0
300 Feet from Roadway Edge	4.3	4.4	2.5

Project Title:

Riverpark

Intersection:

Ventura Road & Town Center Drive

Analysis Condition:

Future (2020) With Project None

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

3.7

Background 8-hour CO Concentration (ppm):

2.0

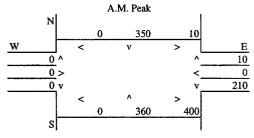
Persistence Factor:

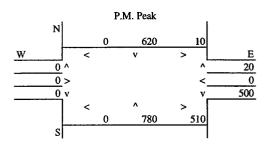
Analysis Year:

0.7 2010

North-South Roadway:

East-West Roadway:


Ventura Road Town Center Drive


	No. of	Average Cruise Speed		
Roadway Type	Lanes	A.M.	P.M.	
At Grade	4	15	15	
At Grade	4	15	15	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

10 4.84	15 16.74	20 12.71	25	30	35	40	45	50	55
	16.74	12.71				70	73	30	33
0.00		1 4 . / 1	10.30	8.67	7.50	6.65	6.07	5.78	5.88
2.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
1.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
9.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
8.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
6.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
5.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
4.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
0.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83
	9.63 8.24 5.86 5.47 4.08	9.63 13.24 3.24 12.31 5.86 11.37 5.47 10.44 4.08 9.51	9.63 13.24 10.04 3.24 12.31 9.33 5.86 11.37 8.63 5.47 10.44 7.92 4.08 9.51 7.21	9.63 13.24 10.04 8.13 3.24 12.31 9.33 7.55 5.86 11.37 8.63 6.98 5.47 10.44 7.92 6.40 4.08 9.51 7.21 5.83	9.63 13.24 10.04 8.13 6.85 3.24 12.31 9.33 7.55 6.36 5.86 11.37 8.63 6.98 5.88 5.47 10.44 7.92 6.40 5.39 4.08 9.51 7.21 5.83 4.91	9.63 13.24 10.04 8.13 6.85 5.93 3.24 12.31 9.33 7.55 6.36 5.52 6.86 11.37 8.63 6.98 5.88 5.10 5.47 10.44 7.92 6.40 5.39 4.69 4.08 9.51 7.21 5.83 4.91 4.27	9.63 13.24 10.04 8.13 6.85 5.93 5.27 3.24 12.31 9.33 7.55 6.36 5.52 4.90 6.86 11.37 8.63 6.98 5.88 5.10 4.54 5.47 10.44 7.92 6.40 5.39 4.69 4.17 4.08 9.51 7.21 5.83 4.91 4.27 3.81	9.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 3.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 5.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 5.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 4.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52	9.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 4.62 3.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 4.32 6.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 4.01 5.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 3.71 4.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52 3.41

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 1,320 630

N-S Road E-W Road 2,410 1,040

ROADWAY CO CONTRIBUTIONS

	Reference CO Concentrations				Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	1,320	*	7.30	÷	100,000
E-W Road	2.2	1.7	1.1	*	630	*	7.30	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	2.410	*	7.30	÷	100,000
E-W Road	2.2	1.7	1.1	*	1,040	*	7.30	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.3	4.8	2.8
100 Feet from Roadway Edge	4.1	4.5	2.6
300 Feet from Roadway Edge	3.9	4.1	2.3

Project Title:

roject riue.

Riverpark

Intersection:

Ventura Road & Vineyard Avenue

Analysis Condition:

Future (2020) With Project

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

None 3.7

Background 8-hour CO Concentration (ppm): Persistence Factor:

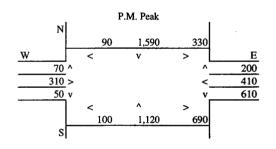
2.0

Analysis Year:

0.7 2010

North-South Roadway: East-West Roadway:

Ventura Road Vineyard Boulevard


	No. of	Average Cruise Speed		
Roadway Type	Lanes	A.M.	P.M.	
At Grade	4	20	20	
At Grade	4	20	20	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

	Average Speed (miles per hour)									
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83
2010	10.70	7.50	5.52	1.10	5.77	3.20	2.,,,	2.75		

PEAK HOUR TURNING VOLUMES

	A.M. Peak								
N	80	690	40						
w	<	v	>	E					
60 ^			۸	150					
420 >	,		<	210					
60 v			v	280					
	<	۸	>						
L	80	1,250	710						
s									

Representative Traffic Volumes (Vehicles per Hour)

N-S Road

3,070

E-W Road 1,810

N-S Road E-W Road 4,160 2,550

ROADWAY CO CONTRIBUTIONS

Reference CO Concentrations				Traffic		Emission		
50 Feet	100 Feet	300 Feet		Volume		Factor		
5.4	3.8	1.6	*	3,070	*	5.52	÷	100,000
2.2	1.7	1.1	*	1,810	*	5.52	÷	100,000
5.4	3.8	1.6	*	4,160	*	5.52	÷	100,000
2.2	1.7	1.1	*	2,550	*	5.52	÷	100,000
	50 Feet 5.4 2.2	50 Feet 100 Feet 5.4 3.8 2.2 1.7 5.4 3.8	50 Feet 100 Feet 300 Feet 5.4 3.8 1.6 2.2 1.7 1.1 5.4 3.8 1.6	50 Feet 100 Feet 300 Feet 5.4 3.8 1.6 * 2.2 1.7 1.1 * 5.4 3.8 1.6 *	50 Feet 100 Feet 300 Feet Volume 5.4 3.8 1.6 * 3,070 2.2 1.7 1.1 * 1,810 5.4 3.8 1.6 * 4,160	50 Feet 100 Feet 300 Feet Volume 5.4 3.8 1.6 * 3,070 * 2.2 1.7 1.1 * 1,810 * 5.4 3.8 1.6 * 4,160 *	50 Feet 100 Feet 300 Feet Volume Factor 5.4 3.8 1.6 * 3,070 * 5.52 2.2 1.7 1.1 * 1,810 * 5.52 5.4 3.8 1.6 * 4,160 * 5.52	50 Feet 100 Feet 300 Feet Volume Factor 5.4 3.8 1.6 * 3,070 * 5.52 ÷ 2.2 1.7 1.1 * 1,810 * 5.52 ÷ 5.4 3.8 1.6 * 4,160 * 5.52 ÷

TOTAL CO CONCI	NTRATIONS (ppm)	
----------------	-----------------	--

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.8	5.2	3.1
100 Feet from Roadway Edge	4.5	4.8	2.8
300 Feet from Roadway Edge	4.1	4.2	2.4

Project Title:

Riverpark

Intersection:

Ventura Road & Wagon Wheel Road Future (2020) With Project

Analysis Condition:

None

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

3.7

Background 8-hour CO Concentration (ppm):

2.0

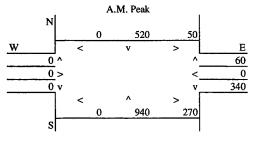
Persistence Factor:

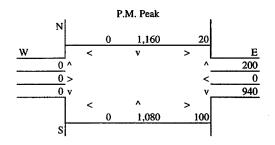
0.7

Analysis Year:

2010

North-South Roadway: East-West Roadway:


Ventura Boluevard Wagon Wheel Road


	No. of	Average Cruise Speed		
Roadway Type	Lanes	A.M.	P.M.	
At Grade	4	15	15	
At Grade	2	15	15	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

	Average Speed (miles per hour)								
10	15	20	25	30	35	40	45	50	55
24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83
	24.84 22.93 21.02 19.63 18.24 16.86 15.47 14.08	24.84 16.74 22.93 15.46 21.02 14.17 19.63 13.24 18.24 12.31 16.86 11.37 15.47 10.44 14.08 9.51	24.84 16.74 12.71 22.93 15.46 11.73 21.02 14.17 10.75 19.63 13.24 10.04 18.24 12.31 9.33 16.86 11.37 8.63 15.47 10.44 7.92 14.08 9.51 7.21	10 15 20 25 24.84 16.74 12.71 10.30 22.93 15.46 11.73 9.50 21.02 14.17 10.75 8.70 19.63 13.24 10.04 8.13 18.24 12.31 9.33 7.55 16.86 11.37 8.63 6.98 15.47 10.44 7.92 6.40 14.08 9.51 7.21 5.83	10 15 20 25 30 24.84 16.74 12.71 10.30 8.67 22.93 15.46 11.73 9.50 8.00 21.02 14.17 10.75 8.70 7.33 19.63 13.24 10.04 8.13 6.85 18.24 12.31 9.33 7.55 6.36 16.86 11.37 8.63 6.98 5.88 15.47 10.44 7.92 6.40 5.39 14.08 9.51 7.21 5.83 4.91	10 15 20 25 30 35 24.84 16.74 12.71 10.30 8.67 7.50 22.93 15.46 11.73 9.50 8.00 6.93 21.02 14.17 10.75 8.70 7.33 6.35 19.63 13.24 10.04 8.13 6.85 5.93 18.24 12.31 9.33 7.55 6.36 5.52 16.86 11.37 8.63 6.98 5.88 5.10 15.47 10.44 7.92 6.40 5.39 4.69 14.08 9.51 7.21 5.83 4.91 4.27	10 15 20 25 30 35 40 24.84 16.74 12.71 10.30 8.67 7.50 6.65 22.93 15.46 11.73 9.50 8.00 6.93 6.14 21.02 14.17 10.75 8.70 7.33 6.35 5.63 19.63 13.24 10.04 8.13 6.85 5.93 5.27 18.24 12.31 9.33 7.55 6.36 5.52 4.90 16.86 11.37 8.63 6.98 5.88 5.10 4.54 15.47 10.44 7.92 6.40 5.39 4.69 4.17 14.08 9.51 7.21 5.83 4.91 4.27 3.81	10 15 20 25 30 35 40 45 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52	10 15 20 25 30 35 40 45 50 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 5.78 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 5.35 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 4.92 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 4.62 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 4.32 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 4.01 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 3.71 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52 3.41

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 2,070

720

N-S Road E-W Road 3,280 1,260

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	2,070	*	7.30	÷	100,000
E-W Road	2.2	1.7	1.0	*	720	*	7.30	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	3,280	*	7.30	÷	100,000
E-W Road	2.2	1.7	1.0	*	1,260	*	7.30	÷	100,000

· · · · · · · · · · · · · · · · · · ·	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.6	5.2	3.0
100 Feet from Roadway Edge	4.4	4.8	2.7
300 Feet from Roadway Edge	4.0	4.2	2.3

Project Title:

Riverpark

Intersection:

Vineyard Avenue & Espanade Drive Future (2020) With Project

Analysis Condition:

Nearest Air Monitoring Station measuring CO:

None

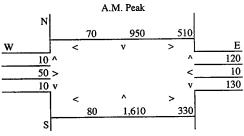
Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm): 3.7

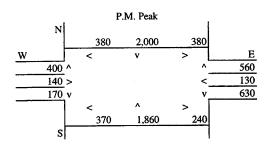
Persistence Factor:

2.0 0.7

Analysis Year:

2010


North-South Roadway:	
Fast-West Roadway:	


		No. of	Average Cruise Speed			
	Roadway Type	Lanes	A.M.	P.M.		
_	At Grade	6	15	15		
	At Grade	4	10	10		

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

Average Speed (miles per hour)									
10	15	20	25	30	35	40	45	50	55
24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
		11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
		10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
			8.13	6.85	5.93	5.27	4.82	4.62	4.73
				6.36	5.52	4.90	4.50	4.32	4.43
				5.88	5.10	4.54	4.17	4.01	4.14
				5.39	4.69	4.17	3.85	3.71	3.84
				4.91	4.27	3.81	3.52	3.41	3.54
10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83
	24.84 22.93 21.02 19.63 18.24 16.86 15.47 14.08	24.84 16.74 22.93 15.46 21.02 14.17 19.63 13.24 18.24 12.31 16.86 11.37 15.47 10.44 14.08 9.51	24.84 16.74 12.71 22.93 15.46 11.73 21.02 14.17 10.75 19.63 13.24 10.04 18.24 12.31 9.33 16.86 11.37 8.63 15.47 10.44 7.92 14.08 9.51 7.21	10 15 20 25 24.84 16.74 12.71 10.30 22.93 15.46 11.73 9.50 21.02 14.17 10.75 8.70 19.63 13.24 10.04 8.13 18.24 12.31 9.33 7.55 16.86 11.37 8.63 6.98 15.47 10.44 7.92 6.40 14.08 9.51 7.21 5.83	10 15 20 25 30 24.84 16.74 12.71 10.30 8.67 22.93 15.46 11.73 9.50 8.00 21.02 14.17 10.75 8.70 7.33 19.63 13.24 10.04 8.13 6.85 18.24 12.31 9.33 7.55 6.36 16.86 11.37 8.63 6.98 5.88 15.47 10.44 7.92 6.40 5.39 14.08 9.51 7.21 5.83 4.91	10 15 20 25 30 35 24.84 16.74 12.71 10.30 8.67 7.50 22.93 15.46 11.73 9.50 8.00 6.93 21.02 14.17 10.75 8.70 7.33 6.35 19.63 13.24 10.04 8.13 6.85 5.93 18.24 12.31 9.33 7.55 6.36 5.52 16.86 11.37 8.63 6.98 5.88 5.10 15.47 10.44 7.92 6.40 5.39 4.69 14.08 9.51 7.21 5.83 4.91 4.27	10 15 20 25 30 35 40 24.84 16.74 12.71 10.30 8.67 7.50 6.65 22.93 15.46 11.73 9.50 8.00 6.93 6.14 21.02 14.17 10.75 8.70 7.33 6.35 5.63 19.63 13.24 10.04 8.13 6.85 5.93 5.27 18.24 12.31 9.33 7.55 6.36 5.52 4.90 16.86 11.37 8.63 6.98 5.88 5.10 4.54 15.47 10.44 7.92 6.40 5.39 4.69 4.17 14.08 9.51 7.21 5.83 4.91 4.27 3.81	10 15 20 25 30 35 40 45 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52	10 15 20 25 30 35 40 45 50 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 5.78 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 5.35 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 4.92 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 4.62 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 4.32 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 4.01 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 3.71 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52 3.41

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road

3,270

E-W Road

1,150

N-S Road E-W Road 5,580 2,080

ROADWAY CO CONTRIBUTIONS

	Reference CO Concentrations				Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	4.9	3.5	1.6	*	3,270	*	7.30	÷	100,000
E-W Road	2.2	1.7	1.1	*	1,150	*	10.78	÷	100,000
P.M. Peak Hour									
N-S Road	4.9	3.5	1.6	*	5,580	*	7.30	÷	100,000
E-W Road	2.2	1.7	1.1	*	2,080	*	10.78	÷	100,000

TOTAL O	CO CONCENTRA	ATIONS	(ppm)
---------	--------------	--------	-------

••	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.1	6.2	3.7
100 Feet from Roadway Edge	4.7	5.5	3.3
300 Feet from Roadway Edge	4.2	4.6	2.6

Project Title:

Riverpark

Intersection:

Vineyard Avenue & Oxnard Boulevard

Analysis Condition:

Future (2020) With Project None

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

3.7

Background 8-hour CO Concentration (ppm):

2.0

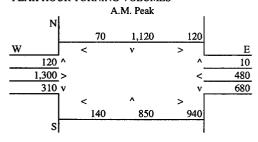
Persistence Factor:

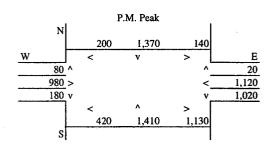
0.7

Analysis Year:

2010

North-South Roadway:
East-West Roadway:


Vineyard Avenue	
Oxnard Boulevard	


	No. of	Average C	ruise Speed
Roadway Type	Lanes	A.M.	P.M.
At Grade	6	15	15
At Grade	6	25	25

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

Average Speed (miles per hour)									
10	15	20	25	30	35	40	45	50	55
24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83
	24.84 22.93 21.02 19.63 18.24 16.86 15.47 14.08	24.84 16.74 22.93 15.46 21.02 14.17 19.63 13.24 18.24 12.31 16.86 11.37 15.47 10.44 14.08 9.51	24.84 16.74 12.71 22.93 15.46 11.73 21.02 14.17 10.75 19.63 13.24 10.04 18.24 12.31 9.33 16.86 11.37 8.63 15.47 10.44 7.92 14.08 9.51 7.21	10 15 20 25 24.84 16.74 12.71 10.30 22.93 15.46 11.73 9.50 21.02 14.17 10.75 8.70 19.63 13.24 10.04 8.13 18.24 12.31 9.33 7.55 16.86 11.37 8.63 6.98 15.47 10.44 7.92 6.40 14.08 9.51 7.21 5.83	10 15 20 25 30 24.84 16.74 12.71 10.30 8.67 22.93 15.46 11.73 9.50 8.00 21.02 14.17 10.75 8.70 7.33 19.63 13.24 10.04 8.13 6.85 18.24 12.31 9.33 7.55 6.36 16.86 11.37 8.63 6.98 5.88 15.47 10.44 7.92 6.40 5.39 14.08 9.51 7.21 5.83 4.91	10 15 20 25 30 35 24.84 16.74 12.71 10.30 8.67 7.50 22.93 15.46 11.73 9.50 8.00 6.93 21.02 14.17 10.75 8.70 7.33 6.35 19.63 13.24 10.04 8.13 6.85 5.93 18.24 12.31 9.33 7.55 6.36 5.52 16.86 11.37 8.63 6.98 5.88 5.10 15.47 10.44 7.92 6.40 5.39 4.69 14.08 9.51 7.21 5.83 4.91 4.27	10 15 20 25 30 35 40 24.84 16.74 12.71 10.30 8.67 7.50 6.65 22.93 15.46 11.73 9.50 8.00 6.93 6.14 21.02 14.17 10.75 8.70 7.33 6.35 5.63 19.63 13.24 10.04 8.13 6.85 5.93 5.27 18.24 12.31 9.33 7.55 6.36 5.52 4.90 16.86 11.37 8.63 6.98 5.88 5.10 4.54 15.47 10.44 7.92 6.40 5.39 4.69 4.17 14.08 9.51 7.21 5.83 4.91 4.27 3.81	10 15 20 25 30 35 40 45 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52	10 15 20 25 30 35 40 45 50 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 5.78 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 5.35 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 4.92 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 4.62 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 4.32 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 4.01 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 3.71 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52 3.41

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road 4,040 E-W Road 3,530 N-S Road 5,530 E-W Road 4,410

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	4.9	3.5	1.6	*	4,040	*	7.30	÷	100,000
E-W Road	2.0	1.7	1.1	*	3,530	*	4.46	÷	100,000
P.M. Peak Hour									
N-S Road	4.9	3.5	1.6	*	5,530	*	7.30	÷	100,000
E-W Road	2.0	1.7	1.1	*	4,410	*	4.46	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.5	6.1	3.7
100 Feet from Roadway Edge	5.0	5.4	3.2
300 Feet from Roadway Edge	4.3	4.6	2.6

Project Title:

Riverpark

Vineyard Avenue & Stroube Street

Future (2020) With Project

Intersection:

Analysis Condition: Nearest Air Monitoring Station measuring CO:

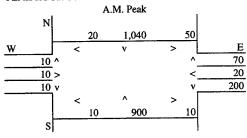
None 3.7

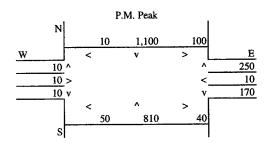
Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

Persistence Factor: Analysis Year:

2.0 0.7 2010

North-South Roadway:
Fact. West Roadway


Vineyard Avenue	
Stroube Street	


	No. of	Average Cruise Speed		
Roadway Type	Lanes	A.M.	P.M.	
At Grade	4	15	15	
At Grade	2	10	10	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

	Average Speed (miles per hour)											
Year	10	15	20	25	30	35	40	45	50	55		
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88		
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46		
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03		
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73		
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43		
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14		
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84		
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54		
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83		

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road 2,170 360 E-W Road

N-S Road 2.280 E-W Road 580

ROADWAY CO CONTRIBUTIONS

Referen	ce CO Conce	ntrations		Traffic		Emission		
50 Feet	100 Feet	300 Feet		Volume		Factor		
5.4	3.8	1.6	*	2,170	*	7.30	÷	100,000
2.2	1.7	1.0	*	360	*	10.78	÷	100,000
5.4	3.8	1.6	*	2,280	*	7.30	÷	100,000
2.2	1.7	1.0	*	580	*	10.78	÷	100,000
	5.4 2.2 5.4	5.4 3.8 2.2 1.7 5.4 3.8	5.4 3.8 1.6 2.2 1.7 1.0 5.4 3.8 1.6	50 Feet 100 Feet 300 Feet 5.4 3.8 1.6 * 2.2 1.7 1.0 * 5.4 3.8 1.6 *	50 Feet 100 Feet 300 Feet Volume 5.4 3.8 1.6 * 2,170 2.2 1.7 1.0 * 360 5.4 3.8 1.6 * 2,280	5.4 3.8 1.6 * 2,170 * 2.2 1.7 1.0 * 360 * 5.4 3.8 1.6 * 2,280 *	50 Feet 100 Feet 300 Feet Volume Factor 5.4 3.8 1.6 * 2,170 * 7.30 2.2 1.7 1.0 * 360 * 10.78 5.4 3.8 1.6 * 2,280 * 7.30	50 Feet 100 Feet 300 Feet Volume Factor 5.4 3.8 1.6 * 2,170 * 7.30 ÷ 2.2 1.7 1.0 * 360 * 10.78 ÷ 5.4 3.8 1.6 * 2,280 * 7.30 ÷

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.6	4.7	2.7
100 Feet from Roadway Edge	4.4	4.4	2.5
300 Feet from Roadway Edge	4.0	4.0	2.2

Project Title:

Intersection:

Riverpark

Vineyard Avenue & Simon Way Future (2020) With Project

Analysis Condition:

None

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

3.7

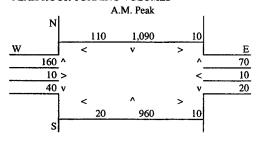
Background 8-hour CO Concentration (ppm):

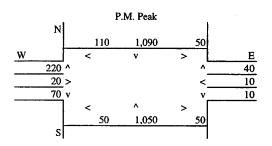
2.0

Persistence Factor:

0.7

Analysis Year:


2010


			No. of Average Cruise Sp		ruise Speed
		Roadway Type	Lanes	A.M.	P.M.
North-South Roadway:	Vineyard Avenue	At Grade	4	25	25
East-West Roadway:	Simon Way	At Grade	2	10	10

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

	Average Speed (miles per hour)										
Year	10	15	20	25	30	35	40	45	50	55	
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88	
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46	
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03	
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73	
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43	
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14	
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84	
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54	
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83	

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 2,400

350

N-S Road E-W Road 2,560 480

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	2,400	*	4.46	÷	100,000
E-W Road	2.2	1.7	1.0	*	350	*	10.78	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	2,560	*	4.46	÷	100,000
E-W Road	2.2	1.7	1.0	*	480	*	10.78	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.4	4.4	2.5
100 Feet from Roadway Edge	4.2	4.2	2.4
300 Feet from Roadway Edge	3.9	3.9	2.2

Project Title:

Project Tille.

Rivernark

Intersection:

Analysis Condition:

Vineyard Avenue & Myrtle Street

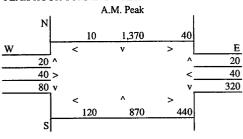
Nearest Air Monitoring Station measuring CO:

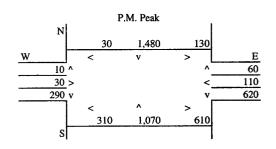
Future (2020) With Project

Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm): None 3.7 2.0

Persistence Factor: Analysis Year: 0.7 2010

North-South Roadway: East-West Roadway:


Vineyard Avenue Myrtle Street


1	No. of	Average Ci	ruise Speed
Roadway Type	Lanes	A.M.	P.M.
At Grade	4	15	15
At Grade	2	10	10

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

	Average Speed (miles per hour)										
Year	10	15	20	25	30	35	40	45	50	55	
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88	
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46	
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03	
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73	
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43	
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14	
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84	
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54	
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83	

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 3,200 900 N-S Road 4,380 E-W Road 1,560

ROADWAY CO CONTRIBUTIONS

	Reference CO Concentrations				Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	3,200	*	7.30	÷	100,000
E-W Road	2.2	1.7	1.0	*	900	*	10.78	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	4,380	*	7.30	÷	100,000
E-W Road	2.2	1.7	1.0	*	1,560	*	10.78	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.2	5.8	3.5
100 Feet from Roadway Edge	4.8	5.2	3.1
300 Feet from Roadway Edge	4.2	4.4	2.5

Project Title:

Intersection:

Wagon Wheel Road & Southbound 101 Exit

Analysis Condition:

Future (2020) With Project

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

3.7

Background 8-hour CO Concentration (ppm):

2.0

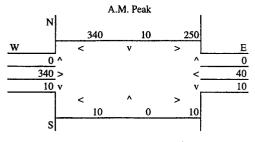
Persistence Factor:

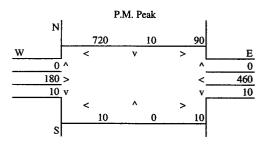
0.7

Analysis Year:

2010

North-South Roadway: East-West Roadway:


Southbound 101 Exit Wagon Wheel Road


	No. of	Average Cruise Speed			
Roadway Type	Lanes	A.M.	P.M.		
At Grade	2	15	15		
At Grade	2	10	10		

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	ge Speed (m	iles per hou	г)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	.3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83
2010	10.76	7.50	3.32	4.40	3.11	3.40	2.93	2.13	2.09	

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 600 740

N-S Road E-W Road

820 1,380

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	2.2	1.7	1.0	*	600	*	7.30	÷	100,000
E-W Road	5.7	4.0	1.7	*	740	*	10.78	÷	100,000
P.M. Peak Hour									
N-S Road	2.2	1.7	1.0	*	820	*	7.30	÷	100,000
E-W Road	5.7	4.0	1.7	*	1,380	*	10.78	÷	100,000

	A.M .	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.3	4.7	2.7
100 Feet from Roadway Edge	4.i	4.4	2.5
300 Feet from Roadway Edge	3.9	4.0	2.2

Project Title:

Intersection:

Analysis Condition:

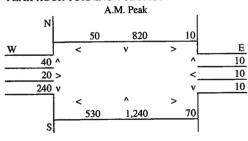
Oxnard Boulevard & Town Center Drive

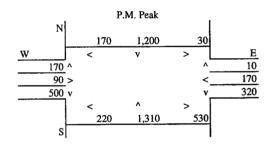
Future (2020) With Project

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

None 3.7 2.0

Persistence Factor: Analysis Year:


0.7 2010


			No. of	Average C	ruise Speed
		Roadway Type	Lanes	A.M.	P.M.
North-South Roadway:	Oxnard Boluevard	At Grade	4	15	15
East-West Roadway:	Town Center Drive	At Grade	4	15	15

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	e Speed (m	iles per hour)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 2,910 890

4,080 N-S Road E-W Road 1,320

ROADWAY CO CONTRIBUTIONS

Referen	Reference CO Concentrations			Traffic		Emission		
50 Feet	100 Feet	300 Feet		Volume		Factor		
5.4	3.8	1.6	*	2,910	*	7.30	÷	100,000
2.2	1.7	1.1	*	890	*	7.30	÷	100,000
5.4	3.8	1.6	*	4,080	*	7.30	÷	100,000
2.2	1.7	1.1	*	1,320	*	7.30	÷	100,000
	50 Feet 5.4 2.2 5.4	50 Feet 100 Feet 5.4 3.8 2.2 1.7 5.4 3.8	50 Feet 100 Feet 300 Feet 5.4 3.8 1.6 2.2 1.7 1.1 5.4 3.8 1.6	50 Feet 100 Feet 300 Feet 5.4 3.8 1.6 * 2.2 1.7 1.1 * 5.4 3.8 1.6 *	50 Feet 100 Feet 300 Feet Volume 5.4 3.8 1.6 * 2,910 2.2 1.7 1.1 * 890 5.4 3.8 1.6 * 4,080	50 Feet 100 Feet 300 Feet Volume 5.4 3.8 1.6 * 2,910 * 2.2 1.7 1.1 * 890 * 5.4 3.8 1.6 * 4,080 *	To Feet 100 Feet 300 Feet Volume Factor	50 Feet 100 Feet 300 Feet Volume Factor 5.4 3.8 1.6 * 2,910 * 7.30 ÷ 2.2 1.7 1.1 * 890 * 7.30 ÷ 5.4 3.8 1.6 * 4,080 * 7.30 ÷

mom a r	00	CONCENTED	ATTONIC (
TOTAL	(x)	CONCENTR	A HONS ((maga

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	5.0	5.5	3.3
100 Feet from Roadway Edge	4.6	5.0	2.9
300 Feet from Roadway Edge	4.1	4.3	2.4

Project Title:

Riverpark

Intersection:

Oxnard Boulevard & Santa Clara River Boulevard

Analysis Condition:

Future (2020) With Project

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

None 3.7

Background 8-hour CO Concentration (ppm):

2.0

Persistence Factor:

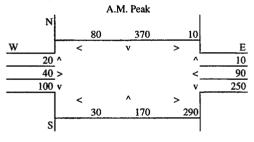
0.7

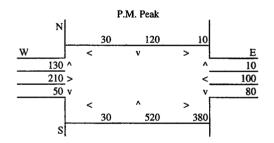
Analysis Year:

2010

North-South Roadway:
East-West Roadway:

Oxnard Boulevard Santa Clara River Boulevard


Roadway Type	Lanes	A.M.	P.M.
At Grade	4	15	15
At Grade	4	15	15


Average Cruise Speed

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	e Speed (m	iles per hou	r)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 1,210 690 N-S Road E-W Road 1,180 790

ROADWAY CO CONTRIBUTIONS

Referen	ce CO Conce	ntrations		Traffic		Emission		
50 Feet	100 Feet	300 Feet		Volume		Factor		
5.4	3.8	1.6	*	1,210	*	7.30	÷	100,000
2.2	1.7	1.1	*	690	*	7.30	÷	100,000
5.4	3.8	1.6	*	1,180	*	7.30	÷	100,000
2.2	1.7	1.1	*	790	*	7.30	÷	100,000
	50 Feet 5.4 2.2 5.4	50 Feet 100 Feet 5.4 3.8 2.2 1.7 5.4 3.8	5.4 3.8 1.6 2.2 1.7 1.1 5.4 3.8 1.6	50 Feet 100 Feet 300 Feet 5.4 3.8 1.6 * 2.2 1.7 1.1 * 5.4 3.8 1.6 *	50 Feet 100 Feet 300 Feet Volume 5.4 3.8 1.6 * 1,210 2.2 1.7 1.1 * 690 5.4 3.8 1.6 * 1,180	50 Feet 100 Feet 300 Feet Volume 5.4 3.8 1.6 * 1,210 * 2.2 1.7 1.1 * 690 * 5.4 3.8 1.6 * 1,180 *	50 Feet 100 Feet 300 Feet Volume Factor 5.4 3.8 1.6 * 1,210 * 7.30 2.2 1.7 1.1 * 690 * 7.30 5.4 3.8 1.6 * 1,180 * 7.30	50 Feet 100 Feet 300 Feet Volume Factor 5.4 3.8 1.6 * 1,210 * 7.30 ÷ 2.2 1.7 1.1 * 690 * 7.30 ÷ 5.4 3.8 1.6 * 1,180 * 7.30 ÷

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.3	4.3	2.4
100 Feet from Roadway Edge	4.1	4.1	2.3
300 Feet from Roadway Edge	3.9	3.9	2.1

Project Title:

Riverpark

Intersection:

Analysis Condition:

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm): Background 8-hour CO Concentration (ppm):

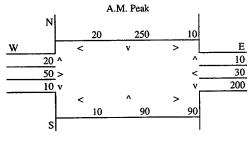
Persistence Factor: Analysis Year:

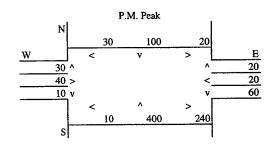
North-South Roadway: East-West Roadway:

Oxnard Boulevard & South Park Drive

Future (2020) With Project

None 3.7 2.0 0.7


2010


		No. of	Average Cruise Speed		
	Roadway Type	Lanes	A.M.	P.M.	
Oxnard Boulevard	At Grade	4	15	15	
South Park Drive	At Grade	2	10	10	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	e Speed (m	iles per hou	r)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18,24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road 650 E-W Road 390 N-S Road 820 400 E-W Road

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	650	*	7.30	÷	100,000
E-W Road	2.2	1.7	1.0	*	390	*	10.78	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	820	*	7.30	÷	100,000
E-W Road	2.2	1.7	1.0	*	400	*	10.78	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.0	4.1	2.3
100 Feet from Roadway Edge	4.0	4.0	2.2
300 Feet from Roadway Edge	3.8	3.8	2.1

Project Title:

Riverpark

Intersection:

Oxnard Boulevard & North Park Drive

Analysis Condition:

Future (2020) With Project

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

None 3.7

Background 8-hour CO Concentration (ppm):

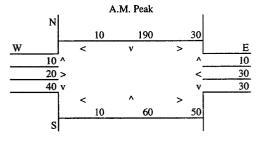
2.0

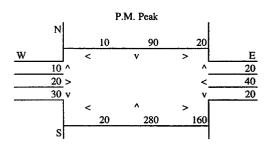
Persistence Factor:

Analysis Year:

0.7 2010

North-South Roadway: East-West Roadway:


Oxnard Boulevard North Park Drive


110.01	Average Cruise opecu			
Lanes	A.M.	P.M.		
4	15	15		
2	10	10		
		Lanes A.M. 4 15		

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

Average Speed (miles per hour)									
10	15	20	25	30	35	40	45	50	55
24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83
	24.84 22.93 21.02 19.63 18.24 16.86 15.47 14.08	24.84 16.74 22.93 15.46 21.02 14.17 19.63 13.24 18.24 12.31 16.86 11.37 15.47 10.44 14.08 9.51	24.84 16.74 12.71 22.93 15.46 11.73 21.02 14.17 10.75 19.63 13.24 10.04 18.24 12.31 9.33 16.86 11.37 8.63 15.47 10.44 7.92 14.08 9.51 7.21	10 15 20 25 24.84 16.74 12.71 10.30 22.93 15.46 11.73 9.50 21.02 14.17 10.75 8.70 19.63 13.24 10.04 8.13 18.24 12.31 9.33 7.55 16.86 11.37 8.63 6.98 15.47 10.44 7.92 6.40 14.08 9.51 7.21 5.83	10 15 20 25 30 24.84 16.74 12.71 10.30 8.67 22.93 15.46 11.73 9.50 8.00 21.02 14.17 10.75 8.70 7.33 19.63 13.24 10.04 8.13 6.85 18.24 12.31 9.33 7.55 6.36 16.86 11.37 8.63 6.98 5.88 15.47 10.44 7.92 6.40 5.39 14.08 9.51 7.21 5.83 4.91	10 15 20 25 30 35 24.84 16.74 12.71 10.30 8.67 7.50 22.93 15.46 11.73 9.50 8.00 6.93 21.02 14.17 10.75 8.70 7.33 6.35 19.63 13.24 10.04 8.13 6.85 5.93 18.24 12.31 9.33 7.55 6.36 5.52 16.86 11.37 8.63 6.98 5.88 5.10 15.47 10.44 7.92 6.40 5.39 4.69 14.08 9.51 7.21 5.83 4.91 4.27	10 15 20 25 30 35 40 24.84 16.74 12.71 10.30 8.67 7.50 6.65 22.93 15.46 11.73 9.50 8.00 6.93 6.14 21.02 14.17 10.75 8.70 7.33 6.35 5.63 19.63 13.24 10.04 8.13 6.85 5.93 5.27 18.24 12.31 9.33 7.55 6.36 5.52 4.90 16.86 11.37 8.63 6.98 5.88 5.10 4.54 15.47 10.44 7.92 6.40 5.39 4.69 4.17 14.08 9.51 7.21 5.83 4.91 4.27 3.81	10 15 20 25 30 35 40 45 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52	10 15 20 25 30 35 40 45 50 24.84 16.74 12.71 10.30 8.67 7.50 6.65 6.07 5.78 22.93 15.46 11.73 9.50 8.00 6.93 6.14 5.61 5.35 21.02 14.17 10.75 8.70 7.33 6.35 5.63 5.15 4.92 19.63 13.24 10.04 8.13 6.85 5.93 5.27 4.82 4.62 18.24 12.31 9.33 7.55 6.36 5.52 4.90 4.50 4.32 16.86 11.37 8.63 6.98 5.88 5.10 4.54 4.17 4.01 15.47 10.44 7.92 6.40 5.39 4.69 4.17 3.85 3.71 14.08 9.51 7.21 5.83 4.91 4.27 3.81 3.52 3.41

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 380 170 N-S Road E-W Road 600 280

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	380	*	7.30	÷	100,000
E-W Road	2.2	1.7	1.0	*	170	*	10.78	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	600	*	7.30	÷	100,000
E-W Road	2.2	1.7	1.0	*	280	*	10.78	÷	100,000

•	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	3.9	4.0	2.2
100 Feet from Roadway Edge	3.8	3.9	2.2
300 Feet from Roadway Edge	3.8	3.8	2.1

Project Title:

Riverpark

Intersection:

Santa Clara River Boulevard & South Park Drive

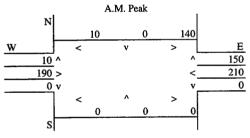
Analysis Condition:

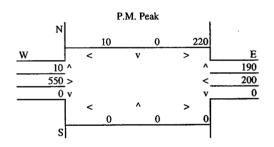
Future (2020) With Project

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm): None 3.7

Background 8-hour CO Concentration (ppm): Persistence Factor:

Analysis Year:


2.0 0.7 2010


			No. of Average Cruise Spe			
		Roadway Type	Lanes	A.M.	P.M.	
North-South Roadway:	South Park Drive	At Grade	2	10	10	
East-West Roadway:	Santa Clara River Boulevard	At Grade	4	15	15	

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

	Average Speed (miles per hour)													
Year	10	15	20	25	30	35	40	45	50	55				
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88				
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46				
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03				
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73				
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43				
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14				
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84				
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54				
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83				

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road

310 690

E-W Road

N-S Road E-W Road 430 1,160

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	2.2	1.7	1.0	*	310	*	10.78	÷	100,000
E-W Road	5.4	3.8	1.6	*	690	*	7.30	÷	100,000
P.M. Peak Hour									
N-S Road	2.2	1.7	1.0	*	430	*	10.78	÷	100,000
E-W Road	5.4	3.8	1.6	*	1,160	*	7.30	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.0	4.3	2.4
100 Feet from Roadway Edge	3.9	4.1	2.3
300 Feet from Roadway Edge	3.8	3.9	2.1

Project Title:

Riverpark

Intersection:

Santa Clara River Blvd. & Vineyard Avenue Future (2020) With Project

Analysis Condition:

None

Nearest Air Monitoring Station measuring CO: Background 1-hour CO Concentration (ppm):

Background 8-hour CO Concentration (ppm):

3.7

Persistence Factor:

2.0

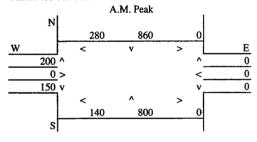
0.7

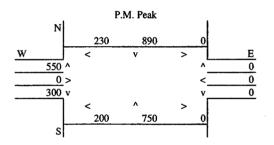
Analysis Year:

2010

North-South Roadway:	
East West Doodway:	

Vineyard Avenue Santa Clara River Boulevard


Roadway Type	Lanes	A.M.	P.M.
At Grade	4	20	20
At Grade	4	20	20


No. of Average Cruise Speed

EMFAC7G COMPOSITE EMISSION FACTORS FOR CO

				Averag	e Speed (m	iles per hou	r)			
Year	10	15	20	25	30	35	40	45	50	55
1998	24.84	16.74	12.71	10.30	8.67	7.50	6.65	6.07	5.78	5.88
1999	22.93	15.46	11.73	9.50	8.00	6.93	6.14	5.61	5.35	5.46
2000	21.02	14.17	10.75	8.70	7.33	6.35	5.63	5.15	4.92	5.03
2001	19.63	13.24	10.04	8.13	6.85	5.93	5.27	4.82	4.62	4.73
2002	18.24	12.31	9.33	7.55	6.36	5.52	4.90	4.50	4.32	4.43
2003	16.86	11.37	8.63	6.98	5.88	5.10	4.54	4.17	4.01	4.14
2004	15.47	10.44	7.92	6.40	5.39	4.69	4.17	3.85	3.71	3.84
2005	14.08	9.51	7.21	5.83	4.91	4.27	3.81	3.52	3.41	3.54
2010	10.78	7.30	5.52	4.46	3.77	3.28	2.95	2.75	2.69	2.83

PEAK HOUR TURNING VOLUMES

Representative Traffic Volumes (Vehicles per Hour)

N-S Road E-W Road 2,140 770 N-S Road E-W Road

2,420 1,280

ROADWAY CO CONTRIBUTIONS

	Referen	ce CO Conce	ntrations		Traffic		Emission		
Roadway	50 Feet	100 Feet	300 Feet		Volume		Factor		
A.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	2,140	*	5.52	÷	100,000
E-W Road	2.2	1.7	1.1	*	770	*	5.52	÷	100,000
P.M. Peak Hour									
N-S Road	5.4	3.8	1.6	*	2,420	*	5.52	÷	100,000
E-W Road	2.2	1.7	1.1	*	1,280	*	5.52	÷	100,000

	A.M.	P.M.	
	Peak Hour	Peak Hour	8-Hour
50 Feet from Roadway Edge	4.4	4.6	2.6
100 Feet from Roadway Edge	4.2	4.3	2.4
300 Feet from Roadway Edge	3.9	4.0	2.2

APPENDIX 4.9

Noise Calculations

Table N-1 NOISE LEVEL CONTOURS - Existing Off-Site ADT Volumes

					Design	Dist. from		Barrier	Vehic	le Mix	
ROADWAY NAME			Median	ADT	Speed	Center to	Alpha	Attn.	Medium	Heavy	dB(A)
Segment	Land Use	Lanes	Width	Volume	(mph)	Receptor	Factor	dB(A)	Trucks	Trucks	CNEL
TO TO TO A DID											N. 1154899 (10)
VINEYARD	Residential	4	15	17,900	50	<i>7</i> 5	0	0	1.8%	0.7%	67.9
Los Angeles/Central Stroube/Ventura	Residential/School	4	0	20,600	35	75	0	0	1.8%	0.7%	64.7
North Park/Stroube	Residential/School	4	0	20,900	35	75	0	0	1.8%	0.7%	64.8
NOITH I MAY SHOUDE	residentially believe	•	Ü	20,500			·	ŭ	1.070	0,0	
JOHNSON											
Telephone/Ralston	Residential/School	2	0	8,640	40	75	0	5	1.8%	0.7%	67.2
Ralston/Bristol	Residential	2	5	10,300	4 5	<i>7</i> 5	0	5	1.8%	0.7%	69.2
Bristol/North Bank	Residential	2	5	25,300	45	75	0	5	1.8%	0.7%	73.1
VENTURA											
Wagon Wheel/Vineyard	Residential	2	0	17,200	35	100	0	10	1.8%	0.7%	72.6
Vineyard/Gonzales	Residential	4	5	22,900	50	<i>7</i> 5	0	8	1.8%	0.7%	76.9
Wagon Wheel/Town Center	Residential	4	5	12,700	50	7 5	0	8	1.8%	0.7%	74.3
0101175											
OXNARD	D 1 1	,	-	22.000	45	150	0	12	1.8%	0.7%	78.2
Gonzales/Vineyard	Residential	6	5	32,000	45	150	U	12	1.8%	U./70	76.2
GONZALES											
Ventura/Oxnard	Residential/Medical Clinic	4	5	18,800	45	<i>7</i> 5	0	8	1.8%	0.7%	74.9
VICTORIA											
East of US-101 Fwy	Residential	4	5	39,340	45	<i>7</i> 5	0	8	1.8%	0.7%	78.1
,											
TELEPHONE											
Victoria/Johnson	School/Church	6	5	18,800	45	75	0	0	1.8%	0.7%	67.2
RALSTON											
Victoria/Johnson	Residential	2	0	10,600	40	<i>7</i> 5	0	0	1.8%	0.7%	63.0
X / A I T'A PITTA III											
VALENTINE Victoria/US 101 SB Ramps	Hotel	4	5	21,800	35	100	0	0	1.8%	0.7%	63.7
victoria, 05 for 55 Kamps	Tiolei	*	3	21,000	55	100	U	Ū	1.076	0.7 70	90.0
WAGON WHEEL											
Esplanade/US 101 SB Ramps	Residential/Motel	2	0	3,120	25	50	0	0	1.8%	0.7%	55.6
STROUBE											
East of Vineyard	Residential	2	0	3,200	25	50	0	0	1.8%	0.7%	55. 7
(1) Distance to centerline of ro	•	D	Evrenin -	Ni-L							
Assumed 24-Hour Traffic Distr Total ADT Volumes	ndunon:	Day 77.70%	Evening 12.70%	Night 9.60%							
Medium-Duty Trucks		77.70% 87.43%	5.05%	7.52%							

Medium-Duty Trucks 87.43% 5.05% 7.52% 89.10% 2.84% 8.06% Heavy-Duty Trucks

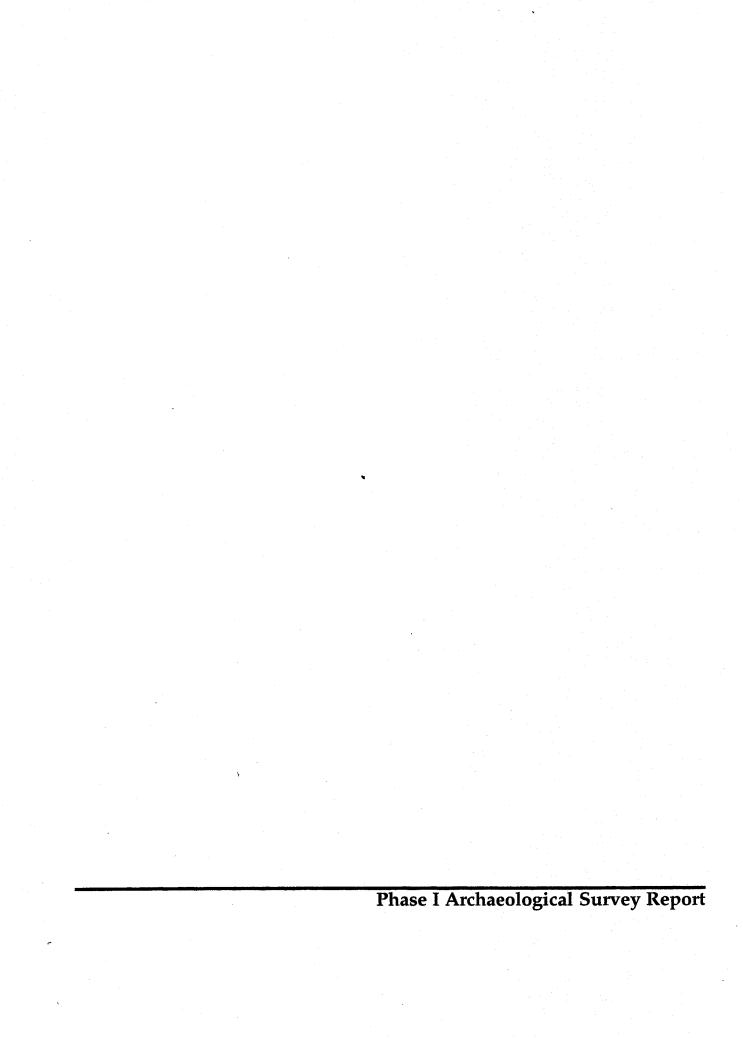
Table N-2 NOISE LEVEL CONTOURS - Existing + Project Off-Site ADT Volumes

Segment	Land Use	Lanes	Median Width	ADT Volume	Speed (mph)	Center to Receptor	Alpha Factor	Attn. dB(A)	Medium Heavy Trucks Trucks	Heavy Trucks	dB(A) CNEL
VINEYARD											
Los Angeles/Central	Residential	4	15	21,000	20	75	0	0	1.8%	0.7%	68.6
Stroube/Ventura	Residential/School	4	0	19,300	32	7.2	0	0	1.8%	0.7%	1 2.
North Park/Stroube	Residential/School	4	0	21,000	35	75	0	0	1.8%	%2.0	84.8
IOHNSON											
Telephone/Ralston	Residential/School	2	С	9.100	40	75	c	LC;	1.8%	%2.0	67.4
Ralston/Bristol	Residential	5	ŧ.	11,100	5	35	0	, rv	1.8%	0.7%	69.5
Bristol/North Bank	Residential	2	Ŋ	26,900	45	75	0	5	1.8%	%2.0	73.3
VENTURA											
Wagon Wheel/Vineyard	Residential	2	0	25,000	32	100	0	10	1.8%	0.7%	74.2
Vineyard/Gonzales	Residential	4	5	27,400	25	22	0	80	1.8%	0.7%	7.7
Wagon Wheel/Town Center	Residential	4	ĸ	23,600	S	75	0	œ	1.8%	%2.0	77.0
OXNARD											
Gonzales/Vineyard	Residential	9	rs.	36,000	45	150	0	12	1.8%	%2.0	78.7
GONZALES Ventura/Oxnard	Residential/Medical Clinic	4	ıs	21,300	45	75	0	∞	1.8%	0.7%	75.5
VICTORIA East of US-101 Fwy	Residential	4.	ro.	43,640	45	75	0	80	1.8%	0.7%	78.6
TELEPHONE Victoria/Johnson	School/Church	9	ĸ	19,600	45	75	0	0	1.8%	0.7%	67.4
RALSTON Victoria/Johnson	Residential	7	0	10,700	40	75	0	0	1.8%	%2'0	63.1
VALENTINE Victoria/US 101 SB Ramps	Hotel	4	ĸ	22,900	35	100	0	0	1.8%	0.7%	63.9
WAGON WHEEL Esplanade/US 101 SB Ramps	Residential/Motel	2	0	2,720	25	20	0	0	1.8%	0.7%	55.0
STROUBE East of Vineyard	Residential	2	0	3,900	22	20	0	0	1.8%	%2'0	56.5
(1) Distance to centerline of roadway. Assumed 24-Hour Traffic Distribution: Total ADT Volumes Medium-Duty Trucks Heavy-Duty Trucks	ribution:	Day 77.70% 87.43% 89.10%	Evening 12.70% 5.05% 2.84%	Night 9.60% 7.52% 8.06%							

Table N-4
NOISE LEVEL CONTOURS - 2020 with Project Off-Site ADT Volumes

ROADWAY NAME Segment	Land Use	Lanes	Median Width	ADT Volume	Design Speed (mph)	Dist. from Center to Receptor	Alpha Factor	Barrier Attn. dB(A)	Vehicl Medium Trucks	e Mix Heavy Trucks	dB(A) CNEL
								***************************************			1253769
VINEYARD	D : - 1 : - 1	,	15	24.000	EO	<i>7</i> 5	0	0	1.8%	0.7%	69.4
Los Angeles/Central	Residential	4	15 0	24,900	50 35	75 7 5	0	0	1.8%	0.7%	65.5
Stroube/Ventura	Residential/School	4	0	24,880	35 35	75 75	0	0	1.8%	0.7%	65.1
North Park/Stroube	Residential/School	4	U	22,350	33	75	U	U	1.0%	U.7 /6	65.1
OHNSON											
Felephone/Ralston	Residential/School	2	0	9,610	40	7 5	0	5	1.8%	0.7%	67.6
Ralston/Bristol	Residential	2	5	11,640	45	75	0	5	1.8%	0.7%	69.7
Bristol/North Bank	Residential	2	5	42,230	45	<i>7</i> 5	0	5	1.8%	0.7%	75.3
VENTURA											
Wagon Wheel/Vineyard	Residential	2	0	28,550	35	100	0	10	1.8%	0.7%	74.8
Vineyard/Gonzales	Residential	4	5	39,830	50	<i>7</i> 5	0	8	1.8%	0.7%	79.3
Wagon Wheel/Town Center	Residential	4	5	20,800	50	7 5	0	8	1.8%	0.7%	76.5
OXNARD											
Gonzales/Vineyard	Residential	6	5	44,700	45	150	0	12	1.8%	0.7%	79.6
GONZALES											
Ventura/Oxnard	Residential/Medical Clinic	4	5	32,130	45	7 5	0	8	1.8%	0.7%	77.2
VICTORIA									1		
	Residential	4	5	48,730	45	<i>7</i> 5	0	8	1.8%	0.7%	79.1
East of US-101 Fwy	Residential	*	3	40,730	-20	73	Ū	O	1.070	0.7 70	
TELEPHONE											
Victoria/Johnson	School/Church	6	5	20,600	45	75	0	0	1.8%	0.7%	67.6
RALSTON											
Victoria/Johnson	Residential	2	0	11,410	40	7 5	0	0	1.8%	0.7%	63.4
VALENTINE											
Victoria/US 101 SB Ramps	Hotel	4	5	31,610	35	100	0	0	1.8%	0.7%	65.3
WAGON WHEEL											
Esplanade/US 101 SB Ramps	Residential/Motel	2	0	7,200	25	50	0	0	1.8%	0.7%	59.2
STROUBE											
East of Vineyard	Residential	2	0	4,700	25	50	0	0	1.8%	0.7%	57.9
East of Vineyard	Residential	2	U	4,700	25	30	U	U	1.076	0.7 76	
(1) Distance to centerline of ro	•	ъ.	Euro - 1 -	NT: -1- c							
Assumed 24-Hour Traffic Dist	ribution:	Day	Evening	Night							
Total ADT Volumes		77.70%	12.70%	9.60%							
Medium-Duty Trucks		87.43%	5.05%	7.52%							
Heavy-Duty Trucks		89.10%	2.84%	8.06%							

Table N-1 ON-SITE NOISE LEVEL CONTOURS - 2020 ADT Volumes


ROADWAY NAME Segment	Lanes	Median Width	ADT Volume	Design Speed (mph)	Alpha Factor	Vehic Medium Trucks	le Mix Heavy Trucks	CNEL at 75 Feet ¹	DI	nce from Co STANCE T 70 CNEL	O CONTO	,	Calc Dist
Oxnard Boulevard													
US 101/Town Center	6	16	35,000	40	0.5	1.8%	0.7%	68.3	45	64	117	243	75
Town Center/Santa Clara River	4	16	18,600	35	0.5	1.8%	0.7%	63.6	29	38	65	132	<i>7</i> 5
Santa Clara River/South Park	4	16	7,350	35	0.5	1.8%	0.7%	59.6	27	30	41	71	75
South Park and North Park	4	16	4,950	35	0.5	1.8%	0.7%	57.9	27	29	36	57	<i>7</i> 5
North of North Park	4	16	3,700	35	0.5	1.8%	0.7%	56.6	27	28	33	50	7 5
South Park Drive													
Santa Clara River/Oxnard	4	6	3,950	35	0.5	1.8%	0.7%	56.8	20	24	30	49	<i>7</i> 5
West of Oxnard	2	6	1,400	25	0.5	1.8%	0.7%	49.4	>10	>10	12	18	<i>7</i> 5
Santa Clara River Road													
Vienyard/South Park	6	16	10,300	40	0.5	1.8%	0.7%	63.0	40	44	60	110	75
South Park/Oxnard	6	16	7,100	40	0.5	1.8%	0.7%	61.3	39	42	53	88	<i>7</i> 5
Town Center/Oxnard	4	16	10,800	35	0.5	1.8%	0.7%	61.3	28	32	48	90	7 5
Myrtle Street													
Town Center/Vineyard	4	14	5,450	35	0.5	1.8%	0.7%	58.3	>26	28	36	60	<i>7</i> 5
Town Center/Santa Clara River	4	14	2,600	35	0.5	1.8%	0.7%	55.1	>26	26	30	42	7 5
Town Center Drive													
Santa Clara River/Oxnard	4	6	8,350	35	0.5	1.8%	0.7%	60.0	23	27	40	<i>7</i> 5	<i>7</i> 5
Oxnard/Myrtle	4	6	6,400	35	0.5	1.8%	0.7%	58.9	22	25	35	64	7 5
North Park			•										
Oxnard/Vineyard	4	6	4,150	35	0.5	1.8%	0.7%	57.0	>22	24	30	50	<i>7</i> 5
West of Oxnard	4	6	1,250	35	0.5	1.8%	0.7%	51.8	>22	22	24	30	75
								2010/10TH					

¹ Distance to centerline of roadway.

[&]quot;-" = contour is located within the roadway lanes or within 75 feet of the roadway centerline.

Assumed 24-Hour Traffic Distribution:	Day	Evening	Night
Total ADT Volumes	77.70%	12.70%	9.60%
Medium-Duty Trucks	87.43%	5.05%	7.52%
Heavy-Duty Trucks	89.10%	2.84%	8.06%

APPENDIX 4.12 Cultural Resources Reports

Riverpark Specific Plan EIR, Oxnard, CA Historic Resources Section

12 November 2001 revised

Prepared for:

Impact Sciences, Inc. 30343 Canwood Street, #210 Agoura Hills, CA 91301

Prepared by:

1. Introduction

This report was prepared for the purpose of assisting the City of Oxnard, California, in their compliance with the California Environmental Quality Act as it relates to historic resources, in connection with the proposed redevelopment of Riverpark Specific Plan Area A and B as identified on the Project Location Map (Figure 1). This project will result in the demolition of two farm houses, one residence, the Ventura County Maintenance Facilities site and the former Southern Pacific Milling Company site.

This report was prepared by San Buenaventura Research Associates of Santa Paula CA (Judy Triem, Historian; Mitch Stone, Planner), for Impact Sciences, Inc., and is based on field investigations and research conducted in October and November, 2000.

2. Administrative Setting

The California Environmental Quality Act (CEQA) requires evaluation of project impacts on historic resources, including properties "listed in, or determined eligible for listing in, the California Register of Historic Resources [or] included in a local register of historical resources." A resource is eligible for listing on the California Register of Historical Resources if it meets any of the criteria for listing, which are:

- A. Is associated with events that have made a significant contribution to the broad patterns of California's history and cultural heritage;
- B. Is associated with the lives of persons important in our past;
- C. Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or
- D. Has yielded, or may be likely to yield, information important in prehistory or history.

The California Register may also include properties listed in "local registers" of historic properties. A "local register of historic resources" is broadly defined in §5020.1 (k), as "a list of properties officially designated or recognized as historically significant by a local government pursuant to a local ordinance or resolution." Local registers of historic properties come essentially in two forms: (1) surveys of historic resources conducted by a local agency in accordance with Office of Historic Preservation procedures and standards, adopted by the local agency and maintained as current, and (2) landmarks designated under local ordinances or resolutions. (Public Resources Code §§ 5024.1, 21804.1, 15064.5)

By definition, the California Register of Historic Resources also includes all "properties formally determined eligible for, or listed in, the National Register of Historic Places," and certain specified State Historical Landmarks. The majority of "formal determinations" of NRHP eligibility occur when properties are evaluated by the State Office of Historic Preservation in connection with federal environmental review procedures (Section 106 of the National Historic Preservation Act of 1966). Formal determinations of eligibility also occur when properties are nominated to the NRHP, but are not listed due to owner objection.

The criteria for determining eligibility for listing on the National Register of Historic Places (NRHP) have been developed by the National Park Service. Properties may qualify for NRHP listing if they:

- A. are associated with events that have made a significant contribution to the broad patterns of our history; or
- B. are associated with the lives of persons significant in our past; or
- C. embody the distinctive characteristics of a type, period, or method of construction or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or
- D. have yielded, or may be likely to yield, information important in prehistory or history.

According to the National Register of Historic Places guidelines, the "essential physical features" of a property must be present for it to convey its significance. Further, in order to qualify for the NRHP, a resource must retain its integrity, or "the ability of a property to convey its significance."

The seven aspects of integrity are: Location (the place where the historic property was constructed or the

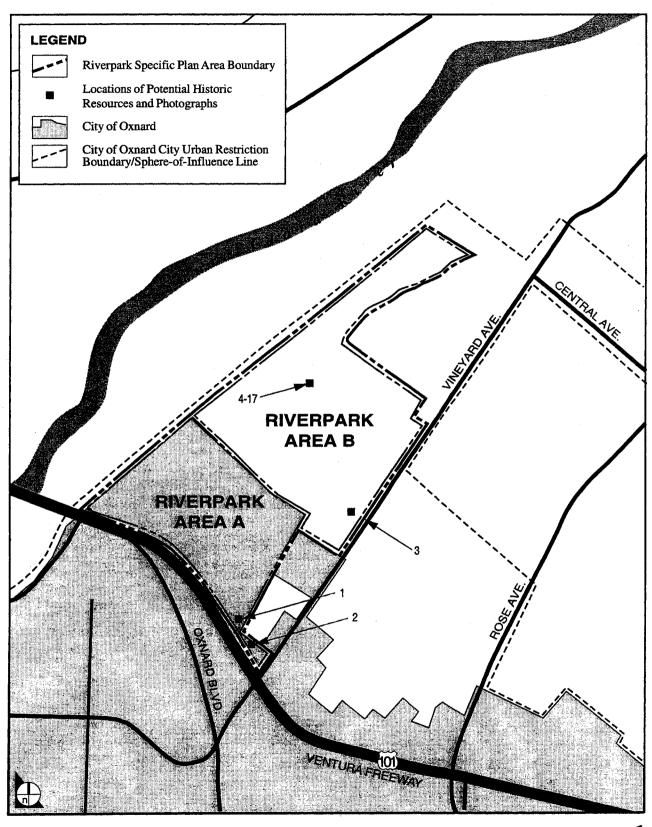


FIGURE 1

Project Location and Historic Resources

RiverPark Specific Plan: Historic Resources Report [2]

place where the historic event occurred); Design (the combination of elements that create the form, plan, space, structure, and style of a property); Setting (the physical environment of a historic property); Materials (the physical elements that were combined or deposited during a particular period of time and in a particular pattern or configuration to form a historic property); Workmanship (the physical evidence of the crafts of a particular culture or people during any given period of history or prehistory); Feeling (a property's expression of the aesthetic or historic sense of a particular period of time), and; Association (the direct link between an important historic event or person and a historic property).

The relevant aspects of integrity depend upon the National Register criteria applied to a property. For example, a property nominated under Criterion A (events), would be likely to convey its significance primarily through integrity of location, setting and association. A property nominated solely under Criterion C (design) would usually rely primarily upon integrity of design, materials and workmanship. The California Register procedures include similar language with regard to integrity.

The minimum age criterion for the National Register of Historic Places (NRHP) and the California Register of Historic Resources (CRHR) is 50 years. Properties less than 50 years old may be eligible for listing on the NRHP if they can be regarded as "exceptional," as defined by the NRHP procedures, or in terms of the CRHR, "if it can be demonstrated that sufficient time has passed to understand its historical importance" (Chapter 11, Title 14, §4842(d)(2))

Section 1368 of the Ventura County Cultural Heritage Ordinance sets out the following criteria for designation of a Ventura County Landmark:

- It exemplifies or reflects special elements of the County's social, aesthetic, engineering, architectural or natural history;
- 2. It is identified with persons or events which are significant in national, state or local history;
- 3. It shows evidence of habitation, activity or the culture of prehistoric man;
- 4. It embodies elements of architectural design, detail, materials or craftsmanship which represent a significant structural or architectural achievement or innovation;
- 5. It is representative of the work of a master builder, designer, artist or architect;
- 6. It is imbued with traditional or legendary lore;
- 7. It has a unique location or singular physical characteristics or is a view or vista representing an established and familiar feature associated with a neighborhood, community or the County of Ventura:
- 8. It is one of the few remaining examples in the County possessing distinguishing characteristics of an architectural or historical type or specimen.

3. Impact Thresholds and Mitigation

According to PRC §21084.1, "a project that may cause a substantial change in the significance of an historical resource is a project that may have a significant effect on the environment." The Public Resources Code broadly defines a threshold for determining if the impacts of a project on an historic property will be significant and adverse. By definition, a substantial adverse change means, "demolition, destruction, relocation, or alterations," such that the significance of an historical resource would be impaired (PRC §5020.1(6)). For purposes of NRHP eligibility, reductions in a resource's integrity (the ability of the property to convey its significance) should be regarded as potentially adverse impacts.

Further, according to the CEQA Guidelines, "an historical resource is materially impaired when a project... [d]emolishes or materially alters in an adverse manner those physical characteristics of an historical resource that convey its historical significance and that justify its inclusion in, or eligibility for, inclusion in the California Register of Historical Resources [or] that account for its inclusion in a local register of historical resources pursuant to section 5020.1(k) of the Public Resources Code or its identification in an historical resources survey meeting the requirements of section 5024.1(g) of the Public Resources Code, unless the public agency reviewing the effects of the project establishes by a preponderance of evidence that the resource is not historically or culturally significant."

The lead agency is responsible for the identification of "potentially feasible measures to mitigate significant adverse changes in the significance of an historical resource." The specified methodology for determining if impacts are mitigated to less than significant levels are the Secretary of the Interior's Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings and the Secretary of the Interior's Standards for Rehabilitation and Guidelines for Rehabilitating Historic Buildings (1995), publications of the National Park Service. (PRC §15064.5(b)(3-4))

4. Historical Setting and Overview

The 700 acre project site is located in the unincorporated portions of El Rio and portions of the City of Oxnard north of the Ventura Freeway (US 101) between Vineyard Avenue and the Santa Clara River. The historic character of the area is defined primarily by the original Town of Colonia (El Rio West Residential Neighborhood) directly adjacent to the project site on the east. This area was primarily developed between 1900 and 1945. Additional housing north of this area and east of the project site was developed after 1950. Northeast of the project site is an industrial area whose buildings were constructed after 1950. The Santa Clara River forms the boundary to the west of the project site, with the 101 Freeway forming the southern boundary.

Area A contains a nineteenth century farmhouse, a 1950s residence, a metal barn, a 1960s former automobile showroom, Ventura County Maintenance Facilities and the recent town center highrise building. Area B contains a 1950s farm house on Ventura County Campbell Basin lands and the former Southern Pacific Milling Company property.

Historical Context

The unincorporated town of El Rio (*The River*) has had several names over its long history. It is located at the crossroads where the boundary of two ranchos (El Rio de Santa Clara o La Colonia and Rancho Santa Clara del Norte) are bisected by Vineyard Avenue (State Highway 232). El Rio's name probably came from the rancho and its location directly adjacent to the Santa Clara River. The 101 freeway, originally called the Coneio Road and later Ventura Road, separated the two ranchos.

The 44,883 acre Rancho El Rio de Santa Clara o La Colonia was granted by the Mexican Government to eight Santa Barbara soldiers in 1837. Settlers came to the area in the late 1860s as the large ranchos began to be subdivided. When the land was finally patented to the original grantees in 1872, a map was prepared by surveyor John Stow, showing subdivision and ownership of the Rancho. Many of the early settlers were German and Irish, with names such as Borchard, Maulhardt, Donlon and McGrath.

On April 11, 1876 a grant deed was recorded showing that Christian Borchard sold a seven acre parcel of land, located at the intersection of the Conejo Road (later to be called Ventura Boulevard/101 Freeway) and the Hueneme and Saticoy Road (later to be called Vineyard Avenue) to Simon Cohn, for forty dollars in gold (Grant deeds, Book 4, p. 230).

Shortly afterwards, Simon Cohn, a native of Germany, had a general merchandise store built at the intersection of Vineyard Avenue and Ventura Boulevard. Cohn had come to Ventura County to join his brother Morris Cohn, who operated a general merchandise store in Saticoy.

Simon Cohn

Born in Kaempen, Germany on April 4, 1852, Simon Cohn came to the United States at the age of twentyone. He lived in New York for several months and a brief time in San Francisco before settling in Ventura County in 1873. He worked in his brother Morris Cohn's General Merchandise Store in Saticoy until he was able to raise the money to open his own store about 1876. Simon sold everything from sewing needles to threshing machines in his store (Sheridan, 1926: 72).

RiverPark Specific Plan: Historic Resources Report [4]

Simon married Minnie Cohn in 1885, a German native from the same town where Simon was born. Although they had the same last name, they were not related. The couple raised eight children, and two others died in infancy. The couple's seven daughters and one son all attended the local El Rio School located on Vineyard Avenue adjacent to the Colonia Tract. The family lived in a house Simon had built behind his store.

When Simon Cohn built his store, no other commercial buildings were located in the area, just scattered farmhouses along Conejo Road (Ventura Boulevard). Cohn gradually acquired land on three of the four corners at the intersection of Vineyard Avenue and Ventura Boulevard. His first woodframe store was built on the south west corner of Ventura Boulevard and Vineyard Avenue. A larger brick building was constructed on the northeastern corner of Ventura Boulevard and Vineyard Road in the late 1890s, following the purchase of two parcels of lands from Leopold Schiappapietra. The first 19.69 acre parcel surrounding the Methodist Church was purchased in 1891 for \$3,796, followed by the second 17.66 acre parcel at the northeast corner of Vineyard and Ventura Boulevard for \$2,649 in 1899.

Two of Cohn's brothers built stores on the other corners. The 1898 City Directory showed David Cohn as proprietor of the Silver Pitcher Saloon and the other brother Leopold Cohn as proprietor of a saloon and billiard hall. The fourth corner also held a saloon that was owned by a Mr. Herbst, who later married one of Simon Cohn's daughters.

Simon Cohn used profits from his lucrative merchandise business to purchase additional lands in the 1880s and 1890s. In 1887 he purchased a 47 acre parcel where the present Wagon Wheel Junction is located. Following the subdivision of the Town of Colonia in 1887, Cohn purchase all of Block Seven in 1889 for \$500, as well as eleven individual lots in Blocks 3, 4 and 9 for \$915. Simon and his brothers Morris and David also invested heavily in land throughout Ventura County including the towns of Santa Paula and Camarillo (Grant Deed books, 1876-1899).

Gertrude and Simon instilled the importance of education in their children. They followed it up by sending all of the eight children to college. Dora, the oldest daughter, attended Mills College and Cornell University. Helen, the second oldest, went to Mills College, and Esther, the third daughter, attended Occidental College. Another daughter attended USC and Hortense attended Mills College. Jacob, the only son, attended business college. The remaining daughters were named Mildred, Leona and Gertrude.

The Cohns practiced their Jewish faith in their home as well as attending meetings held by the other Jewish families at the Odd Fellows Hall in Oxnard. There was no synagogue in Ventura County until the 1960s. Hortense Cohn Zander recalls the family would have a service once a month and meet once a month for a social event (Oral History Interview, 1981).

In 1921 Simon Cohn had an arena for boxing and wrestling matches built on one of the four corner properties he owned. Prior to the arena's construction, he recalled many fist fights occurring on the site. Numerous articles about his life relate to his generosity in the community. He provided credit to farmers so that they were able to pay him back when their crops came in. He would provide goods free, when possible, to people who were unable to pay(Marina Tower & Views: 1979: 4).

When Cohn died in 1936 at the age of eighty-four, one of his children told about the boxes of bills they found owed by people who could not afford to pay. Their father had never mentioned them, so they didn't either (Smalley, 1966:25). Another story about the family's generosity related to the large cornfield behind their home. Customers were welcome to pick as much corn as they could carry home.

Simon was referred to as the "Mayor" of El Rio, although it was in name only since El Rio was never incorporated as a city. Certainly Simon Cohn can be considered the founder of New Jerusalem/El Rio, as the first merchant to establish himself in the area. Although Cohn started with little when he opened his business, he prospered over time by purchasing land at low prices. In 1910 his assessed value was \$73,930, making him among the ten wealthiest landowners in the EL Rio/Oxnard area. He owned many

RiverPark Specific Plan: Historic Resources Report [5]

large parcels of land surrounding his original purchase, and upon his death, he owned the acreage that was eventually to become Wagon Wheel Junction and the Esplanade Shopping Center in later years.

Following Cohn's death, his daughter Hortense and her husband George Zander moved into the family home and Hortense helped manage the store. It is also said that Jacob Cohn, the only son, ran the store. Hortense purportedly ran the store until it was demolished following the freeway construction.

New Jerusalem to El Rio

The town was first officially referred to as New Jerusalem and is said to have been given its name by Judge J.D. Hines, the first Superior Court Judge in Ventura County, who in 1876 named it to honor the first Jewish merchants in the area, the Cohn Family (Ritter: 1940:170). Simon Cohn had the name New Jerusalem painted on his store, which at first was a small woodframe building that was replaced by 1891 with a larger brick masonry building that stood at the same location for over seventy-five years until the freeway paved over the site. In 1891 when the town of New Jerusalem was visited Yda Storke, she wrote, "The town has two large general merchandise stores, a church and other businesses." (Storke, 1891:589)

In 1882 the first post office was open in New Jerusalem, and Simon Cohn served as postmaster. In 1895, the post office shortened the name of the town to Jerusalem, and a few months later, on June 6, 1895, the name was changed to Elrio (all one word). In 1905 the post office name was finally changed to El Rio and stayed that way until the post office closed in 1911.

The Rio School District was established by the Board of Supervisors in 1885, and a school house was built on the western side of Vineyard Avenue about three-tenth of a mile east of the intersection with Ventura Boulevard. A Catholic Church was built in the 1870s on Conejo Boulevard (Ventura Boulevard) adjacent to one of Simon Cohn's properties. It is said that Simon Cohn, although he was not a Catholic, contributed to its construction. It may have been that he donated land. In later years, when the freeway was built, the church was moved to Rose Avenue. A Methodist Church was also built on Vineyard Avenue across from the Myrtle Avenue intersection.

In 1887 the Town of Colonia, a twelve block subdivision by Taylor and Jepson, was recorded by surveyor J.B. Stow. This was the first housing development in the New Jerusalem area at the time. It was located adjacent to Vineyard Avenue and the Conejo Road (Ventura Boulevard/101 freeway). Within the tract was one main road, Colonia Avenue, and bisected by three streets: Myrtle, Olive and Sycamore streets. The first school was built in this tract and faced onto Vineyard Avenue. (Figure 2)

Many modest houses have been built over time within this tract. These residences appear to date from the early 1900s through the 1920s, with a few built after 1940. Some of the small older houses have been replaced with modern residences beginning in the 1950s. The tract has been home primarily to Hispanic families since it first opened.

When the town of Oxnard was established in 1898, it is said that some of the buildings from El Rio were moved to Oxnard. The small community of El Rio retained its rural agricultural character until World War II. Farm land was used for such crops as lima beans, walnuts, grain and citrus. Following the war, there was pressure to develop in Ventura County, and El Rio was no exception. Former agricultural lands east and west of Vineyard Avenue were turned into housing tracts. A new El Rio School was built on the east side of Vineyard Avenue, and the old school was torn down to make way for commercial development.

The final blow to the original town center of New Jerusalem where Simon Cohn's store, the Catholic Church and other commercial buildings were located, came with the construction of the 101 Freeway in the mid-1950s. The widening of the old Conejo Road (Ventura Boulevard) combined with the construction of the Vineyard overpass wiped out the entire original crossroads where Simon Cohn's store and other stores, as well as farm houses, once stood.

Vineyard Avenue became the new commercial center of El Rio following World War II and the freeway

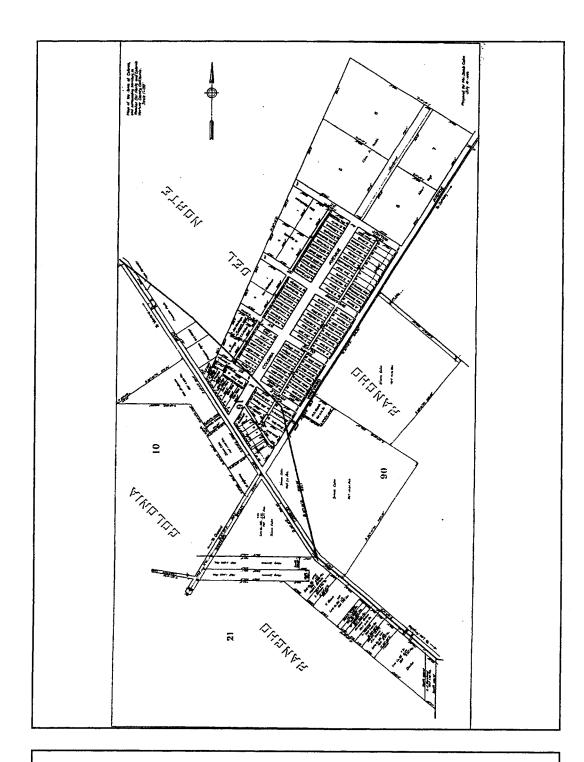


FIGURE 2

MAP OF THE TOWN OF COLONIA, AND SURROUNDING TERRITORY, IN RANCHOS DEL NORTE AND COLONIA, 1922
SOURCE: County of Ventura
SCALE: none

RiverPark Specific Plan: Historic Resources Report [6]

construction. New commercial buildings and small shopping centers continue to be built on Vineyard Avenue. During the early 1950s, the County of Ventura began to develop a Facility Yard on El Rio Drive, following the freeway's construction. This large site contained a number of buildings including the animal shelter, shelter office, weights and measures shop and storage, weights and measures garage, calibration station, truck scales, office and labs, communications building, poundmaster's residence, firemen's residences, fire station and private garages.

Santa Paula architect, Roy C. Wilson, drew up the master plan for the facility yard in 1953. The buildings were constructed between 1953 and 1959 with other buildings added in the 1960s. These new buildings included several public works buildings: office, warehouse, joint operations, and equipment repair. During the 1980s, the animal shelter buildings were removed from the site.

The land adjacent to the Santa Clara River has been used by several mining companies since the 1930s. During the 1940s, the El Rio Rock Company, specializing in excavating and grading, was located west of Vineyard Avenue and two miles north of Ventura Boulevard. The Southern Pacific Milling Company, formerly a grain storage and milling business with warehouses adjacent to the Southern Pacific Railroad depots throughout Ventura County, transitioned out of this business in the 1940s into rock, sand, ready mix concrete and asphaltic concrete production. It opened its offices at its present location at 3555 Vineyard Avenue in 1952, having acquired the lease for the property that year. The site was developed between 1952 and 1960.

5. Potential Historic Resources

The following buildings are all located within the project site. Development plans call for their demolition.

Ventura County Facility Yard (GSA Fleet Services, 630 - 644 - 680 El Rio Drive)

This large site, developed between 1953 and 1959, contained a number of buildings including the animal shelter, shelter office, weights and measures shop and storage, weights and measures garage, calibration station, truck scales, office and labs, communications building, poundmaster's residence, firemen's residences, fire station and private garages. Santa Paula architect, Roy C. Wilson, drew up the master plan for the facility yard in 1953. Other buildings were added in the 1960s. These new buildings included several public works buildings: office, warehouse, joint operations, and equipment repair. In 1975 the heavy equipment building was constructed and in 1998, the body shop was built. During the 1980s, the animal shelter buildings were removed from the site. Approximately 16 buildings remain on the site today. All of these buildings were constructed after 1953 and are not eligible as historic resources because they are not fifty years of age.

El Rio Drive residence (no present address)

Historical Background

This house was built between 1912 and 1922 by the Francisco Ayala family. Originally the land was owned by John Donlon who purchased 403 acres of land in this area about 1885. A native of Ireland, Donlon was born in 1847 and came to Ventura County in 1875 and started out raising sheep. In 1886 he married Mary Forrer, a native of Utah, and began their family of twelve children. Donlon had a house built for his wife probably in the late 1880s or 1890s. All twelve children were born in the house, and two of the children, William and Nazarene, lived in the main family house until it was sold about fifteen years ago. This house was located at the end of Strobe Street and was demolished after it was sold. Nazarene Donlon recalls that there was another house on the property when her father purchased the land. She recalls that he tore that house down. Today a modern metal barn sits on the site.

RiverPark Specific Plan: Historic Resources Report [7]

Between 1912 and 1922 the land along present El Rio Drive west of Colonia Avenue was subdivided into several lots. Over the past fifty years this house has been rented out to various families (Sheridan,1926:19; Bissell, 1985:4; Almanza, 11/21/00).

Architectural Description

The date of construction of the residence is uncertain, but it appears to date from around 1912. The gable front plan has a side gabled wing with a shed-roofed porch placed within the L formed by the two wings. At the rear of the side gable is a shed roof portion. The porch is supported by four square wood posts. The tall wood windows are one-over-one sash with plain wood moldings. A wider window was added under the shed roof rear portion. This was a later addition. The house has been covered with composition or asphalt shingles probably over the original horizontal wood siding. The roof is composition shingles. This house is similar to other older houses along Colonia Avenue built shortly after the turn-of-the-century.

300 El Rio Drive (Newport Boats Showroom)

This large one-story commercial building was constructed after 1960 and is not old enough to qualify as a historic resource under CEQA.

2423 Colonia Avenue

This one story rectangular plan residence was built between 1955 and 1958 by Aldo Fatarelli, son of Peter and Alicia. The roof is low pitched gable covered with gravel The house is covered with stucco siding and has sliding aluminum windows. An exterior brick chimney is located on the southern elevation.

Myrtle Street Residence (no present address)

Between 1936 and 1938, Pete Fatarelli moved this building, which was a pump house, onto one of five lots he and his wife Alicia owned on Myrtle Street and present day El Rio Drive, and converted it into a residence. Mr. Fatarelli operated a trucking business until World War II. The family built their own home on one of the five lots facing onto present day El Rio Drive. When the freeway was constructed in 1955, they moved the house back onto Colonia Avenue (Fatarelli, 11/27/2000).

The western side of the building was originally a pump house that was moved from the Eastwood property on Gonzales Road. It was converted into a small residence and an addition was made on the western side. It has a medium front facing gable roof with a broad overhang. The front window is a wood frame one-over-one sash with plain wood moldings. The front door is not original. The house is covered with medium clapboard siding. A large addition has been made to the north side of the house that doubled the original size. The front of the addition is covered with plywood and a small fixed window. The northern side is covered with wide horizontal siding. A map prepared in 1922 of the Town of Colonia shows that a J. Mondragon owned this property.

3091 Vineyard Avenue (Grubb/Campbell farmhouse)

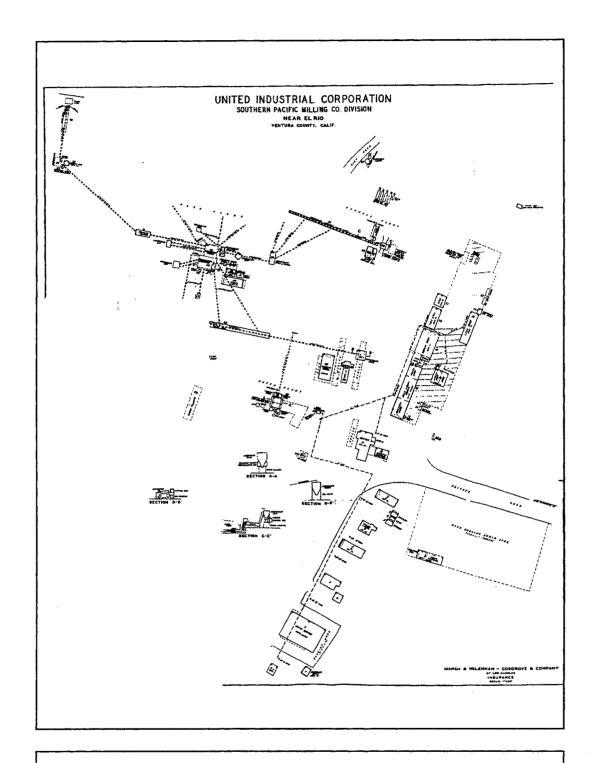
This one story ranch style house has a hip roof covered with wood shingles and exposed rafters under the eaves. The porch is recessed. The house is covered with stucco siding and the wood windows have two-over-two sashes. Adjacent to the house is a garage, and a mobile home is located behind the house. The house appears to have been built by 1945. It is shown on an aerial photograph taken that year. The house was probably built for John H. Grubb and his wife Ella. The family owned a large acreage going back to 1912 along Vineyard Avenue where John Grubb owned 67 acres just north of present day Strobe Street (formerly Walnut Avenue). Walnuts were once grown on the property. The first Grubb house was located further south of this present house and was moved in later years to the east side of Vineyard to the corner of Collins Avenue and Balboa. John had two sisters who lived in the older house (Fatarelli, 11/30/2000).

Southern Pacific Milling Company (Hanson Aggregates, 3555 Vineyard Avenue)

History

This mining site was originally developed as the El Rio Rock Company in the early 1940s by C. Donald Woolsey. When the Naval base was established in Port Hueneme in 1942, Woolsey recognized the need for asphaltic concrete. His company helped pave the many roads at the base. Woolsey constructed or moved several buildings onto his El Rio site. They included: an office building, residence for bookkeeper, metal shop building and quonset huts for use as storage, an asphalt plant and a dry screening and crushing plant. In 1952 Southern Pacific Milling Company leased the property, eventually purchasing it, and began new development on the site. An administration building was constructed as well as the asphaltic plant. A site plan showing the buildings and structures at their present location was completed in 1960. This 1960 plan includes approximately 56 buildings and structures.

The El Rio Rock Company was one of three rock companies in this area of the Santa Clara River near El Rio. The earliest was located in the Ventura River near Stanley Avenue. It was moved to the Saticoy area and called Saticoy Rock Company. It remains in existence today but under a new name. The Montalvo Rock Company was established in the 1930s and was eventually taken over by the Southern Pacific Milling Company who closed it in the late 1950s when the rock deposits were depleted. The El Rio Rock Company was the third to be established in the early 1940s by Donald Woolsey, who established the Santa Paula Rock Company about the same time (Hamilton, 11/27/00).


Southern Pacific Milling Company originated in 1885 as a grain milling and warehousing company and incorporated in 1886. The company had warehouses adjacent to the railroad tracks and depots throughout Ventura County as well as other cities in California. By the late nineteenth century, the company became involved in the lumber industry and operated some 38 warehouses and 21 lumber yards between Los Angeles and San Francisco. By the 1940s, the company transitioned from milling and warehousing into mining aggregates.

The El Rio plant, where they began mining operations in 1952, became the main headquarters for supplying aggregates and related products used in modern construction. During the 1950s the company accelerated its production by introducing modern equipment and processing structures. It contributed to the industry by pioneering in the HMS (Heavy Media Separation) process that "enhanced the quality of aggregates by floating out the undesirable elements of the material. The resulting products were superior for many usages where highgrade aggregates are essential." (SP Milling Co.1985:3) The materials produced by SP Milling were used locally and in the Southern California region for highways and streets, housing projects, industrial and commercial buildings, oil refineries, schools, dams and parking structures, airports and naval bases. SP Milling had 140 employees in 1960. In addition there were 35 hauling trucks operating from the El Rio site (Marsh & McLennan-Cosgrove & Company: 1960:1). (Figure 3)

Building/Site Descriptions

Today the mining site encompasses approximately 149 acres of gravel and sand from the close proximity to the Santa Clara River as well as retention ponds and a number of buildings and structures. The buildings are clustered into several groupings. The Administration Building is surrounded by several small buildings once used as residences and offices and later for storage. Some of the buildings from the 1960 plan are no longer extant.

Another grouping of metal shop buildings are used for equipment repair, welding, paint shop, lube shop, and tire storage. Adjacent to this cluster is an older woodframe office building. Across from the office building is the Cement Batch plant with nearby cement warehouse, scales and dispatch office. East of the cement Batch Plant is the Asphaltic Plant, and north of this plant is the Sand And Gravel Plant, formerly called the Rock Plant.

FIGURE 3

SOUTHERN PACIFIC MILLING COMPANY, 1960 SOURCE: Marsh & McLennan-Cosgrove and Co. SCALE: none Three extant buildings appear to have been built by the El Rio Rock Company in the early 1940s. They are a residence/storage and garage, an office and an office/residence. Several other buildings may have been on the site prior to 1952. They are the metal equipment repair sheds, and several other metal storage buildings.

Office building (circa 1942)

Irregular in plan, this one story office building has a cross gable roof covered with composition sheeting. Rafters are exposed under the broad eaves. There is a simple concrete stoop in front of the main entry with pipe railings. Windows are fixed or one-over-one wood sash with plain wood mouldings. The building is covered with medium horizontal clapboard siding and rests on a concrete foundation. A shed roof addition is located on the north elevation.

This building was used by Donald Woolsey as an office building for his new El Rio Rock Company, established in the early 1940s. The exact date of construction of this building is unknown. The style of the building indicates a 1920s date, so the building could have been moved onto the site circa 1942. The building has had some modifications over the years including the replacement of the wood windows with aluminum sliders on the rear wing (south elevation).

Residence/garage (circa 1942)

This building served as the residence for the El Rio Rock Company bookkeeper, Mr. Campbell, and his family. After his death, his widow was allowed to remain. She kept a small garden around the building. When she left, Southern Pacific converted it to a lab and conference room. It presently is being used for storage. This one story rectangular plan residence has a low pitched hip roof covered with composition shingles and exposed rafters under the eaves. The attached front porch has a shed roof supported by two square posts. The wood sash windows are two-over-two with wood moldings. The house is covered with medium horizontal clapboard siding and rests on a concrete foundation. At the rear of the house is a similar styled garage with hip roof and wood siding with a sliding wood door.

Office/residence (circa 1952)

This building is said to have been built by Mr. Woolsey after he leased the property to Southern Pacific Milling in 1952 as an office. This small rectangular plan building has a low pitched gable roof covered with composition shingles and exposed rafters under the eaves. Knee bracket details are located under the gable ends. The attached front porch has a shed roof supported by two wood posts and a wood railing with a criss-cross design. Windows have wood frames and are fixed or one-over-one wood sash. The building is covered with stucco siding and rests on a raised concrete perimeter foundation.

Metal Equipment Repair Building (circa 1942 with additions through the present)

A rectangular plan metal building was constructed around 1942 for use as a shop building by the El Rio Rock Company. It is possible that this building is located at the south end of the grouping of several shop buildings because of its type of metal siding and framing.

The lubrication building, the paint building and a portion of the equipment repair building may all date from circa 1942 based on their material and form. The 1949 Oxnard quad map and the 1951 Saticoy quad map show approximately eight buildings on the site. Since there are no permits available, all three buildings will be assessed as historic buildings (fifty years of age or older).

Lubrication Building (circa 1942)

This tall rectangular plan building has a shed roof addition. The gable roof has a low pitch with exposed rafters under the eaves. The building is covered with corrugated metal siding. A tall steel roll-up door is located on the north elevation.

Paint Shop/Storage Building (circa 1942)

Rectangular in plan, this one story building has a medium gable roof covered with corrugated metal sheets. A shed roof addition is located one one side of the bulling. Openings have been enclosed with metal siding.

Administration Building (circa 1959)

This flat roofed building is rectangular in plan and covered with stucco siding. The entrance, located on the north elevation, has a flat roof overhang supported by two walls. Decorative wood arbor extends across the west elevation over a grouping of windows. Windows are aluminum sliders.

Asphalt Plant (circa 1940 and upgraded continuously)

The Asphalt Plant was modernized and expanded by Southern Pacific Milling Company beginning in 1959. It contains tanks and numerous sized structures and equipment attached by conveyor belts. A few small corrugated metal buildings used as offices are located here as well.

Concrete Plant (after 1952)

The Concrete Plant or Batch Plant was constructed by Southern Pacific Milling and has been modernized over the past fifty years. It contains numerous tanks, conveyor belts and small office buildings used for dispatch and scales as well as aggregate storage.

Rock Plant (after 1952)

The rock plant has been partially disassembled. What remains are conveyor belts, a metal warehouse, equipment and equipment. It was built by Southern Pacific Milling.

6. Eligibility of Historic Resources

Residence, El Rio Drive (Photograph 1)

This building does not appear to be associated with any significant historic event (Criterion A) that occurred in the El Rio area, nor is it associated with a significant person (Criterion B). Architecturally it is not sufficiently distinctive to be eligible for the National Register or the California Register under Criterion C, especially since it no longer resembles its original historic appearance. Changes have been made to siding and additions have been made. It does not appear to meet the criteria for eligibility as a Ventura County landmark.

Myrtle Street residence, west of Colonia Avenue - no address (Photograph 2)

This building does not appear to be associated with any significant historic event (Criterion A) that occurred in the El Rio area, not is it associated with a significant person (Criterion B). Architecturally is is not sufficiently distinctive to be eligible for listing on the National Register or the California Register under Criterion C, especially since it no longer resembles its original historic appearance. This building was moved to the site in the mid-1930s. It was a pump house converted to a residence with an addition made on the west side. Although it has served as a residence for almost 75 years, its original use was a pump house and the building was moved from the Eastwood ranch on Gonzales Road. It does not meet the criteria for listing as a Ventura County landmark.

Grubb/Campbell Farmhouse, 3091 Vineyard Avenue (Photograph 3)

The Grubb residence is not eligible for listing on the California Register or the National Register of Historic

RiverPark Specific Plan: Historic Resources Report [11]

Places because no significant events occurred on the property (Criterion A). The property was once part of a larger walnut ranch that included two residences, but the integrity of the property has been lost with the removal of the other older residence and the walnut trees, and a portion of the original acreage. No significant individuals are associated with this property (Criterion B). The Grubb family were ranchers and owned the land from at least 1912 until circa 1970 when it was purchased by the Campbell family. There are no buildings on the property with distinctive architectural designs (Criterion C). The main house is a modest fairly unaltered example of the Ranch house style. A garage and a mobile home are also located on the property. The property does not appear to be eligible under any of the Ventura County Landmark criteria.

El Rio Rock/Southern Pacific Milling Company (Hanson Aggregates), 3555 Vineyard Avenue (Photographs 4-17)

Five buildings on the former El Rio Rock Company/Southern Pacific Milling Company site were built or moved to the site prior to 1950. The exact dates are unknown, because there are no building permits available for these buildings. The buildings include an office building, circa 1920; a residence/lab/garage, circa 1942; three metal storage buildings, circa 1942.

Eligibility Discussion

The El Rio Rock Company was established circa 1942 by Donald Woolsey primarily in response to the need for asphalt with the construction of the Naval Base at Port Hueneme that same year. These buildings were all located on site prior to the leasing of the property by the Southern Pacific Milling Company in 1952. This grouping of buildings, including the asphalt plant, which was modernized by SP Milling, was one of three industrial rock mining operations in the Ventura-Santa Clara Valley region. The other three were Saticoy Rock Company and Montalvo Rock Company. The El Rio Rock Company contributed mainly to the construction of roads and air fields.

Later, with the addition of a concrete and rock plant by SP Milling, the company supplied materials used in the construction of a large number of buildings throughout Ventura County. The materials produced by SP Milling were used locally and in the Southern California region for highways and streets, housing projects, industrial and commercial buildings, oil refineries, schools, dams and parking structures, airports and naval bases.

The five historic buildings located on the SP Milling Company site may be eligible for listing on the NRHP and California Register of Historical Resources under Criterion A (historic events), because they are associated with an industry which has made a significant contribution to the physical development of Ventura County through the construction of roads, bases, airfields and buildings.

In order to qualify for the NRHP, a resource must retain its integrity, or "the ability of a property to convey its significance."

When judging the integrity of the property, the entire site as well as it surroundings must be considered. Because the vicinity of the property no longer resembles its original historic appearance, with the encroachment of urbanization to the east, west and south, and the loss of adjacent agriculture, the setting (physical environment of a property) is effectively lost. The property's location is the same. The design and materials of the property is partially intact. Although only minor modifications to the buildings have occurred, the access road into the property has been moved twice, and some buildings were added to the site after 1950, while others have been removed. The feeling and association of the property as a rock and cement company is partially intact. The rock crushing activity continues on a portion of the property, although the mining has ceased.

Because of the significant loss of integrity in setting and design, the remaining buildings on the property do not appear to be eligible for listing on the NRHP or the CRHR.

RiverPark Specific Plan: Historic Resources Report [12]

However, they may be eligible for listing as Ventura County Landmarks, a designation which has no integrity criteria. The El Rio Rock Company/SP Milling Company site appears to qualify as a Ventura County Landmark under Criterion 1 because it reflects special elements of the County's mining engineering history. It also appears eligible under Criterion 8 as one of the few remaining examples in the County possessing distinguishing characteristics of a historical industrial type.

7. Project Impacts

Within the CEQA definitions, a project which may result in the demolition, destruction, relocation, or alteration of an historic resource is regarded as an adverse environmental impact.

Impact 1. The demolition of the El Rio Rock Company/SP Milling site and the construction of a new residential complex will result in the loss of the entire rock and concrete mining site. This should be regarded as an adverse impact.

8. Adverse Impact Mitigation

A principle of environmental impact mitigation is that some measure or combination of measures may serve to reduce adverse impacts, and that feasible measures which mitigate environmental impacts should be implemented, even where residual impacts may remain. In reference to mitigating impacts on historic resources, the CEQA Guidelines state:

Generally, a project that follows the Secretary of the Interior's Standards for the Treatment of Historic Properties with Guidelines for Preserving, Rehabilitating, Restoring, and Reconstructing Historic Buildings or the Secretary of the Interior's Standards for Rehabilitation and Guidelines for Rehabilitating Historic Buildings (1995), Weeks and Grimmer, shall be considered as mitigated to a level of less than a significant impact on the historical resource. (PRC §15064.5 (b)(3))

These standards and the supporting literature describe the principles of historic preservation as well as accepted methodologies for carrying out preservation, restoration and rehabilitation projects. The documentation of a resource in preparation for its demolition, for example, would not comply with the Secretary of the Interior's Standards, although documentation of a resource in connection with its relocation to another suitable site arguably may.

In direct reference to documenting historic resources as a mitigation technique, the CEQA Guidelines state:

In some circumstances, documentation of an historical resource, by way of historic narrative, photographs or architectural drawings, as mitigation for the effects of demolition of the resource will not mitigate the effects to a point where clearly no significant effect on the environment would occur. (PRC §15126.4 (b)(2))

Implied by this language are circumstances where documentation may mitigate impacts to less than significant levels, although the conditions under which this may be said to have occurred are not specified in the Guidelines. Taken in total, the language in the CEQA Guidelines steers the methodology for mitigation of impacts on historic properties towards conformance with the Secretary of the Interior's Standards. The Guidelines also appear to leave open the potential for reducing impacts to levels below significance thresholds by means other than the application of the Standards, under circumstances which the Guidelines do not define.

In general practice, mitigation programs for impacts on historic resources tend to fall into three broad categories: documentation, design and interpretation. Documentation techniques involve the recordation of the site according to accepted professional standards, such that the data will be available to future researchers. Design measures could potentially include direct or indirect architectural references to the historic property, e.g., the incorporation of historic artifacts, into the new development. Interpretation

RiverPark Specific Plan: Historic Resources Report [13]

measures might include commemorating a significant historic event or the property's connection to historically significant themes.

As this property derives some of its significance from the historic industrial style it represents, recordation should be regarded as an appropriate mitigation technique. Since the significance of the property is not in its architecture, design-based mitigation would not be appropriate. As the property derives its significance partially from its associations with historic themes, interpretative measures are warranted. Accordingly, the following measures should to be incorporated into the mitigation program for this project:

- Impact 1. Demolition of the El Rio Rock Company/Southern Pacific Milling Company site.
 - A. Documentation. Prior to the issuance of a demolition permit, the applicant shall produce a documentation survey of the property in accordance with the Historic American Building Survey (HABS) standards. This documentation shall include archival quality photographs of exterior features, elevations of the seven historic buildings. The 1960 Inspection Report Map prepared by Marsh & McLennan-Gosgrove & Company shall be included as the site plan. The documentation package will be archived at an appropriate location determined by the City of Oxnard.
 - **B.** Interpretation. In consultation with a qualified historian, the applicant shall produce an oral history with the former president of SP Milling Company, Bill Hamilton, and any other employees with a knowledge of the company history. The taped history, done according to professional oral history standards, shall be indexed and copies made available to the Ventura County Museum of History and Art Oral History Archive and the Oxnard Historical Society and any other appropriate repository.

The project impacts after mitigation should be regarded as adverse and significant.

RiverPark Specific Plan: Historic Resources Report [14]

9. Bibliography

- Alexander, W.J. Historical Atlas of Ventura County. 1912.
- Bissell, Ronald M. Cultural Resources Evaluation. Oxnard Town Center Site, Ventura County, California.

 January 1985.
- California People Material & Service for 100 Years: SP 100 Years, 1885-1985. Southern Pacific Milling Company, 1985. (Pamphlet located at SP Milling office, 3555 Vineyard Avenue, El Rio)
- Daily, W.P. An Album of Memories. Santa Barbara: Schauer Printing Studio Company, 1946.
- Fairchild Aerial Survey, 1945, located at Ventura County Government Center, Map Division.
- Jarecky, Lee, Oral interview with Hortense Cohn Zander, no date, transcribed notes located at Ventura County Museum of History and Art Library.
- Johnston, Mary, Oral interview with Hortense Cohn Zander, 12/30/80, transcribed notes located at Ventura County Museum of History and Art Library.
- Malamut, Joseph L. Southwest Jewry: An Account of Jewish Progress and Achievement in the Southland., Vol. I. Los Angeles: The Sunland Publishing Co., Inc., 1926.
- Marina and Tower Views, May 10, 1979. "The Life and Times of Simon Cohn." Interview with Simon Cohn's grandson, Lee.
- Marsh & McLennan-Cosgrove & Company. United Industrial Corporation, Southern Pacific Milling Co.

 Division, Original Inspection Report. Los Angeles: 1960. (located at SP Milling Co. administration building, 3555 Vineyard Avenue, El Rio)
- Master Plan for Ventura County Facility Yard, Roy C. Wilson, Architect, 1953. (Located at Ventura County Map Department)
- Padre Associates. Phase I Environmental Site Assessment, Limited Phase II Environmental Site Assessment. Southern Pacific Milling Company, El Rio Facility, 3555 Vineyard Avenue. December, 1998.
- Plot Plan, El Rio Service Center, 1968. (Located in Ventura County Map Department)
- Ricard, Herbert F. "Place Names of Ventura County." Ventura County Historical Society Quarterly. 2(Winter, 1972)
- Ritter, Elizabeth. History of Ventura County, Its People and Its Resources. Los Angeles: Harold McLean Meier Publisher, 1940.
- Sheridan, Sol N. History of Ventura County, California. 2 vols. Chicago: S.J. Clarke, 1926.
- Silverstein, Rose L. "The Early Jewish Families of Ventura County." Ventura County Historical Society Quarterly, 29 (Summer, 1984).
- Southern Pacific Milling Company: Men, Materials, Equipment. no date. (Booklet located at SP Milling Co.(Hanson Aggregates) administration building, 3555 Vineyard Avenue, El Rio.)
- Storke, Yda Addis. A Memorial and Biographical History of the Counties of Santa Barbara, San Luis Obispo and Ventura, CA. 1891.

RiverPark Specific Plan: Historic Resources Report [15]

- Town of Colonia and Surrounding Territory, in Ranchos Del Norte and Colonia, Ventura County, California, prepared for Jacob Cohn, 1922. (located at Ventura County Mapping Department)
- Town of Colonia Map, subdivided by Taylor & Jepson, surveyed by J. B. Stow, 1887. (located at Ventura County Mapping Department)
- U.S. Department of the Interior. National Register Bulletin 15: How to Apply the National Register Criteria for Evaluation. Washington, D.C., 1991.
- USGS Maps, Hueneme Quad, 1901; Hueneme Quad, War Dept. U.S. Army, 1940; Oxnard Quad, 1949; Saticoy Quad, 1951.
- Ventura County City Directories, various years from 1875 through 1960.
- Ventura County Grant Deed Books: Roll 4, p. 230, 1876; Roll 22, p. 466, 1887; Roll 26, p. 441, 1888; Roll 27, p. 479, 1889; Roll 33, p. 339, 1891; Roll 45, p. 333, 1891; Roll 63, p. 204, 1899.
- Ventura County Star Free Press, "El Rio: Rural Living in a Community Once Called New Jerusalem." August 21, 1966.
- Ventura County Star, "El Rio had Many Names During its Old, Interesting Career." February 28, 1927.
- Ventura County Star, "El Rio has had Many Names Since Becoming Cross-Roads." July 18, 1929.
- Ventura Post, "Simon Cohn Still Waits for El Rio to be Metropolis." February 7, 1923.

Interviews

- Almanza, Ernest. Telephone conversation by Judy Triem with Ernest Almanza, long time resident of El Rio,11/21/2000.
- Fatarelli, Aldo. Telephone conversation by Judy Triem with Aldo Fatarelli, long time resident of El Rio,11/21/2000 & 11/30/2000.
- Hamilton, Bill. Telephone conversation by Judy Triem with Bill Hamilton, past president and employee of SP Milling for 45 years, 11/27/2000.
- Kinyon, Scott. Telephone conversation by Judy Triem with Scott Kinyon, former long-time employee of SP Milling Company, 11/16/2000.
- Zacks, Steven. Personal communication and telephone conversation with Steven Zacks, Environmental Officer for SP Milling (now Hanson Aggregates) on 10/25/2000, 11/23/2000.

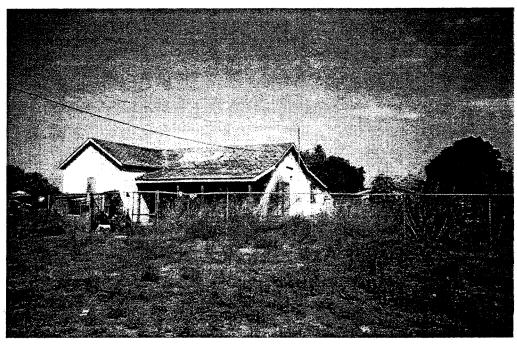


Photo 1: 300 block El Rio Drive, El Rio, facing north (San Buenaventura Research Associates, 10/17/00).

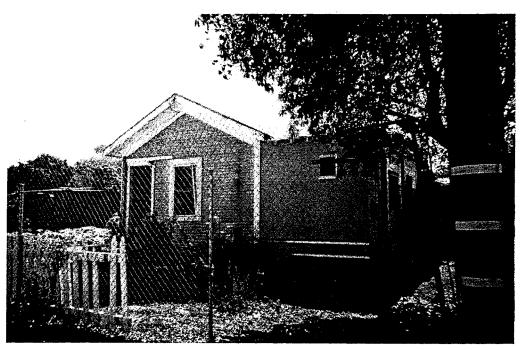


Photo 2: 200 block Myrtle Street, El Rio, facing south (San Buenaventura Research Associates, 10/17/00).

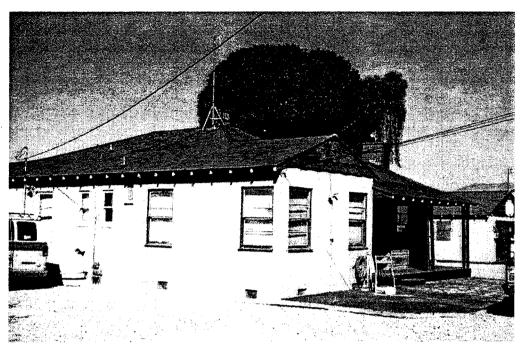


Photo 3: 3091 Vineyard Avenue, across from Walnut Avenue, facing northwest (San Buenaventura Research Associates, 10/17/00).

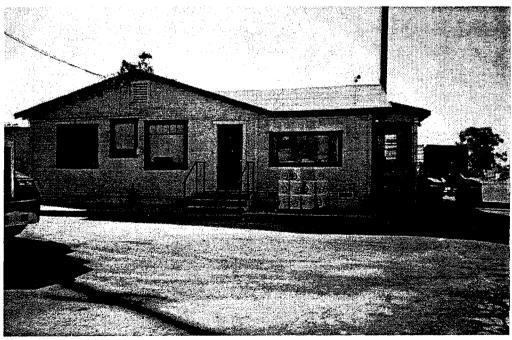


Photo 4: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co. office building, facing south (San Buenaventura Research Associates, 10/17/00).

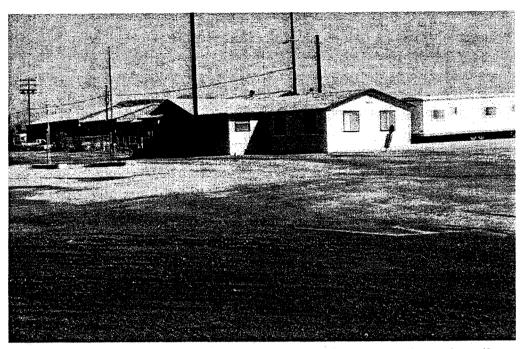


Photo 5: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co. office building, facing northeast (San Buenaventura Research Associates, 10/17/00).

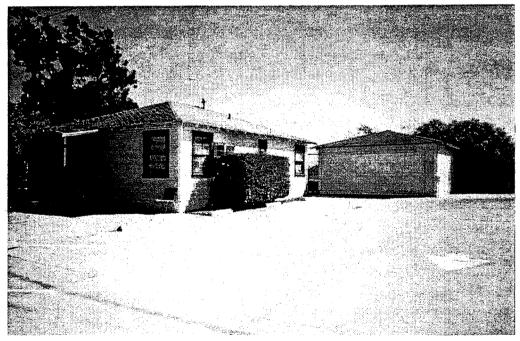


Photo 6: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co. residence/storage and garage, facing east (San Buenaventura Research Associates, 10/17/00).

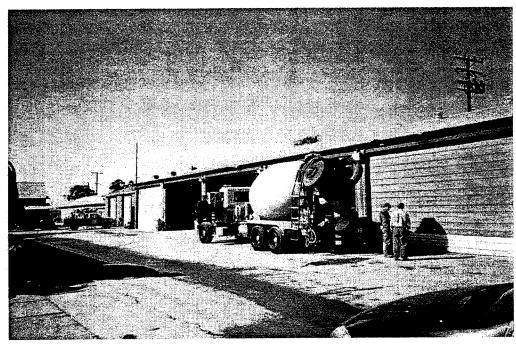


Photo 7: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co., repair shop, storage, welding department, facing south (San Buenaventura Research Associates, 10/17/00).

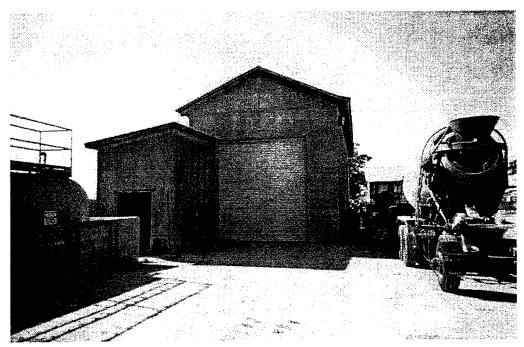


Photo 8: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co., lubrication building, facing south (San Buenaventura Research Associates, 10/17/00)

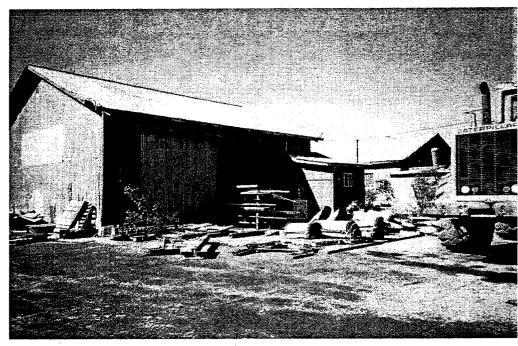


Photo 9: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co., paintshop/storage, facing west (San Buenaventura Research Associates, 10/17/00)

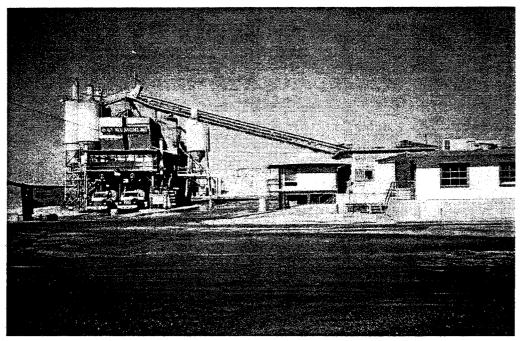


Photo 10: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co., Primary Ready-mix Batch Plant, facing northwest (San Buenaventura Research Associates, 10/17/00)

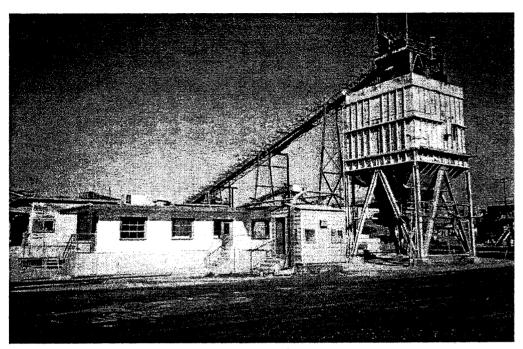


Photo 11: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co., Primary Ready-mix Batch Plant, facing northwest (San Buenaventura Research Associates, 10/17/00).

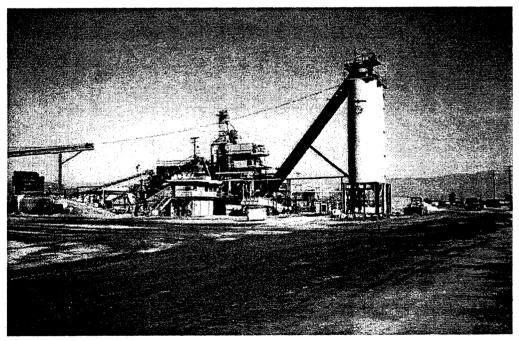


Photo 12: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co., Asphalt Plant, facing north (San Buenaventura Research Associates, 10/17/00).

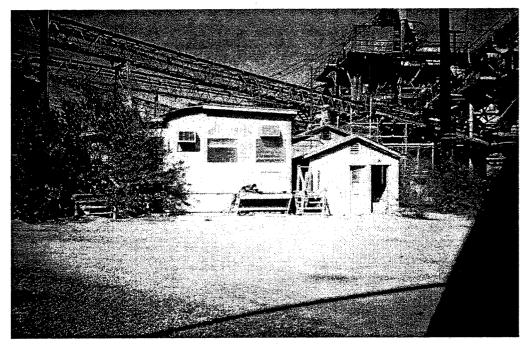


Photo 13: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co., Asphalt Plant, office, facing west (San Buenaventura Research Associates, 10/17/00).

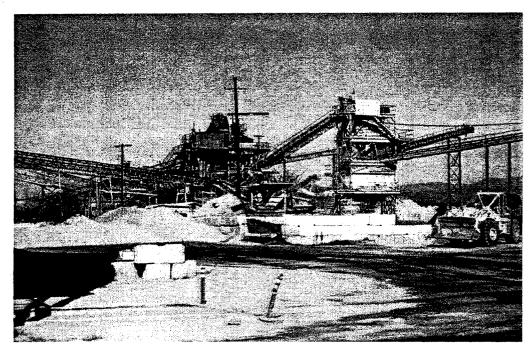


Photo 14: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co., asphalt plant and conveyor system, facing northwest (San Buenaventura Research Associates, 10/17/00).

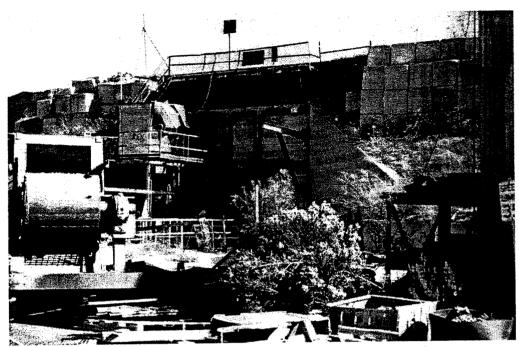


Photo 15: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co., Rock Plant and equipment, being dismantled (San Buenaventura Research Associates, 10/17/00).

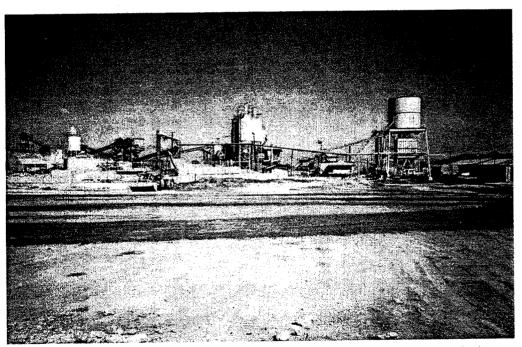


Photo 16: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co., View of concrete and asphalt plants, facing north (San Buenaventura Research Associates, 10/17/00).

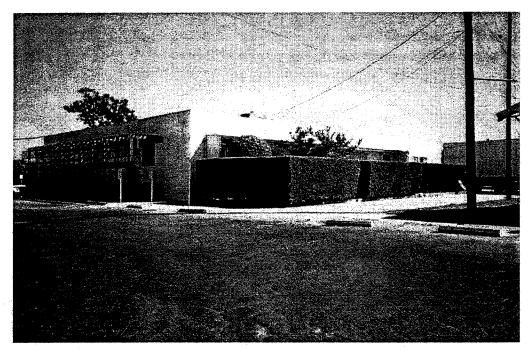


Photo 17: 3555 Vineyard Avenue, El Rio Rock Co./SP Milling Co., Administration Building, facing northeast (San Buenaventura Research Associates, 10/17/00).

PHASE I ARCHAEOLOGICAL SURVEY FOR THE RIVERPARK SPECIFIC PLAN STUDY AREA, OXNARD, VENTURA COUNTY, CALIFORNIA

Prepared For:

Mr. Tony Locacciato
Impact Sciences, Inc.
30343 Canwwod Street, Suite 210
Agoura Hills, CA 91301

Prepared By:

W & S Consultants 2242 Stinson Street Simi Valley, California 93065 805-581-3577

14 December 2000

MANAGEMENT SUMMARY

An intensive Phase I archaeological survey was conducted for the Riverpark Specific Plan study area, Oxnard, Ventura County, California. This investigation involved an archival records search, a review of existing published and unpublished references on local prehistory and history, and an on-foot, intensive survey of the subject property. Archival records indicated that no previously recorded archaeological sites had been recorded within the study area. On-foot survey of the study area failed to result in the discovery of any previously unrecorded cultural resources. However, a low density, mixed scatter of historical artifacts were found in a disturbed context in the southeastern portion of the study area. The significance of these remains is ambiguous but it is possible that a subsurface historical deposit may be present in this general area, which corresponds to the area of earliest Euro-American settlement. It is recommended that any grading in this area be conducted with an archaeological monitor to recover and record any historical deposit that may be present.

TABLE OF CONTENTS

Management Summary				
1.0	Introduction		1	
2.0	Background to the Project 2.1 Study Area Description & Location 2.2 Ethnographic Background	2	2	
	2.3 Archaeological Background	_	5	
3.0	Archival Records Search		9	
4.0	Field Survey	10		
5.0	Survey Results		1 1	
6.0	Recommendations		13	
7.0	Cited References		14	
3.0	Figures List of Figures	17	17	
9.0	Appendix A: Records Search		10	

1.0 INTRODUCTION

At the request of Mr. Tony Locacciato, Impact Sciences, Inc., Agoura Hills, CA, an intensive Phase I archaeological survey was conducted for the Riverpark Specific Plan Area, Oxnard, Ventura County, California (Figure 1). The study area, covering approximately 700 acres, is located immediately north of the Ventura Freeway (U.S. Highway 101) with the Santa Clara River forming its western boundary. The unincorporated residential community of El Rio borders the study area to the east.

The Phase I archaeological survey was intended to provide a background review of pertinent research and an archival records search to determine if any known archaeological sites were present in the project corridor, and/or whether the area had been previously and systematically studied by archaeologists; an intensive, on-foot survey of the project area to identify unrecorded cultural resources; and a preliminary assessment of such resources, should any be found within the study area. This manuscript constitutes a report on this Phase I archaeological study. Subsequent sections provide background to the investigation, including the results of the archival record search; a summary of the field surveying techniques employed; the results of the fieldwork; and management recommendations derived therefrom.

2.0 BACKGROUND TO THE PROJECT

2.1 Study Area Description and Location

Physiographically, the Riverpark Specific Plan study area lies near the northeastern side of the Oxnard Plain, alongside the Santa Clara River. as such, it is essentially a flat, open expanse. The study area is located partly within and partly outside (immediately north) of the incorporated City of Oxnard, within a mixed residential, commercial and agricultural zone known as the unincorporated community of El Rio (Figure 1). The Ventura Freeway (U.S. Highway 101) is the effective southern boundary of the study area, with the Santa Clara River lying immediately west. The eastern boundary skirts a residential portion of El Rio and Vineyard Avenue.

The majority of the study area is currently open space in use for agriculture, row crops primarily, especially towards the southern and eastern sides; and sand and gravel operation towards the north and west. In the central eastern portion of the study area, former gravel mines have been reclaimed as agricultural fields. The southeastern extreme of the study area includes a small area of residential structures, while a few commercial and industrial buildings are present in various parts of the property.

2.2 Ethnographic Background

The study area, and Ventura County in general, lies within the territory of the Ventureño dialect of the Chumash ethnolinguistic group (Kroeber 1925). These were Hokan speaking people, who occupied the area from Topanga Canyon northwest to approximately San Luis Obispo. Because of their location in an area of early Spanish missionization, Chumash culture and lifeways were heavily disrupted prior to any modern efforts at ethnographic research, hence our knowledge of them is limited. However, based on fragmentary records and various means of inferential and analogical studies, a certain amount can be reconstructed about their way of life.

The Chumash followed a hunting-gathering-fishing subsistence pattern, which incorporated a heavy reliance on maritime resources, including

pelagic and littoral fishes, and shellfish. Indeed, the bountiful sea resources that they exploited may have been a key factor in their evolutionary success (Landberg 1965): at the time of the arrival of the Spanish the Chumash had reached levels of population density, and complexities in social organization, unequaled worldwide by other nonfarming groups (Moratto 1984:118). These included permanent coastal villages along the Channel Islands area containing as many as 1000 inhabitants (Brown 1967), as well as a hierarchical sociopolitical organization consisting of at least two major chiefdoms (Whitley and Beaudry 1991). Further, based on recent reconstructions using mission registers, the Chumash appear to be have a matrilocal, and perhaps matrilineal, clan-based society (Johnson 1988).

The Oxnard Plain area was apparently a portion of a paramount Chumash capital at the village of *Muwu*, at modern Point Mugu (Whitley and Clewlow 1979; Whitley and Beaudry 1991). This served as the center of *Lulapin*, one of the two known historical chiefdoms, and was a domain whose limits stretched from the southeastern extreme of Chumash territory to just beyond modern Santa Barbara. Correspondingly, the Mugu locale has been documented, both archaeologically and ethnographically, as the center of a considerable amount of aboriginal activity (ibid.).

However, even given the proximity of the study area to Point Mugu, at the south end of the Oxnard Plain, no ethnohistoric data are available pertaining to the immediate project zone, per se. Indeed, King (1975:175; see also Kroeber 1925 and Brown 1967) indicates that the only Historic Chumash villages known for the region are specifically muwu and simomo (meaning 'beach' and 'the saltbush patch', respectively; see Applegate 1975:37, 41), both located close to Point Mugu; ixsha (or 'ihsha, 'ashes'; Applegate 1975:30), at the mouth of the Santa Clara River; and wenemu, 'sleeping place', the origin for the modern toponymic 'Hueneme' (Applegate 1974:198, 1975:45), applied to a temporary village or campsite, used as a rest-stop in trans-channel crossings, on the coast near Hueneme. According to Kroeber's map (1925: Plate 48), wenemu was actually located on the coast northwest of the modern town of Hueneme proper. Based on John Peabody Harrington's ethnographic notes, other known historical place-names in the area include: kasunalmu ('sending place'), an unlocated village/camp 'just west of Oxnard'; malhohshi, an unlocated place near Oxnard; shishlomow, an unlocated

place 'just south of Hueneme'; and *swini*, another unlocated place near Oxnard (Applegate 1975). None of these latter named locales are identifiable and, with the exception of the village/camp of *kasunalmu*, it is not even known whether they refer to natural/geographical, cultural, or mythical places on the landscape.

There is no evidence to suggest that any of these placenames apply to the study area. Apparently, during the Historic Period much of the general Oxnard Plain region was essentially an unoccupied zone intermediate between large population centers at Point Mugu and the modern Ventura area.

Traditional Chumash society was altered irrevocably with the onset of the missionization and Spanish colonization of the Ventura County region. But although Juan Rodriguez Cabrillo stopped in the area in A.D. 1542 while exploring the coast, and Sebastían Vizcaíno sailed-by in 1602 (Bancroft 1963), this historical period effectively began with the passing of the Gaspar de Portolá expedition through the area in 1769 - 1770 (Bolton 1971; Boneu 1983). Portolá was followed in quick succession by a number of other explorers, such as Juan Bautista de Anza in 1775-1776 (Bolton 1931) and José Longinos Martinez in 1792 (Simpson 1938); however, it was the establishment of the Mission of San Buenaventura, at modern Ventura, in 1782 (Triem 1985) that truly spelled the end of the aboriginal period. These and subsequent historical events and uses of the study area have been recently summarized by San Buenaventura Research Associates (2000).

2.3 Archaeological Background

Regional prehistory is best viewed using a chronological scheme that has its origins in the research of D.B. Rogers (1929), working on the Channel Islands and the Santa Barbara coastline. At a later date, Rogers' scheme was modified in terminology and improved with additional and more detailed data and radiocarbon dates by W.J. Wallace (1955).

Wallace's chronology for southern coastal California includes four time periods, the earliest of which (Early Man/Big Game Hunting period) was considered speculative, and thought to correlate with the end of the Pleistocene. Although it is likely that occupation of the southern

California coastal region occurred during this early time period, to date the only evidence of such has been limited to a few discoveries of fluted projectile points, found in isolated locales. However, the characteristic geomorphological instability of the California coastline, combined with the major change in erosional/degradational regimes that occurred at the end of the Pleistocene, does not favor the preservation of remains from this period.

With the transition towards a modern environment, starting approximately 9 to 10 thousand years ago, however, an adaptation referred to as the Early Millingstone period or horizon began and is evident in the archaeological record. Most sites of this stage date between 8500 and 3500 years in age, and are dominated by assemblages containing large numbers of groundstone artifacts, along with crude choppers and other core/cobble tools. These are thought to represent an adaptation to gathered foods, especially a reliance on hardshelled seeds.

More recently, it has been suggested that scraper planes, in particular, may have served in the processing of agave (Kowta 1969; Salls 1985); that the association of groundstone and core/cobble tools represents a generalized plant processing toolkit, rather than one emphasizing hard-seeds, per se (Whitley 1979), and one that was used in appropriate environmental settings throughout the prehistoric past; that is, that the so-called 'early millingstone toolkit' is environmentally rather than chronologically specific and reflects localized exploitation patterns, rather than a wide-ranging adaptational strategy (Leonard 1971). However, on the coastal strip, per se, there continues to be evidence that such sites date to the earlier end of the time-frame, and they are generally located on terraces and mesas, above the coastal verge.

Recent studies by Erlandson (1988; see also Erlandson and Colton 1991), finally, provide evidence of a significant, even if small, population of coastal hunters-gatherers in the region before 7000 years ago, or at the beginning of the Early Millingstone period. Erlandson has shown that these were neither Big Game hunters, nor specialized, hard-seed gatherers, but instead generalized foragers that relied on a variety of different kinds of terrestrial, coastal and marine resources, and that they were adapted to estuarine embayments that have long-since disappeared from the local environment. Further, his evidence indicates that their

primary protein sources were shellfish and other marine resources. Extending a pattern first identified by Meighan (1959) on the Channel Islands, in other words, this suggests that the adaptation to the seashore is a very ancient and long-lived tradition in local prehistory.

Following the Early Millingstone, a transitional stage, referred to as the Intermediate period, occurred. It is believed to have gotten underway about 3500 years ago, and to have lasted until about A.D. 1000. It is marked on the coast by a growing exploitation of marine resources, the appearance of the hopper mortar and stone bowl/mortar, and a diversification and an increase in the number of chipped stone tools. Projectile points, in particular, are more common at sites than previously. while artifacts such as fish hooks and bone gorges also appear. Further, there is substantial evidence that it was at the early end of this Intermediate period that inland sites, such as those found in the Conejo Corridor on the north side of the Santa Monica Mountains, were first established and occupied, suggesting the exploitation of more varied environments and perhaps an increase in population (Whitley and Beaudry 1991), as well as a movement of coastal sites down towards the beaches. In general, however, the Intermediate period can be argued to have set the stage for the accelerated changes that took place immediately following it.

With the transition to the Late Prehistoric period at A.D. 1000, which followed the introduction of the bow and arrow at about A.D. 600, and represented by a major reduction in the size of projectile points, we can correlate local prehistory with Chumash society as described (even if in abbreviated form) by early chroniclers and missionaries. However, this is not to suggest that society was in any way static, for the transition to the Late Prehistoric period was marked by the evolution and eventual dominance of a sophisticated maritime economy. Further, the rise in Chumash social complexity has been shown to have been associated with the development of craft specialization, involving the use of standardized micro-drills to mass produce shell beads on Santa Cruz Island (Arnold 1987), and to have occurred during the Late Prehistoric period.

3.0 ARCHIVAL RECORDS SEARCH

An archival record search was conducted at the California State University, Fullerton, Archaeological Information Center (AIC), by AIC staff members to determine: (i) if prehistoric or historical archaeological sites had previously been recorded within the project area; (ii) if the project area had been systematically surveyed by archaeologists prior to the initiation of this field study; and/or (iii) whether the region of the field project was known to contain archaeological sites and to thereby be archaeologically sensitive. The complete results of this archival record search are included in this document as Appendix A.

Files and records at the CSUF AIC indicate that a large portion but not all of the Riverpark study area was systematically surveyed by archaeologists. The primary relevant study covered roughly the southern half of the specific plan area (Bissell 1985). No archaeological sites were recorded within the study area during this or other surveys of portions of the study area, and no sites were known to be present within the Specific Plan boundaries.

A historical resources survey and evaluation was conducted for the Specific Plan study area as part of the current compliance process (see San Buenaventura Research Associates 2000). The resulting document provides all details on this aspect of the cultural resources studies.

In summary, the archival record search indicated that the project area had not been adequately surveyed to ascertain whether cultural resources were present within it.

4.0 FIELD SURVEY METHODS

An intensive and systematic field survey of the Riverpark Specific Plan study area was conducted by David S. Whitley, Ph.D., and Joseph M. Simon, of the W & S Consultants staff, between December 1-10, 2000. The groundsurface was examined by walking transects across the study area spaced at approximate 15 meter intervals to identify artifacts or other archaeological indicators that might be present on the groundsurface.

In general, groundsurface visibility during the fieldwork was good. The majority of the study area currently serves as agricultural fields and sand and gravel quarries. Visibility was essentially unimpeded in these areas. A few small portions of the study area, however, have been developed, including industrial/commercial structures within the sand and gravel operations and along El Rio Drive (the southern study area boundary), and a few residential buildings in the southeastern extreme. Groundsurface visibility in these last areas was more restricted but the distribution of structures and improvements was sufficiently widespread to allow good surface examination.

5.0 SURVEY RESULTS

The intensive Phase I archaeological survey of the Riverpark Specific Plan study area, Oxnard, Ventura County, California, failed to find any clear evidence for previously unrecorded archaeological sites, either prehistoric or historical in nature.

However, a very low density and mixed scatter of trash was encountered in the southeastern study area extreme, southeast of the intersection of Myrtle Avenue and El Rio Drive. This consists of an open lot that apparently once contained one or more house structures, and had been recently disked. We noted old glass and ceramic whiteware in this area, mixed with contemporary trash and debris. One of the pieces of whiteware had a maker's mark consisting of a lion and unicorn on either side of a crowned seal, over a ribbon with "WARRANTED", over "WM. CO". This is the mark of the Willets Manufacturing Company of Trenton, N.J. This mark was in use between 1879 and 1884 (DeBolt 1988:79)

Although certain artifacts can have a "shelf-life" that results in their disposal many decades after their original manufacture, it is possible that this and a few other artifacts of similar vintage in this area may date to the early historical occupation of this location. As noted by the San Buenaventura Research Associates (2000), this included the original settlement of New Jerusalem established by the Cohn family at what is essentially now the nearby intersection of the 101 Freeway and Vineyard Avenue, and shortly thereafter the subdivision of El Rio in 1887.

We did not, however, find evidence of an intact historical deposit or site at this or any other location within the study area. As implied above, this southeastern area once contained one or more house structures, which have been demolished. Hence, it has been heavily disturbed. Although we did not find historical remains in sufficient quantity and with adequate integrity, to warrant the recording of a historical site, it is possible that a buried historical deposit may be present at this location.

6.0 RECOMMENDATIONS

An archival records search, background studies, and an intensive, on-foot surface reconnaissance of the Riverpark Specific Plan study area, Oxnard, Ventura County, California, were conducted as part of a Phase I archaeological survey. No sites of any kind had been previously recorded within the study area or adjacent properties. No new sites were discovered during the Phase I survey. However, a low density, mixed scatter of historical debris, possibly dating between 1879 and 1884, was found in the southeastern extreme of the study area, southeast of Myrtle Avenue and El Rio Drive. This is currently an open lot which has experienced recent construction demolition is therefore disturbed, and currently contains a mixture of recent and older trash. This area lacks historical remains in sufficient quantity and with adequate integrity to warrant the recording of a historical site; however, it is possible that a buried historical deposit may be present at this location.

In light of this possibility, we recommend that any surface grading that occurs southeast of Myrtle Avenue and El Rio Drive within the Riverpark Specific Plan study area be conducted with an archaeological monitor, to record and recover historical archaeological remains should they prove to be present at this location.

7.0 CITED REFERENCES

- Applegate, R.A.
 - 1974 Chumash Place names. <u>Journal of California Anthropology</u> 1:187-205.
 - 1975 An Index of Chumash Place names. <u>Papers on the Chumash</u> (no editor). San Luis Obispo County
 Archaeological Society, Occasional Paper 9. pp. 19-46.
- Arnold, J.
 - 1987 Craft Specialization in the Prehistoric Channel Islands, California. <u>University of California Publications in Anthropology</u> 18. Berkeley.
- Bancroft, H.H.
 - 1963 <u>History of California, Volume I, 1542-1800</u>. Santa Barbara, Wallace Hebberd.
- Bissell, R.M.
 - 1985 Cultural Resources Evaluation, Oxnard Town Center Site, Ventura County, California. Report on file, City of Oxnard.
- Bolton, H.E., editor
 - 1933 <u>Font's Complete Diary: A Chronicle of the Founding of San Francisco</u>. Berkeley, University of California.
 - 1971 <u>Fray Juan Crespi: Missionary Explorer on the Pacific Coast.</u> 1769-1774. New York, AMS Press.
- Boneu Companys, F.
 - 1983 Gaspar de Portolá: Explorer and Founder of California (transl. by A.K. Brown). Lerida, Instituto de Estudios Ilerdenses.
- Brown, A.K.
 - 1967 The Aboriginal Population of the Santa Barbara Channel.

 <u>University of California Archaeological Survey Reports</u> 69.

 Berkeley.
- DeBolt, C.G.
 - 1988 <u>The Dictionary of American Pottery Marks: Whiteware and Porcelain</u>. Rutland, Vermont: Charles E. Tuttle.
- Erlandson, J.
 - 1988 Of Millingstones and Molluscs: The Cultural Ecology of Early Holocene Hunter-Gatherers on the California Coast. Ph.D. dissertation, UCSB.
- Erlandson, J. and R. Colton, editors
 - 1991 <u>Hunter-Gatherers of Early Holocene Coastal California</u>.

Perspectives in California Archaeology, Volume 1. UCLA.

Johnson, J.

1988 <u>Chumash Social Organization: An Ethnohistoric Perspective</u>. Ph.D. dissertation, UCSB.

Johnson, K.L.

1966 Site LAn-2: A Late Manifestation of the Topanga Complex in Southern California Prehistory. <u>Anthropological Records</u>, 23. University of California, Berkeley.

King, C.D.

1975 The Names and Locations of Historic Chumash Villages.

Journal of California Anthropology 2:171-179.

1981 The Evolution of Chumash Society: A Comparative Study of Artifacts Used In Systems Maintenance in the Santa Barbara Channel Region. Ph.D. dissertation, UC Davis.

Kowta, M.

1969 The Sayles Complex: A Late Milling Stone Assemblage from the Cajon Pass and the Ecological Implications of Its
Scraper Planes. Publications In Anthropology, 6.
University of California, Berkeley.

Kroeber, A. L.

1925 <u>Handbook of the Indians of California</u>. Bureau of American Ethnology, Bulletin 78.

Landberg, L.

1965 <u>The Chumash Indians of Southern California</u>. Southwest Museum Papers 19. Los Angeles.

Leonard, N.N.

1977 Natural and Social Environments of the Santa Monica Mountains (6000 B.C. to 1800 A.D.). <u>Archaeological Survey Annual Report</u> 13: 93-136. UCLA.

Meighan, C.W.

1959 The Little Harbor Site, Catalina Island: An example of ecological interpretation in archaeology. <u>American Antiquity</u> 24:383-405.

Moratto, M.J.

1984 <u>California Archaeology</u>. Academic Press. Orlando, Florida. Rogers, D.B.

1929 <u>Prehistoric Man of the Santa Barbara Coast</u>. Santa Barbara Museum of Natural History. Santa Barbara, California.

Salls, R.

- 1985 The Scraper Plane: A Functional Interpretation. <u>Journal of Field Archaeology</u> 12(1):99-106.
- San Buenaventura Research Associates
 - 2000 Riverpark Specific Plan EIR, Oxnard, California: Historic Resources Section. manuscript.
- Simpson, L.B., translator
 - 1938 <u>California in 1792: The Expedition of José Longinos</u>
 <u>Martinéz</u>. San Marino, Huntington Library.
- Thompson, T.H. and W.W. West
 - 1883 <u>History of Santa Barbara and Ventura Counties, California, With Illustrations and Biographical Sketches of Its Prominent Men and Pioneers</u>. Oakland.
- Triem, J.P.
 - 1985 <u>Ventura County: Land of Good Fortune</u>. Chatsworth, Windsor Publications.
- Wallace, W.
 - 1955 A Suggested Chronology for Southern California Coastal Archaeology. <u>Southwestern Journal of Anthropology</u> 11 (3):214-230.
- Whitley, D.S.
 - 1979 Subsurface Features, Toolkits and a Sweathouse Pit at the Ring Brothers Complex. In <u>Archaeological Investigations at the Ring Brothers Site Complex. Thousand Oaks. California</u>, edited by C.W. Clewlow, Jr., D.S. Whitley and E.L. McCann, pp. 101-110. Institute of Archaeology, Monograph 13. UCLA.
- Whitley, D.S. and M.P. Beaudry
 - 1991 Chiefs on the Coast: Developing Chiefdoms in the Tiquisate Region in Ethnographic Perspective. In <u>The Development of Complex Societies in Southeastern Mesoamerica</u>, edited by W. Fowler. CRC Press.
- Whitley, D.S. and C.W. Clewlow, Jr.
 - 1979 The Organizational Structure of the Lulapin and Humaliwo.
 - In The Archaeology of Oak Park, Ventura County,
 - <u>California</u>, Volume 3. Edited by C.W. Clewlow and D.S. Whitley. Institute of Archaeology, Monograph 11. UCLA.

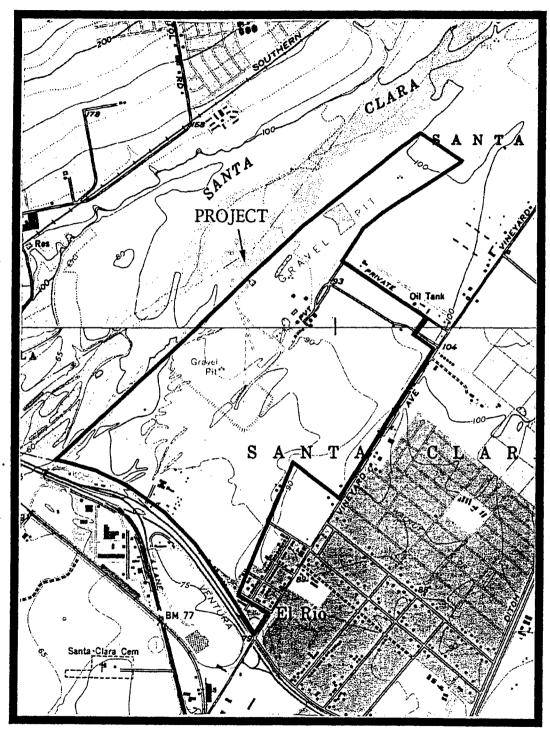


Figure 1: Project Location

Scale: 1 in. = 2000 ft.

Source: Oxnard, CA & Saticoy, CA 7.5' USGS Quads.

South Central Coastal Information Center

California Historical Resources Information System
California State University, Fullerton
Department of Anthropology
800 North State College Boulevard
Fullerton, CA 92834-6846
(714) 278-5395 / FAX (714) 278-5542
anthro.fullerton.edu / sccic.html

Los Angeles Orange Ventura

October 17, 2000

Joseph Simon W and S Consultants 2242 Stinson St. Simi Valley, CA 93065

RE: Records Search for RiverPark Specific Plan area in Ventura County

Dear Mr. Simon,

As per your request received on October 15, we have conducted a records search for the above referenced project. This search includes a review of all recorded historic and prehistoric archaeological sites within a half-mile radius of the project area as well as a review of all known cultural resource survey and excavation reports. In addition, we have checked our file of historic maps, the National Register of Historic Places, the California State Historic Resources Inventory, the California Points of Historical Interest, and the listing of California Historical Landmarks in the region. The following is a discussion of our findings.

OXNARD QUADRANGLE

PREHISTORIC RESOURCES:

No prehistoric sites have been identified within a half-mile radius of the project area.

The village sites Kama'Oq and Ponom are in the vicinity of the project area (see enclosed map).

HISTORIC RESOURCES:

No historic archaeological sites have been identified within a half-mile radius of the project area.

Inspection of our historic maps — Huenume (1904) 15' series —indicated that there were some improved and unimproved roads, and structures in place. Also, Elrio, Montalvo, the Santa Clara River, and the Southern Pacific Railroads were in place.

The California State Historic Resources Inventory lists two properties that have been evaluated for historical significance within a few blocks of the project area (see enclosed list).

The National Register of Historic Places lists no properties within a half-mile radius of the project area.

The listings of the California Historical Landmarks (1990) of the Office of Historic Preservation, California Department of Parks and Recreation, indicate that there are no California Historical Landmarks within a half-mile radius of the project area

The California Points of Historical Interest (1992) identifies no properties within a half-mile radius of the project area

PREVIOUS ARCHAEOLOGICAL INVESTIGATIONS:

Sixteen studies have been conducted within a half-mile radius of the project area (see enclosed map and bibliography). Of these, seven are located within the project area. Eight additional investigations are located within the Oxnard quadrangle and are potentially within the project area. These investigations are not mapped due to insufficient locational information.

SATICOY QUADRANGLE

PREHISTORIC RESOURCES:

One prehistoric site (56-000545) has been identified within a half-mile radius of the project area (see enclosed list).

One non trinomial archaeological site (56-100121) has been identified within a half-mile radius of the project area (see enclosed list).

HISTORIC RESOURCES:

No historic archaeological sites have been identified within a half-mile radius of the project area.

Inspection of our historic maps — Santa Paula (1903, 1947) 15' series —indicated that in 1903, there were some improved and unimproved roads, and structures in place. Saticoy, West Saticoy, Montalvo, the Santa Clara River, and the Southern Pacific Railroads were in place. In 1947, there were some improved and unimproved roads, and structures in place. Vineyard Ave., Bristol Road, Ditch Road, and highways118, 126, and 101 were in place. The Santa Clara River was channeled, and the Southern Pacific Railroads, and Saticoy were in place. Also, orchards and other agricultural fields were in place.

The California State Historic Resources Inventory lists two properties that have been evaluated for historical significance within a few blocks of the project area (see enclosed list).

The National Register of Historic Places lists no properties within a half-mile radius of the project area.

The listings of the California Historical Landmarks (1990) of the Office of Historic Preservation, California Department of Parks and Recreation, indicate that there are no California Historical Landmarks within a half-mile radius of the project area.

The California Points of Historical Interest (1992) identifies no properties within a half-mile radius of the project area.

PREVIOUS ARCHAEOLOGICAL INVESTIGATIONS:

Eight studies have been conducted within a half-mile radius of the project area (see enclosed map and bibliography). Of these, none are located within the project area. Six additional investigations are located within the Saticoy quadrangle and are potentially within the project area. These investigations are not mapped due to insufficient locational information.

Please forward a copy of any reports resulting from this project to our office as soon as possible. Due to the sensitive nature of site location data, we ask that you do not include record search maps in your report. If you have any questions regarding the results presented herein, please feel free to contact our office at (714) 278-5395.

Invoices are mailed approximately two weeks after records searches are completed. This enables your firm to request further information under the same invoice number. Please reference the invoice number listed below when making inquires. Requests made after invoicing will result in the preparation of a separate invoice with a \$15.00 handling fee.

Esther Won
Staff Archaeologist

Enclosures:

(X)	Primary Number Explanation
(X)	Map - Oxnard and Saticoy 7.5' USGS Quadrangle
(X)	Bibliography - 6 pages
()	Site list pages
(X)	HRI - 2 pages
(X)	National Register Status Codes - 4 pages
()	Site records
()	Survey reports
(X)	Confidentiality Form
()	Invoice # 8920

INVOICE #8920 SATICOY QUADRANGLE

ITEMID: VN1018

DATE: 1980

PAGES: 2

AUTHOR: CALLISON, SHEILA

FIRM: VENTURA COUNTY

TITLE: Cultural ResourceS Survey of: DP-252.

AREA: 10 ac SITES: none

QUADNAME: SATICOY

MEMO:

ITEMID: VN1072

DATE: 1991

PAGES: 4

AUTHOR: ATWOOD, JOHN E.

FIRM: C. A. SINGER AND Associates, INC.

TITLE: SUPPLEMENTAL Archaeological Survey FOR THE BRISTOL RELIEF

SEWER LINE.

AREA: 1 ac SITES: none

QUADNAME: SATICOY

MEMO:

ITEMID: VN1741

DATE: 1999

PAGES: 24

AUTHOR: Maki, Mary

FIRM: Conejo Archaeological Consultants

TITLE: Phase I Archaeological Survey and Impact Assessment of 50.2 Acres for the River Bend Ranch Project,

Ventura, Ventura county, California

AREA:

SITES: none

QUADNAME: Saticoy

ITEMID: VN1816 DATE: 1999

PAGES: 14

AUTHOR: Maki, Mary

FIRM: Cone o Archaeological Consultants

TITLE: Phase I Archaeological Survey and Impact Assessment of 46 Acres El Rio Site-Juvenile Hall Justice

Center El Rio, Ventura County, California

AREA: 46 ac SITES: none

QUADNAME: Saticoy

MEMO:

ITEMID: VN392

DATE: 1977

PAGES: 10

AUTHOR: PENCE, R. L.

FIRM:

TITLE: Archaeological Assessment of THE RIVER VIEW PROJECT, City of

VENTURA, CALIFORNIA

AREA: 17 ac

SITES: CA-VEN-545

QUADNAME: SATICOY

MEMO:

ITEMID: VN575

DATE: 1988

PAGES: 14

AUTHOR: Lopez, Robert

FIRM:

TITLE: AN Archaeological RECONNAISSANCE of THE AREAS INVOLVED IN THE

PROPOSED S.W.E.P.I. WELL LOCATIONS AND PIPELINE ROUTES, OXNARDPLAIN,

VENTURA COUNTY, CALIFORNIA

AREA: 17.8 ac, 34.7 li mi

SITES: 56-000631, 56-000665, 56-000666

QUADNAME: Camarillo, Moorpark, Saticoy, Santa Paula

Oxnard

ITEMID: VN955

DATE: 1990

PAGES: 5

AUTHOR: Pence, Robert L.

FIRM: PENCE Archaeological CONSULTING

TITLE: Archaeological RECONNAISSANCE IN THE EL RIO AREA VENTURA

COUNTY

AREA: 22 ac SITES: none

QUADNAME: SATICOY

MEMO:

ITEMID: VN982

DATE: 1991

PAGES: 22

AUTHOR: Singer, Clay A. and John E. Atwood

FIRM: SINGER & Associates, INC.

TITLE: Cultural ResourceS Survey and Impact Assessment FOR THE

BRISTOL RELIEF SEWER PhaseS TWO AND THREE, IN THE CITY OF VENTURA, VENTURA

COUNTY, CALIFORNIA.

AREA: 6 li mi

SITES: CA-VEN-31, VEN-815H

QUADNAME: OXNARD

SATICOY

INVOICE #8920 OXNARD QUADRANGLE

ITEMID: VN1018

DATE: 1980

PAGES: 2

AUTHOR: CALLISON, SHEILA

FIRM: VENTURA COUNTY

TITLE: Cultural ResourceS Survey of: DP-252.

AREA: 10 ac SITES: none

QUADNAME: SATICOY

MEMO:

ITEMID: VN1072

DATE: 1991

PAGES: 4

AUTHOR: ATWOOD, JOHN E.

FIRM: C. A. SINGER AND Associates, INC.

TITLE: SUPPLEMENTAL Archaeological Survey FOR THE BRISTOL RELIEF

SEWER LINE.

AREA: 1 ac SITES: none

QUADNAME: SATICOY

MEMO:

ITEMID: VN1741

DATE: 1999

PAGES: 24

AUTHOR: Maki, Mary

FIRM: Conejo Archaeological Consultants

TITLE: Phase I Archaeological Survey and Impact Assessment of 50.2 Acres for the River Bend Ranch Project,

Ventura, Ventura county, California

AREA:

SITES: none

QUADNAME: Saticoy

ITEMID: VN1816

DATE: 1999

PAGES: 14

AUTHOR: Maki, Mary

FIRM: Conejo Archaeological Consultants

TITLE: Phase I Archaeological Survey and Impact Assessment of 46 Acres El Rio Site-Juvenile Hall Justice

Center El Rio, Ventura County, California

AREA: 46 ac SITES: none

QUADNAME: Saticoy

MEMO:

ITEMID: VN392

DATE: 1977

PAGES: 10

AUTHOR: PENCE, R. L.

FIRM:

TITLE: Archaeological Assessment of THE RIVER VIEW PROJECT, City of

VENTURA, CALIFORNIA

AREA: 17 ac

SITES: CA-VEN-545

QUADNAME: SATICOY

MEMO:

ITEMID: VN575

DATE: 1988

PAGES: 14

AUTHOR: Lopez, Robert

FIRM:

TITLE: AN Archaeological RECONNAISSANCE of THE AREAS INVOLVED IN THE

PROPOSED S.W.E.P.I. WELL LOCATIONS AND PIPELINE ROUTES, OXNARDPLAIN,

VENTURA COUNTY, CALIFORNIA

AREA: 17.8 ac, 34.7 li mi

SITES: 56-000631, 56-000665, 56-000666

QUADNAME: Camarillo, Moorpark, Saticoy, Santa Paula

Oxnard

ITEMID: VN955

DATE: 1990

PAGES: 5

AUTHOR: Pence, Robert L.

FIRM: PENCE Archaeological CONSULTING

TITLE: Archaeological RECONNAISSANCE IN THE EL RIO AREA VENTURA

COUNTY

AREA: 22 ac SITES: none

QUADNAME: SATICOY

MEMO:

ITEMID: VN982

DATE: 1991

PAGES: 22

AUTHOR: Singer, Clay A. and John E. Atwood

FIRM: SINGER & Associates, INC.

TITLE: Cultural ResourceS Survey and Impact Assessment FOR THE

BRISTOL RELIEF SEWER PhaseS TWO AND THREE, IN THE CITY OF VENTURA, VENTURA

COUNTY, CALIFORNIA.

AREA: 6 li mi

SITES: CA-VEN-31, VEN-815H

QUADNAME: OXNARD

SATICOY

November 14, 2001 Ref. No. 1116-01A

Impact Sciences, Inc. 30343 Canwood Street, Suite 210 Agoura Hills, California 91301

Attention: Mr. Tony Locacciato

Report

Limited Phase II Environmental Site Assessment Approximate 212-Acre Area "A" and 66-Acre Campbell Basin Proposed RiverPark Development, Ventura County, California

Introduction

Applied Environmental Technologies, Inc. (AET) is pleased to provide this report of the results of a Limited Phase II Environmental Site Assessment (ESA) for the project referenced above. The investigation was requested by Mr. Tony Locacciato of Impact Sciences on behalf of RiverPark Development, LLC. AET understands that the Site, the majority of which is currently used for agriculture, will be developed for commercial and residential uses. Based on the past and present agricultural use, there was a low to moderate probability that agricultural chemicals such as organochlorine pesticides, chlorinated herbicides and/or heavy metals may have been present in the shallow soil at the Site.

Objective

The objective of the Limited Phase II ESA, as performed by AET, was to confirm or deny the presence of significant concentrations of agricultural chemicals in the shallow soil at the Site such as chlorinated herbicides, heavy metals and/or chlorinated pesticides, particularly those with long residency time in the soil such as DDT and is daughter products DDD and DDE, which are commonly found in the shallow soil in many agricultural areas of the Oxnard Plain.

Soil Sampling Methodology

In order to evaluate if long lived organochlorine pesticides, chlorinated herbicides and/or heavy metals were present in the shallow soil at the Site, soil samples were collected from

Impact Sciences, Inc. Mr. Tony Locacciato

selected locations and submitted for analysis to American Scientific Laboratories, a State Certified analytical laboratory in Los Angeles, California.

Soil Sampling, Area A

The approximate 212-acre Area A was divided into 15 primary parcels of approximately 14 acres each. Each 14-acre parcel was divided into four quadrants of approximately 3.5 acres each (Plate 2). A geologist from AET collected one soil sample from the approximate center of each of the quadrants (60 samples total from Area A). The surface soil samples were collected using hand operated soil sampling equipment in 6 inch long brass sleeves from the interval of approximately 1 inch to 7 inches below ground surface (bgs). Each group of four samples was submitted to the laboratory. The laboratory made one composite sample from each set of four samples for analysis. One composite sample was analyzed from each primary 14-acre parcel in Area A (Samples C-1 through C-15). Sample locations and the 15 primary parcels are illustrated on Plate 2.

In addition to the 15 shallow composite samples, four discrete samples were collected from a depth of approximately 2.5-feet below ground surface from 4 of the 14-acre primary parcels to evaluate the vertical extent of any resistant chemicals detected in the shallow soil (Samples S-7, S-12, S-32 and S-40, Plate 2), and two discrete samples were collected from the fallow land in the north corner of Area A, near the Santa Clara River levee (Samples SSB-1 and SSB-2, Plate 2).

Soil Sampling, Campbell Basin

The 66.4-acre North El Rio Detention Basin No. 2 Property (also known as the Campbell Basin), was divided into two areas. The first area was the topographically lower area where a group of four shallow soil samples, collected from the four quadrants of the strawberry field, were submitted to the laboratory. The laboratory made one composite sample from the 4 samples for analysis (Sample C-16, Plate 2). The second area was the at-grade portion of the Site located between the Basin and Vineyard Avenue where three discrete samples were collected (Samples SSA-1, SSA-2 and SSA-3, Plate 2).

Soil Sampling, 0.36-Acre Parcel

The 0.36-acre Magallon Property (also known as the 0.36-acre parcel), historically used by a sandblasting business, was sampled at two surface locations where loose sand was collected (Samples SB-1 and SB-2) for chemical analyses. The Parcel is located approximately 600 feet northeast of the Campbell Basin property along a narrow strip of land between Vineyard Avenue and a large storm water retention basin.

Laboratory Analytical Methods

Laboratory Analyses, Area A

All 21 samples were analyzed for organochlorine pesticides using EPA Test Method 8080. Seven samples (C-1, C-3, C-5, C-9, C-12, C-14 and SSB-2) was also analyzed for chlorinated herbicides using EPA Test Method 8150 and five samples (C-3, C-9, C-12, C-14 and SSB-2) were analyzed for the California List of 17 heavy metals (California Code of Regulations, Title 22) using EPA Test Method 6010B/7471A series.

Laboratory Analyses, Campbell Basin Samples

All four samples were analyzed for organochlorine pesticides using EPA Test Method 8080, and one sample (SSA-2) was also analyzed for chlorinated herbicides using EPA Test Method 8150 and for the California List of 17 heavy metals (CCR, Title 22) using EPA Test Method 6010B/7471A series.

Laboratory Analysis, 0.36-Acre Parcel Samples

The two samples were analyzed for the California List of 17 heavy metals (CCR, Title 22) using EPA Test Method 6010B/7471A series.

Laboratory Results

Laboratory data sheets and Chain-of-Custody documentation are provided in Attachment A. The laboratory results for pesticides and herbicides are summarized on Table 1. Samples analyzed for heavy metals are identified on Table 1 and the laboratory results for heavy metals are provided in Attachment A.

Laboratory Results, Area A

The laboratory reported that no chlorinated herbicides were detected in any of the seven samples analyzed. No mercury, arsenic, beryllium, cadmium, selenium, silver, and thallium were detected in the five samples analyzed. Antimony, barium, chromium, cobalt, copper, lead, molybdenum, nickel, vanadium and zinc were detected in concentrations below the total threshold limit concentration (TTLC - CCR, Title 22) and below 10-times the soluble threshold limit concentration (STLC - CCR, Title 22), and are considered to be background concentrations in the soil (TTLC and STLC values are used to evaluate waste classification for disposal purposes).

The laboratory reported that concentrations of DDD, DDE, DDT were detected in all 17 surface samples analyzed. Dieldrin was detected in 15 of the samples and Endrin was detected in 6 of the samples. Other organochlorine pesticides on the Method 8080 list, including

Impact Sciences, Inc. Mr. Tony Locacciato

Toxaphene, were not detected in any of the samples. The highest concentrations of DDD, DDE and DDT were reported in Sample C-11 at 161 micrograms per kilogram (μ g/kg or parts per billion), 337 μ g/kg and 280 μ g/kg, respectively. The highest concentrations of Dieldrin were reported in Samples C-1, C-6 and C-11 at 51 μ g/kg, 16 μ g/kg, and 16 μ g/kg, respectively. The highest concentration of Endrin was reported in Sample C-11 at 12.5 μ g/kg. The laboratory reported significantly lower concentrations of the pesticides in the two discrete surface samples from the fallow land (SSB-1 and SSB-2). Two of the four discrete samples from a depth of 2.5-feet below ground surface had concentration of DDE, DDD, and DDT, only (Table 1).

Laboratory Results, Campbell Basin

The laboratory reported that no chlorinated herbicides were detected in the sample analyzed. No mercury, arsenic, beryllium, cadmium, selenium, silver, and thallium were detected in the sample analyzed. Concentrations of antimony, barium, chromium, cobalt, copper, lead, molybdenum, nickel, vanadium and zinc were below the total threshold limit concentration (TTLC) and below 10-times the soluble threshold limit concentration (STLC) and are considered to be background concentrations.

The laboratory reported that concentrations of DDD, DDE and DDT were detected in all four samples. No other organochlorine pesticides on the list were detected. The highest concentrations of DDD, DDE and DDT were reported in Sample SSA-3 at 34 μ g/kg, 155 μ g/kg and 62 μ g/kg, respectively (Table 1).

Laboratory Results, 0.36-Acre Parcel

The laboratory reported that no mercury, arsenic, beryllium, selenium, silver, and thallium were detected in the samples. Concentrations of antimony, barium, cadmium, chromium, cobalt, copper, molybdenum, nickel, vanadium and zinc were below the total threshold limit concentration (TTLC) and below 10-times the soluble threshold limit concentration (STLC) and are considered to be background concentrations. Lead was reported at 74.8 milligram per kilogram (mg/kg or parts per million) and 111 mg/kg in the two samples. The concentrations are below the TTLC value of 1,000 mg/kg but are greater than 10-times the STLC value (50 mg/kg).

Discussion

Area A and Campbell Basin

The U.S. EPA Region 9 Preliminary Remediation Goal values (PRG - U.S.-EPA Region 9, November 22, 2000) were reviewed by AET. The residential soil PRG values for DDD, DDE, and DDT, reported for planning purposes, are: 2,400 μ g/kg; 1,700 μ g/kg; and 1,700 μ g/kg, respectively. The residential PRG values for dieldrin and Endrin are 30 μ g/kg and 18,000 μ g/kg,

respectively. While a PRG is specifically not intended as a stand-alone decision-making tool, a chemical concentration exceeding a PRG suggests that further evaluation of the potential risk is appropriate. One sample (C-1) had a concentration of dieldrin that exceeded the residential PRG value, however it did not exceed the Industrial PRG value of 150 µg/kg. All other sample results for residual pesticide concentrations in the soil were below residential PRG values.

0.36-Acre Parcel

Based on the results of the heavy metals analysis, elevated lead concentrations were detected in two samples from the loose sand on the surface of the Site, however, the reported lead concentrations are below the PRG values for residential soil (450 mg/kg) and for industrial soil (750 mg/kg) and are not a present hazard. If the lead containing surface material is removed and disposed off-site, additional assessment for lead is recommended in order to properly classify the waste.

Conclusion

Based on the results of the Limited Phase II ESA presented above, it is AET's opinion that the residual concentrations of pesticides detected in the shallow soil at the Site will be further reduced during planned grading operations, and are not a significant environmental concern for the general development of the Site.

Limitations

This report has been prepared for Impact Sciences, Inc. as a Limited Phase II Soil Screening of subsurface conditions at the proposed RiverPark Area A and Campbell Basin, Ventura Country, California. Parties not designated by Impact Sciences, Inc. may not rely on the information in this report without the written consent of AET. AET has applied present engineering and scientific judgement and used a level of effort consistent with the standard of practice measured on the date of this report and in the locale of the project site for similar type studies. Applied Environmental Technologies, Inc., makes no warranty, expressed or implied, in fact or by law, whether of merchantability, fitness for any particular purpose, or otherwise, concerning any of the materials or "services" furnished by Applied Environmental Technologies, Inc. to the client.

The analyses and interpretations in this report have been developed based on the review of existing information pertaining to the project site, and a limited number of soil sample analyses from discrete locations. It should be recognized that subsurface contamination can vary laterally and with depth below a given site.

Impact Sciences, Inc. Mr. Tony Locacciato November 14, 2001 Page 6

Closure

It has been a pleasure to prepare this report for the RiverPark project. Should you have any questions or comments, please call.

Very truly yours,

Applied Environmental

Technologies, Inc.

Wallace A. Jensky, II, R.G.,

Principal Geologist

Attachments:

Table 1 - Summary of Laboratory Results

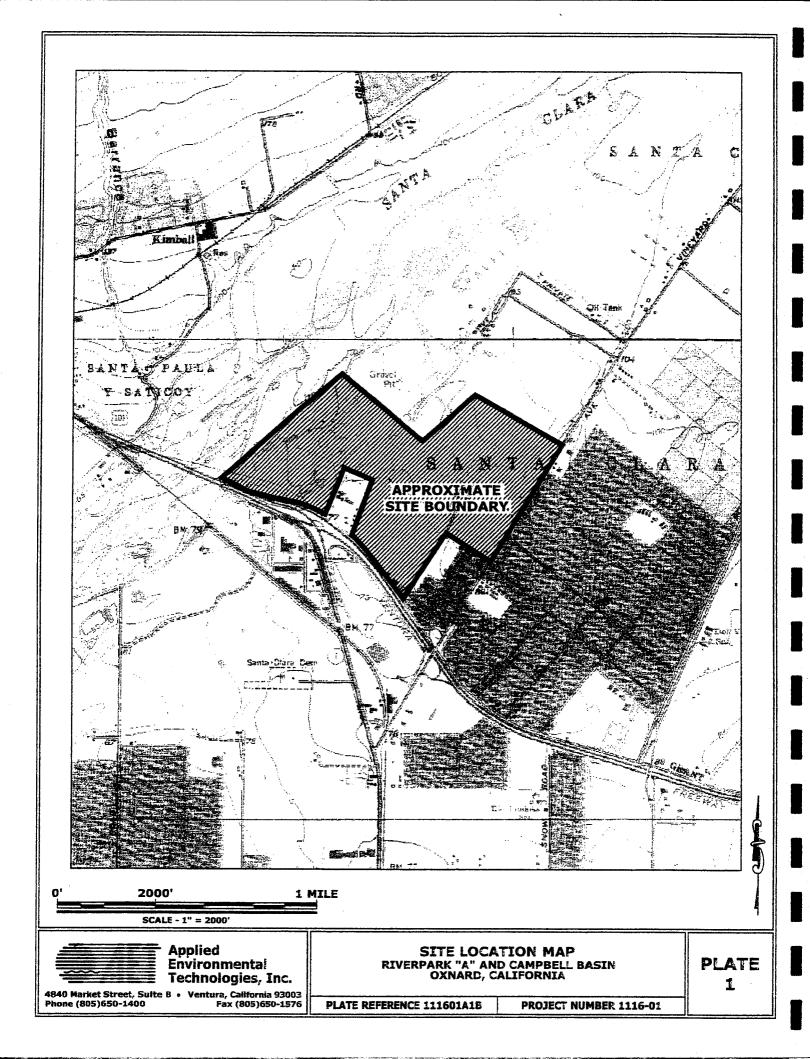
Plate 1 - Site Location Map

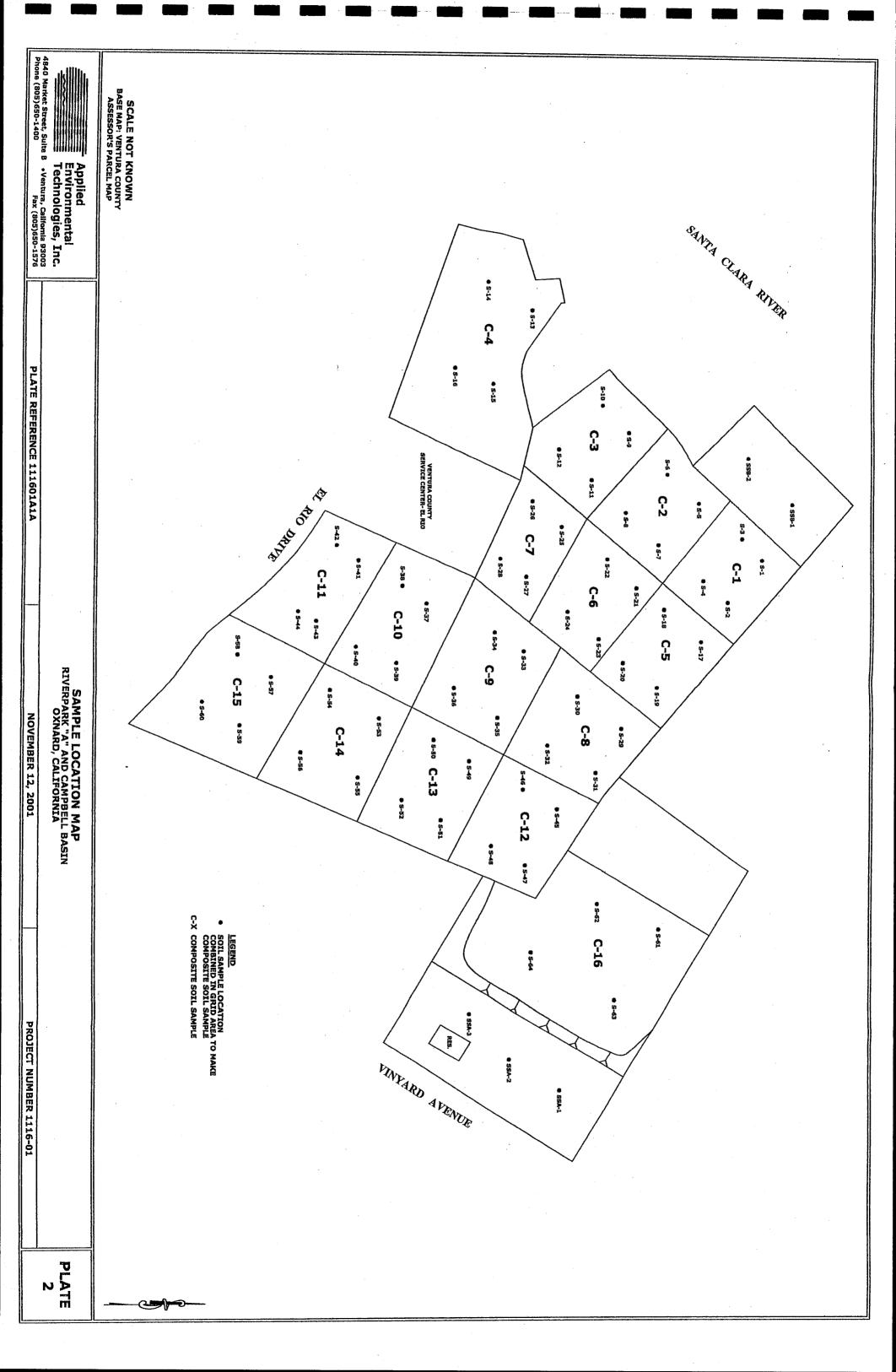
Plate 2 - Soil Sample Location Map

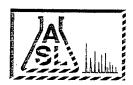
A - Laboratory Data Sheets and Chain-of-Custody Documentation

TABLE

Table 1
Pesticides
Riverpark Development, Approximate 212-Acre Area "A" and 66-Acre Campbell Basin, CA
(Results reported in micrograms per kilogram [µg/kg])


Sample	DDD	DDD DDE DDT Cumulative		Dieldrin	Endrin	Herbicides	Metals	
Area A								
C1	114.00	197.00	223.00	534.00	51.20	9.26	ND all	
C2	13.00	21.40	23.60	58.00	15.00	ND		
C3	21.60	46.00	50.30	117.90	7.35	ND	ND all	yes
C4	66.00	180.00	146.00	392.00	4.15	ND		y 03
C5	96.30	190.00	188.00	474.30	13.30	7.20	ND all	
C6	70.00	137.00	114.00	321.00	16.00	ND		
C7	33.00	101.00	87.00	221.00	5.47	4.54		
C8	56.40	131.00	103.00	290.40	ND	ND		
C9	33.00	75.00	59.20	167.20	ND	ND	ND all	yes
C10	105.00	239.00	179.00	523.00	12.70	10.80		y 0.5
C11	161.00	337.00	280.00	778.00	16.00	12.50		
C12	85.80	190.00	141.00	416.80	7.87	ND	ND all	yes
C13	51.30	151.00	130.00	332.30	5.52	ND		
C14	63.50	170.00	120.00	3 <i>5</i> 3.50	7.37	ND	ND all	yes
C15	86.40	223.00	153.00	462.40	10.80	4.28		. , 500
SSB-1	8.73	16.40	17.80	42.93	5.65	ND		
SSB-2	21.00	31.00	28.00	80.00	9.93	ND	ND all	yes
S-7-2.5'	ND	ND	ND	-	ND	ND		<i>-</i> -
S-12-2.5'	ND	ND	ND	-	ND	ND		
S-32-2.5'	24.00	63.00	59.50	146.50	ND	ND		
S-40-2.5'	17.70	41.70	43.00	102.40	ND	ND		
Campbell Bas	in						· · · · · · · · · · · · · · · · · · ·	
C16	 5.52	18.30	11.30	35.12	ND	ND		
SSA-1	4.78	17.10	7.93	29.81	ND	ND		
SSA-2	9.92	43.30	19.70	72.92	ND	ND	ND all	yes
SSA-3	34.00	155.00	62.20	251.20	ND	ND	ND an	yes
Residential			· · · · · · · · · · · · · · · · · · ·					-
PRG Levels	2,400	1,700	1,700		30	18,000		


Notes:


ND = Not detected at laboratory detection limit.

^{- - =} Not analyzed.

PLATES

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

RECEIVED NOV - 8 2001

Ordered By

Applied Enviro. Technologies, Inc. 4840 Market St. Suite B Ventura, CA 93003

Telephone

(805)650-1400

Attn

Wally Jensky

Number of Pages 25

Date Received

10/18/2001

Date Reported

11/02/2001

Job Number	Ordered	Client
12164	10/18/2001	AET

22119

Project ID:

1116-01A

Project Name: River Park

Enclosed are the results of analyses on 27 samples analyzed as specified on attached chain of custody.

Laboratory Manager

Roiert G. Araghi Laboratory Director

American Scientific Laboratories, LLC (ASL) accepts sample materials from clients for analysis with the assumption that all of the information provided to ASL verbally or in writing by our clients (and/or their agents), regarding samples being submitted to ASL, is complete and accurate. ASL accepts all samples subject to the following conditions:

¹⁾ ASL is not responsible for verifying any client-provided information regarding any samples submitted to the laboratory.

²⁾ ASL is not responsible for any consequences resulting from any inaccuracies, omissions; or misrepresentations contained in client-provided information regarding samples submitted to the laboratory.

Applied Environmental Technologies, Inc. CHAIN OF CUSTODY RECORD (805) 650-1400 • FAX (805) 650-1576 • 4840 MARKET ST., SUITE B, VENTURA, CA 93003 02/508/0,8150,8CM 年元公 C1-81/484 a 8080 & 815C Metals The Comments 500 page 3 2 880 LABORATORY 1981 Analyses: ABCDE Analyses Requested Received By (Signature) FRIDA 49121 4 905 JCH Preser-vative PROJECT MANAGER Sample Type (Liquid, Soil, etc.) ر ھ 402 BAB SAL Sample Container (Size/Material) PROJECT NAME Civer Carla Time \(\frac{1}{2}\) Date Relinquished By (Signatur**ę**) Sample Identification -512 C4-S13 03-510 -54 C2 54 C3-59 C3-51 CZ-57 CZ -S8 JOBNO. 11/6-01A C1-52 C1-51

C10

69


Applied Environmental Technologies, Inc. CHAIN OF CUSTODY RECORD (805) 650-1400 • FAX (805) 650-1576 • 4840 MARKET ST., SUITE B, VENTURA, CA 93003 12 for 8080,8180& 17555 S080, 615C pruport C-11 Fr 8080 Comments Analyses: BICIDIE Analyses Requested Received By (Signature) 子かられ JENSKY Preser-vative Sample Type (Liquid, Soil, etc.) PROJECT MANAGER L B Les Guiss Land Sample Container (Size/Material) PROJECT NAME RIVER PARK Time 1960 | Date Relinquished By Sample Identification 714-55E C12-548 C13-S52 C12-S46 214-553 214-555 14-SB C13-549 C13-550 013-551 C12-547 012-545 F10-CII-546 011843

Applied Environmental Technologies, Inc.

(805) 650-1400 • FAX (805) 650-1576 • 4840 MARKET St., SUITE B, VENTURA, CA 93003

		08)	5) 650	0-140	0 = F	8) XA	05) 6:	50-15	76 •	4840	MAR	KEI SI	., SUII	EB, V	ENTU	RA, CA 93003	
LABORATORY ASL	Comments	75562	Compaid (-15	080872		- END OF COMPOSITS -	45564	75565	7.5566	75567	75568					Analyses: A SOSO (Q_ Partierde. A RIGO (00- 42) Ricides	
JENSKU SAMPLER	Analyses Preser- Requested valive ABCDEF	Flace)				X	XX	><	X	×	×					Received By (Signature)	
PROJECT MANAGER	Sample Type (Liquid, Soil, etc.)	Soil									A					Time 5 30mm	
Refe	Sample Container (Size/Material)	YES COUSS JAR									^					10/01/01	
53	Time																
PROJECT-MANE CONTROLL	Date	10/201/201									_					12	
JOBNO. 1110-0118	Sample Identification	JC15-S51	C15-558	C15-559	C15-560	3 SSB-1	1)558-2	57-2.5	9 512-2.51	532-2.5	540-2.5					Relinquished By (Signature)	

Applied Environmental Technologies, Inc. **CHAIN OF CUSTODY RECORD** (805) 650-1400 • FAX (805) 650-1576 • 4840 MARKET St., SUITE B, VENTURA, CA 93003 CUMPOSIT Comments END OF Yede 601-0 4.スグナの Analyses: 7553 75577 ABCDE Analyses Requested Received By (Signature) PLINGE | Preser-vative Sample Type (Liquid, Soll, etc.) PROJECT MANAGER
WAJ 11:15gm J R 02:1 PZ, CLABS YA Sample Container (Size/Material) STOSE STOSE Date Time Date Relinquished By (Signature) 1116-01A Sample Identification 2-16-562 C-16-364 C-16-563 195-91i SB-1 38 JOB NO. 4

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Applied Enviro. Technologies, Inc. 4840 Market St. Suite B Ventura, CA 93003

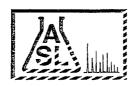
Telephone: (805)650-1400 Attn: Wally Jensky

Page:

2

Project ID: Project Name: 1116-01A

River Park


Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 6010B/7471A, CCR Title 22 Metals

Our Lab I.D.		75550	75556	75559	75561	75564
Sample ID		Comp.C-3	Comp.C-9	Comp.C-12	Comp.C-14	SSB-2
Date Sampled		10/16/2001	10/16/2001	10/16/2001	10/16/2001	10/16/2001
Date Extracted	****	10/19/2001	10/19/2001	10/19/2001	10/19/2001	10/19/2001
Preparation Method	· · · · · · · · · · · · · · · · · · ·					
Date Analyzed		10/22/2001	10/22/2001	10/22/2001	10/22/2001	10/22/2001
Matrix		Soil	Soil	Soil	Soil	Soil
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Detection Limit Multiplier		1	1	1	1	1
Analytes	PQL	Results	Results	Results	Results	Results
AAMetals						
Mercury	0.20	ND	ND	ND	ND	ND
ICP Metals						
Antimony	0.50	0.69	0.58	0.59	ND	0.74
Arsenic	0.50	ND	ND	ND	ND	ND
Barium	0.50	68.1	64.4	91.1	51.8	72.3
Beryllium	0.50	ND	ND	ND	ND	ND
Cadmium	0.50	ND	ND	ND	ND	ND
Chromium	0.50	7.56	8.00	5.92	6.39	8.23
Cobalt	0.50	4.63	4.43	3.20	3.58	4.70
Copper	0.50	9.42	11.1	7.96	8.44	9.92
Lead	0.25	7.08	7.73	5.89	6.34	5.05
Molybdenum	0.50	1.03	1.09	0.80	0.88	0.95
Nickel	0.50	10.9	10.8	8.60	9.51	11.4
Selenium	0.50	ND	ND	ND	ND	ND
Silver	0.50	ND	ND	ND	ND	ND
Thallium	0.50	ND	ND	ND	ND	ND
Vanadium	0.50	15.0	14.4	10.6	12.1	15.5
Zinc	0.50	46.3	58.2	39.1	44.0	47.8

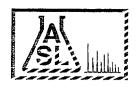
QUALITY CONTROL REPORT

	LCS	LCS/LCSD					
Analytes	% REC	% Limit			17	i la	
AA:Metals				:			
Mercury	115	80-120					

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:


3

Project ID: Project Name: 1116-01A River Park

Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 6010B/7471A, CCR Title 22 Metals QUALITY CONTROL REPORT

	LCS	LCS/LCSD	ŀ				
Analytes		% Limit		1			
	% REC	% LITTIL				 	
ICP Metals					1. 3		
Antimony	100	80-120					
Arsenic	100	80-120					
Barium	88	80-120					
Beryllium	93	80-120					
Cadmium	102	80-120					
Chromium	90	80-120					
Cobalt	103	80-120					
Copper	91	80-120					
Lead	105	80-120					
Molybdenum	101	80-120					
Nickel	96	80-120					
Selenium	97	80-120					
Silver	89	80-120					
Thallium	107	80-120					
Vanadium	85	80-120					
Zinc	100	80-120					

AMERICAN SCIENTIFIC LABORATORIES, LLC

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Applied Enviro. Technologies, Inc. 4840 Market St. Suite B Ventura, CA 93003

Telephone: (805)650-1400 Attn: Wally Jensky

Page:

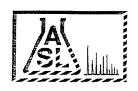
4

Project ID:

1116-01A

Project Name:

River Park


Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 6010B/7471A, CCR Title 22 Metals

Our Lab I.D.		75571	75573	75574		
Sample ID		SSA-2	SB-1	SB-2	······································	
Date Sampled		10/17/2001	10/17/2001	10/17/2001		
Date Extracted		10/19/2001	10/19/2001	10/19/2001		
Preparation Method						
Date Analyzed		10/22/2001	10/22/2001	10/22/2001		
Matrix		Soil	Soil	Soil		////
Units		mg/Kg	mg/Kg	mg/Kg	· . · .	*
Detection Limit Multiplier		1	1	1		
Analytes	PQL	Results	Results	Results		
AA Metals					voi sia, n	
Mercury	0.20	ND	ND	ND		
ICP Metals						
Antimony	0.50	0.73	1.06	1.13		
Arsenic	0.50	ND	ND	ND		
Barium	0.50	92.9	54.7	20.5		
Beryllium	0.50	ND	ND	ND		
Cadmium	0.50	ND	0.52	ND		
Chromium	0.50	10.6	16.7	13.8		
Cobalt	0.50	5.98	2.64	1.24		
Copper	0.50	13.2	20.6	3.75		
Lead	0.25	13.0	74.8	111		
Molybdenum	0.50	1.64	2.29	0.91		-
Nickel	0.50	15.7	10.2	3.58		
Selenium	0.50	ND	ND	ND		
Silver	0.50	ND	ND	ND	W	
Thallium	0.50	ND	ND	ND		
Vanadium	0.50	19.5	4.35	1.84		
Zinc	0.50	63.4	177	53.6		

QUALITY CONTROL REPORT

	 LCS	LCS/LCSD					
Analytes	% REC	% Limit					
AA Metals			·				
Mercury	 115	80-120					

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

5

Project ID: Project Name: 1116-01A River Park

5-01A

Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 6010B/7471A, CCR Title 22 Metals QUALITY CONTROL REPORT

	LCS	LCS/LCSD					1		
Analytes	% REC	% Limit							
ICP Metals					1				
Antimony	100	80-120							
Arsenic	100	80-120				****		***************************************	
Barium	88	80-120							
Beryllium	93	80-120							
Cadmium	102	80-120							1
Chromium	90	80-120							
Cobalt	103	80-120					1		
Copper	91	80-120	 						
Lead	105	80-120							<u> </u>
Molybdenum	101	80-120	 						
Nickel	96	80-120							
Selenium	97	80-120							
Silver	89	80-120							
Thallium	107	80-120					1		
Vanadium	85	80-120							
Zinc	100	80-120	 						

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Applied Enviro. Technologies, Inc. 4840 Market St. Suite B Ventura, CA 93003

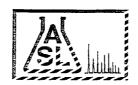
Telephone: (805)650-1400 Attn: Wally Jensky

Page:

6

Project ID:

1116-01A


Project Name:

River Park

Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 8080, Organochlorine Pesticides

Dutch No. 102201-1						
Our Lab I.D.		75548				
Sample ID		Comp.C-1				
Date Sampled		10/16/2001				
Date Extracted		10/21/2001				
Preparation Method						
Date Analyzed		10/22/2001				
Matrix		Soil				
Units		ug/kg				
Detection Limit Multiplier		1				
Analytes	PQL	Results			; : r	
Aldrin	2	ND				
alpha-Hexachlorocyclohexane (Alpha-BHC)	2	ND				
Beta-Hexachlorocyclohexane (Beta-BHC)	2	ND				
Chlordane	17	ND				
4,4'-DDD (DDD)	40	114				
4,4'-DDE (DDE)	40	197				
4,4'-DDT (DDT)	40	223				
delta-Hexachlorocyclohexane (Delta-BHC)	2	ND				
dieldrin	40	51.2				
Endosulfan 1	2	ND				
Endosulfan 11	4	ND				
Endosulfan sulfate	4	ND				
Endrin	4	9.26				
Endrin aldehyde	4	ND				
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	2	ND		- 		
Heptachlor	2	ND				
Heptachlor epoxide	2	ND				
Methoxychlor	17	ND				
Toxaphene	170	ND				

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

7

Project ID: Project Name: 1116-01A River Park

Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 8080, Organochlorine Pesticides

Our Lab I.D.	The table	75548		
Surrogates	Con.Limit	% Rec.		
Surrogate Percent Recovery		g (s.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a		
Tetrachloro-M-Xylene	 43-169	97		

QUALITY CONTROL REPORT

200011 10. 102201-1					 	 	
Analytes	MS % REC	MS DUP	RPD %				
Aldrin	75	78	3.9				
4,4'-DDT (DDT)	99	113	1.3.2				
dieldrin	82	89	8.2				
Endrin	109	117	7.1				
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	80	80	<1				
Heptachlor	99	77	25.0				

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Applied Enviro. Technologies, Inc. 4840 Market St. Suite B Ventura, CA 93003

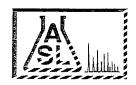
Telephone: (805)650-1400 Attn: Wally Jensky

Page:

8

Project ID:

1116-01A


Project Name:

River Park

Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 8080, Organochlorine Pesticides

Daten No. 102201-2				,		
Our Lab I.D.		75549	75563	75564	75565	75566
Sample ID		Comp.C-2	SSB-1	SSB-2	S7-2.5'	S12-2.5'
Date Sampled		10/16/2001	10/16/2001	10/16/2001	10/16/2001	10/16/2001
Date Extracted		10/21/2001	10/21/2001	10/21/2001	10/21/2001	10/21/2001
Preparation Method						
Date Analyzed		10/22/2001	10/22/2001	10/22/2001	10/22/2001	10/22/2001
Matrix		Soil	Soil	Soil	Soil	Soil
Units		ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Detection Limit Multiplier		1	1	1	1	1
Analytes	PQL	Results	Results	Results	Results	Results
Aldrin	2	ND	ND	ND	ND	ND
alpha-Hexachlorocyclohexane (Alpha-BHC)	2	ND	ND	ND	ND	ND
Beta-Hexachlorocyclohexane (Beta-BHC)	2	ND	ND	ND	ND	ND
Chlordane	17	ND	ND	ND	ND	ND
4,4'-DDD (DDD)	4	13.0	8.73	21.0	ND	ND
4,4'-DDE (DDE)	4	21.4	16.4	31.0	ND	ND
4,4'-DDT (DDT)	4	23.6	17.8	28.0	ND	ND
delta-Hexachlorocyclohexane (Delta-BHC)	2	ND	ND	ND	ND	ND
dieldrin	4	15.0	5.65	9.93	ND	ND
Endosulfan 1	2	ND	ND	ND	ND	ND
Endosulfan 11	4	ND	ND	ND	ND	ND
Endosulfan sulfate	4	ND	ND	ND	ND	ND
Endrin	4	ND	ND	ND	ND	ND
Endrin aldehyde	4	ND	ND	ND	ND	ND
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	2	ND	ND	ND	ND	ND
Heptachlor	2	ND	ND	ND	ND	ND
Heptachlor epoxide	2	ND	ND	ND	ND	ND
Methoxychlor	17	ND	ND	ND	ND	ND
Toxaphene	170	ND	ND	ND	ND	ND

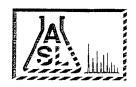
2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

9

Project ID: Project Name: 1116-01A River Park


Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 8080, Organochlorine Pesticides

Our Lab I.D.		75549	75563	75564	75565	75566
Surrogates	Con.Limit	% Rec.				
Surrogate Percent Recovery						
Tetrachloro-M-Xylene	43-169	87	112	102	104	110

QUALITY CONTROL REPORT

Batth No: 102201-2				 	 	 	
Analytes	MS % REC	MS DUP	RPD %				
Aldrin	75	78	3.9				
4,4'-DDT (DDT)	99	113	13.2				
dieldrin	82	89	8.2				
Endrin	109	117	7.1				
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	80	80	<1				
Heptachlor	99	77	25.0				

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

Job Number

12164

Order Date

10/18/2001

Client

AET

ANALYTICAL RESULTS

Ordered By

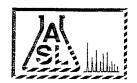
Applied Enviro. Technologies, Inc. 4840 Market St. Suite B Ventura, CA 93003

Telephone: (805)650-1400 Wally Jensky Attn:

Page:

10

Project ID:


1116-01A

Project Name:

River Park

Method: 8080, Organochlorine Pesticides

Batch No: 102201-2					
Our Lab I.D.		75569	75570		
Sample ID		Comp.C-16	SSA-1		
Date Sampled	<u> </u>	10/17/2001	10/17/2001		
Date Extracted		10/21/2001	10/21/2001		
Preparation Method					
Date Analyzed		10/22/2001	10/22/2001		
Matrix		Soil	Soil		
Units		ug/kg	ug/kg		
Detection Limit Multiplier		1	1		
Analytes	PQL	Results	Results		
Aldrin	2	ND	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	2	ND	ND		
Beta-Hexachlorocyclohexane (Beta-BHC)	2	ND	ND	, , , , ,	
Chlordane	17	ND	ND		
4,4'-DDD (DDD)	4	5.52	4.78		
4,4'-DDE (DDE)	4	18.3	17.1		
4,4'-DDT (DDT)	4	11.3	7.93		
delta-Hexachlorocyclohexane (Delta-BHC)	2	ND	ND		
dieldrin	4	ND	ND		
Endosulfan 1	2	ND	ND		
Endosulfan 11	4	ND	ND		
Endosulfan sulfate	4	ND	ND		
Endrin	4	ND	ND		
Endrin aldehyde	4	ND	ND		
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	2	. ND	ND		
Heptachlor	2	ND	ND		
Heptachlor epoxide	2	ND	ND		
Methoxychlor	17	ND	ND		
Toxaphene	170	ND	ND		

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

11

Project ID: Project Name:

1116-01A River Park

Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 8080, Organochlorine Pesticides

Our Lab I.D.				75569	75570		
Surrogates	4.313		Con.Limit	% Rec.	% Rec.		
Surrogate Percent Recover	ry						
Tetrachloro-M-Xylene			43-169	113	113		

QUALITY CONTROL REPORT

Analytes	MS % REC	MS DUP	RPD %				
Aldrin	75	78	3.9	 			
4,4'-DDT (DDT)	99	113	13.2				<u> </u>
dieldrin	82	89	8.2				<u> </u>
Endrin	109	117	7.1				
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	80	80	<1				
Heptachlor	99	77	25.0				

AMERICAN SCIENTIFIC LABORATORIES, LLC

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Applied Enviro. Technologies, Inc. 4840 Market St. Suite B

Ventura, CA 93003

Telephone: (805)650-1400 Attn: Wally Jensky

Page:

12

Project ID:

1116-01A

Project Name:

River Park

Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 8080, Organochlorine Pesticides

Our Lab I.D.		75550	75567	75568	75571	
Sample ID		Comp.C-3	S32-2.5'	S40-2.5'	SSA-2	
Date Sampled		10/16/2001	10/16/2001	10/16/2001	10/17/2001	····
Date Extracted		10/21/2001	10/21/2001	10/21/2001	10/21/2001	
Preparation Method						· · · · · · · · · · · · · · · · · · ·
Date Analyzed		10/22/2001	10/22/2001	10/22/2001	10/22/2001	
Matrix		Soil	Soil	Soil	Soil	
Units		ug/kg	ug/kg	ug/kg	ug/kg	
Detection Limit Multiplier		1	1	1	1	
Analytes	PQL	Results	Results	Results	Results	
Aldrin	2	ND	ND	ND	ND	
alpha-Hexachlorocyclohexane (Alpha-BHC)	2	ND	ND	ND	ND	
Beta-Hexachlorocyclohexane (Beta-BHC)	2	N D	ND	ND	ND	
Chlordane	17	ND	ND	ND	ND	
4,4'-DDD (DDD)	4	21.6	24.0	17.7	9.92	
4,4'-DDE (DDE)	8.0	46.0	63.0	41.7	43.3	
4,4'-DDT (DDT)	8.0	50.3	59.5	43.0	19.7	
delta-Hexachlorocyclohexane (Delta-BHC)	2	ND	ND	ND	ND	
dieldrin	4	7.35	ND	ND	ND	
Endosulfan 1	2	ND	ND	ND	ND	
Endosulfan 11	4	ND	ND	ND	ND	
Endosulfan sulfate	4	ND	ND	ND	ND	
Endrin	4	ND	ND	NID	ND	
Endrin aldehyde	4	ND	ND	ND	ND	
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	2	ND	ND	ND	ND	
Heptachlor	2	ND	ND	ND	ND	
Heptachlor epoxide	2	ND	ND	ND	ND	
Methoxychlor	17	ND	ND	ND	ND	
Toxaphene	170	ND	ND	ND	ND	

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

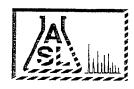
ANALYTICAL RESULTS

Page:

13

Project ID: Project Name: 1116-01A

River Park


Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 8080, Organochlorine Pesticides

Our Lab I.D.		75550	75567	75568	75571	
Surrogates	Con.Limit	% Rec.	% Rec.	% Rec.	% Rec.	
Surrogate Percent Recovery	14.17					
Tetrachloro-M-Xylene	43-169	99	105	118	112	

QUALITY CONTROL REPORT

Analytes	MS % REC	MS DUP	RPD %						
Aldrin	75	78	3.9	<u> </u>	: ·	<u> </u>		1	
4,4'-DDT (DDT)	99	113	13.2				77.77.77		
dieldrin	82	89	8.2						
Endrin	109	117	7.1						
gamma-Hexachlorocyclohexane	80	80	<1						
(Gamma-BHC, Lindane)									
Heptachlor	99	77	25.0						

AMERICAN SCIENTIFIC LABORATORIES, LLC

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

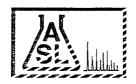
Applied Enviro. Technologies, Inc.

4840 Market St. Suite B Ventura, CA 93003

Telephone: (805)650-1400 Attn: Wally Jensky

Page:

14


Project ID: Project Name: 1116-01A

River Park

Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 8080, Organochlorine Pesticides

Our Lab I.D.		75551	75552	75553	75555	75557
Sample ID		Comp.C-4	Comp.C-5	Comp.C-6	Comp.C-8	Comp.C-10
Date Sampled		10/16/2001	10/16/2001	10/16/2001	10/16/2001	10/16/2001
Date Extracted		10/21/2001	10/21/2001	10/21/2001	10/21/2001	10/21/2001
Preparation Method						
Date Analyzed		10/22/2001	10/22/2001	10/22/2001	10/22/2001	10/22/2001
Matrix		Soil	Soil	Soil	Soil	Soil
Units		ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Detection Limit Multiplier		1	1	1	1	1
Analytes	PQL	Results	Results	Results	Results	Results
Aldrin	2	ND	ND	ND	ND	ND
alpha-Hexachlorocyclohexane (Alpha-BHC)	2	ND	ND	ND	ND	ND
Beta-Hexachlorocyclohexane (Beta-BHC)	2	ND	ND	ND	ND	ND
Chlordane	17	ND	ND	ND	ND	ND
4,4'-DDD (DDD)	40	66.0	96.3	70.0	56.4	105
4,4'-DDE (DDE)	40	180	190	137	131	239
4,4'-DDT (DDT)	40	146	188	114	103	179
delta-Hexachlorocyclohexane (Delta-BHC)	2	ND	ND	ND	ND	ND
dieldrin	4	4.15	13.3	16.0	ND	12.7
Endosulfan 1	2	ND	ND	ND	ND	ND
Endosulfan 11	4	ND	ND	ND	ND	ND
Endosulfan sulfate	4	ND	ND	ND	ND	ND
Endrin	4	ND	7.20	ND	ND	10.8
Endrin aldehyde	4	ND	ND	ND	ND	ND
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	2	ND	ND	ND	ND	ND
Heptachlor	2	ND	ND	ND	ND	ND
Heptachlor epoxide	2	ND	ND	ND	ND	ND
Methoxychlor	17	ND	ND	ND	ND	ND
Toxaphene	170	ND	ND	ND	ND	ND

Environmental Testing Services

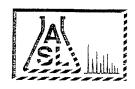
2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

15

Project ID: Project Name: 1116-01A River Park


Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 8080, Organochlorine Pesticides

Our Lab I.D.		75551	75552	75553	75555	75557
Surrogates	Con Limit	% Rec.	% Rec.	% Rec.	% Rec.	% Rec.
Surrogate Percent Recovery		taria ba				
Tetrachloro-M-Xylene	43-169	94	93	95	0	0

QUALITY CONTROL REPORT

	MS	MS DUP	RPD	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	marging and W	3.77		
Analytes	% REC	% REC	%					
Aldrin	75	78	3.9					
4,4'-DDT (DDT)	99	113	13.2					
dieldrin	82	89	8.2					
Endrin	109	117	7.1					
gamma-Hexachlorocyclohexane	80	80	<1					
(Gamma-BHC, Lindane)								·
Heptachlor	99	77	25.0					

2520 N. San Fernando Rd.. Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Applied Enviro. Technologies, Inc. 4840 Market St. Suite B Ventura, CA 93003

Telephone: (805)650-1400 Attn: Wally Jensky

Page:

16

Project ID: Project Name: 1116-01A River Park

 Job Number
 Order Date
 Client

 12164
 10/18/2001
 AET

Method: 8080, Organochlorine Pesticides

Our Lab I.D.		75559	75560	75561	75562	
Sample ID		Comp.C-12	Comp.C-13	Comp.C-14	Comp.C-15	
Date Sampled		10/16/2001	10/16/2001	10/16/2001	10/16/2001	
Date Extracted		10/21/2001	10/21/2001	10/21/2001	10/21/2001	
Preparation Method						
Date Analyzed		10/22/2001	10/22/2001	10/22/2001	10/22/2001	
Matrix		Soil	Soil	Soil	Soil	
Units		ug/kg	ug/kg	ug/kg	ug/kg	
Detection Limit Multiplier		i	1	1	1	
Analytes	PQL	Results	Results	Results	Results	
Aldrin	2	ND	ND	ND	ND	
alpha-Hexachlorocyclohexane (Alpha-BHC)	2	ND	ND	ND	ND	
Beta-Hexachlorocyclohexane (Beta-BHC)	2	ND	ND	ND	ND	
Chlordane	17	ND	ND	ND	ND	
4,4'-DDD (DDD)	40	85.8	51.3	63.5	86.4	
4,4'-DDE (DDE)	40	190	151	170	223	
4,4'-DDT (DDT)	40	141	130	120	153	
delta-Hexachlorocyclohexane (Delta-BHC)	2	ND	ND	ND	ND	
dieldrin	4	7.87	5.52	7.37	10.8	
Endosulfan 1	2	ND	ND	ND	ND	
Endosulfan 11	4	ND	ND	ND	ND	
Endosulfan sulfate	4	ND	ND	ND	ND	
Endrin	4	ND	ND	ND	4.28	
Endrin aldehyde	4	ND	ND	ND	ND	
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	2	ND	ND	ND	ND	
Teptachlor	2	ND	ND	ND	ND	
Heptachlor epoxide	2	ND	ND	ND	ND	
Methoxychlor	17	ND	ND	ND	ND	
Toxaphene	170	ND	ND	ND	ND	

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

17

Project ID: Project Name: 1116-01A

River Park

Job Number	Order Date	Client	_
12164	10/18/2001	AET	

Method: 8080, Organochlorine Pesticides

Our Lab I.D.	:			75559	75560	75561	75562	
Surrogates	1000		Con.Limit	% Rec.	% Rec.	% Rec.	% Rec.	
Surrogate Percent Recovery	/				4. 7. 7. 12. 1			
Tetrachloro-M-Xylene		 	43-169	110	109	106	112	

QUALITY CONTROL REPORT

Analytes	MS % REC	MS DUP	RPD %				
Aldrin	75	78	3.9				
4,4'-DDT (DDT)	99	113	13.2			 <u> </u>	
dieldrin	82	89	8.2				
Endrin	109	117	7.1				
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	80	80	<1				
Heptachlor	99	77	25.0				

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Applied Enviro. Technologies, Inc. 4840 Market St. Suite B

Ventura, CA 93003

Telephone: (805)650-1400 Attn: Wally Jensky

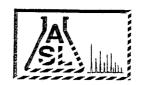
Page:

18

Project ID: Project Name: 1116-01A

River Park

Job Number	Order Date	Client
12164	10/18/2001	AET


Method: 8080, Organochlorine Pesticides

Batch No: 102201-5

Our Lab I.D.	1 100	BEEFA	7,770	I a second	
			75572		
Sample ID		Comp.C-7	SSA-3		
Date Sampled	,	10/16/2001	10/17/2001		
Date Extracted		10/21/2001	10/21/2001		
Preparation Method					
Date Analyzed		10/22/2001	10/22/2001		
Matrix		Soil	Soil		
Units		ug/kg	ug/kg		
Detection Limit Multiplier		1	1		
Analytes	PQL	Results	Results		
Aldrin	2	ND	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	2	ND	ND		
Beta-Hexachlorocyclohexane (Beta-BHC)	2	ND	ND		
Chlordane	17	ND	ND		
4,4'-DDD (DDD)	20	33.0	34.0		
4,4'-DDE (DDE)	20	101	155		
4,4'-DDT (DDT)	20	87.0	62.2		
delta-Hexachlorocyclohexane (Delta-BHC)	2	ND	ND		
dieldrin	4	5.47	ND		
Endosulfan 1	2	ND	ND		
Endosulfan 11	4	ND	ND		
Endosulfan sulfate	4	ND	ND		
Endrin	4	4.54	ND		
Endrin aldehyde	4	ND	ND		
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	2	ND	ND		
Heptachlor	2	ND	ND		
Heptachlor epoxide	2	ND	ND		
Methoxychlor	1.7	ND	ND		
Toxaphene	170	ND	ND		

Comment(s):

Did not meet QC limits, no corrective action taken.

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

19

Project ID:

1116-01A

Project Name:

River Park

Job Number	Order Date	Client
12164	10/18/2001	AET

	Method: 8080, Organochlorine Pesticides										
Our Lab I.D.				75554	75572	*					
Surrogates		a set la la	Con.Limit	% Rec.	% Rec.						
Surrogate Percent Recovery	1.								· .		
Tetrachloro-M-Xylene			43-169	0	109						

QUALITY CONTROL REPORT

Analytes	MS % REC	MS DUP	RPD %					
Aldrin	75	78	3.9					
4,4'-DDT (DDT)	99	113	13.2					
dieldrin	82	89	8.2			 		
Endrin	109	117	7.1				 	
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	80	80	<1		<u></u>			
Heptachlor	99	77	25.0					

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Applied Enviro. Technologies, Inc. 4840 Market St. Suite B Ventura, CA 93003

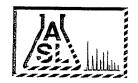
Telephone: (805)650-1400 Attn: Wally Jensky

Page:

20

Project ID:

1116-01A


Project Name:

River Park

Job Number Order Date Client 10/18/2001 AET 12164

Method: 8080, Organochlorine Pesticides

Batch No: 102201-6					
Our Lab I.D.		75556	等级 能為可能		
Sample ID		Comp.C-9			
Date Sampled		10/16/2001			
Date Extracted		10/21/2001			
Preparation Method					
Date Analyzed		10/22/2001			
Matrix		Soil			
Units		ug/kg			
Detection Limit Multiplier		1			
Analytes	PQL	Results			
Aldrin	2	ND			
alpha-Hexachlorocyclohexane (Alpha-BHC)	2	ND			
Beta-Hexachlorocyclohexane (Beta-BHC)	2	ND			
Chlordane	17	ND			
4,4'-DDD (DDD)	16	33.0			
4,4'-DDE (DDE)	16	75.0			
4,4'-DDT (DDT)	16	59.2			
delta-Hexachlorocyclohexane (Delta-BHC)	2	ND			
dieldrin	4	ND			
Endosulfan 1	2	ND			
Endosulfan 11	4	ND			
Endosulfan sulfate	4	ND			
Endrin	4	ND			
Endrin aldehyde	4	ND			
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	2	ND			
Heptachlor	2	ND			
Heptachlor epoxide	2	ND			
Methoxychlor	17	ND			
Toxaphene	170	ND			

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Page:

21

Project ID:

1116-01A

Project Name:

River Park

Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 8080, Organochlorine Pesticides

Our Lab I.D.		75556	en gan ar	
Surrogates	Con.Limit	% Rec.		
Surrogate Percent Recovery				
Tetrachloro-M-Xylene	43-169	70		

QUALITY CONTROL REPORT

Analytes	MS % REC	MS DUP % REC	RPD %					
Aldrin	75	78	3.9					
4,4'-DDT (DDT)	99	113	13.2				 	
dieldrin	82	89	8.2			1	 	
Endrin	109	117	7.1		-			
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	80	80	<1					
Heptachlor	99	77	25.0					

Environmental Testing Services

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

Job Number

12164

Client

AET

Order Date

10/18/2001

ANALYTICAL RESULTS

Ordered By

Applied Enviro. Technologies, Inc. 4840 Market St. Suite B

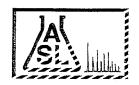
Ventura, CA 93003

Telephone: (805)650-1400 Attn: Wally Jensky

Page:

22

Project ID:


1116-01A

Project Name:

River Park

Method: 8080.	Organochlorine	e Pesticides

Batch No: 102201-7				
Our Lab I.D.		75558		
Sample ID		Comp.C-11		
Date Sampled		10/16/2001		
Date Extracted		10/21/2001		
Preparation Method				
Date Analyzed		10/22/2001		
Matrix		Soil		
Units		ug/kg		
Detection Limit Multiplier		1		
Analytes	PQL	Results		
Aldrin	2	ND		
alpha-Hexachlorocyclohexane (Alpha-BHC)	2	ND		
Beta-Hexachlorocyclohexane (Beta-BHC)	2	ND		
Chlordane	17	ND		
4,4'-DDD (DDD)	80	161		
4,4'-DDE (DDE)	80	337		
4,4'-DDT (DDT)	80	280		
delta-Hexachlorocyclohexane (Delta-BHC)	2	ND		
dieldrin	4	16.0		
Endosulfan 1	2	ND		
Endosulfan 11	4	ND		
Endosulfan sulfate	4	ND		
Endrin	4	12.5		
Endrin aldehyde	4	ND		
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	2	ND		
Heptachlor	2	ND		
Heptachlor epoxide	2	ND		
Methoxychlor	17	ND		
Toxaphene	170	ND		

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

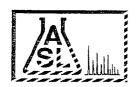
ANALYTICAL RESULTS

Page:

23

Project ID: Project Name: 1116-01A

River Park


Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 8080, Organochlorine Pesticides

Our Lab I.D.		75558		
Surrogates	Con.Limit	% Rec.		
Surrogate Percent Recovery				
Tetrachloro-M-Xylene	 43-169	105		

QUALITY CONTROL REPORT

Analytes	MS % REC	MS DUP	RPD %				
Aldrin	75	78	3.9				
4,4'-DDT (DDT)	99	113	13.2				
dieldrin	82	89	8.2		 		
Endrin	109	117	7.1		 		
gamma-Hexachlorocyclohexane (Gamma-BHC, Lindane)	80	80	<1				
Heptachlor	99	77	25.0			<u> </u>	

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Applied Enviro. Technologies, Inc.

4840 Market St. Suite B Ventura, CA 93003

Telephone: (805)650-1400 Attn: Wally Jensky

Page:

24

Project ID:

1116-01A

Project Name:

River Park

Job Number	Order Date	Client
12164	10/18/2001	AET


Method: 8150, Chlorinated Herbicides by GC

Our Lab I.D.		75548	75550	75552	75556	75559
Sample ID		Comp.C-1	Comp.C-3	Comp.C-5	Comp.C-9	Comp.C-12
Date Sampled		10/16/2001	10/16/2001	10/16/2001	10/16/2001	10/16/2001
Date Extracted		10/22/2001	10/22/2001	10/22/2001	10/22/2001	10/22/2001
Preparation Method						
Date Analyzed		10/26/2001	10/26/2001	10/26/2001	10/26/2001	10/26/2001
Matrix		Soil	Soil	Soil	Soil	Soil
Units		ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Detection Limit Multiplier		1	1	1	1	1
Analytes	PQL	Results	Results	Results	Results	Results
2,4-D	1.1	ND	ND	ND	ND	ND
2,4-DB	5.0	ND	ND	ND	ND	ND
2,4,5-T (2,4,5-Trichlorophenoxyacetic acid)	1.2	ND	ND	ND	ND.	ND
2,4,5,-TP (Silvex)	1.2	ND	ND	ND	ND	ND
Dalapon	0.5	ND	ND	ND	ND	ND
Dicamba	0.6	ND	ND	ND	ND	ND
Dichloroprop	0.8	ND	ND	ND	ND	ND
Dinoseb (DNBP, 2-sec-Butyl-4, 6-dinitrophenol)	1.1	ND	ND	ND	ND	ND
MCPA	200	ND	ND	ND	ND	ND
MCPP	150	ND	ND	ND	ND	ND
Pentachlorophenol	1.0	ND	ND	ND	ND	ND

Our Lab I.D.		75548	75550	75552	75556	75559
Surrogates	Con.Limit	% Rec.				
Surrogate Percent Recovery		11				
DCAA	50-170	55	55	69	75	79

QUALITY CONTROL REPORT

Analytes	MS % REC	MS DUP % REC	RPD %				
2,4-D	75	60	22.2				
2,4,5-T (2,4,5-Trichlorophenoxyacetic acid)	90	80	11.8				
2,4,5,-TP (Silvex)	112	185	49.2				

2520 N. San Fernando Rd., Los Angeles, CA 90065 Tel: (323) 223-9700 Fax: (323) 223-9500

ANALYTICAL RESULTS

Ordered By

Applied Enviro. Technologies, Inc. 4840 Market St. Suite B Ventura, CA 93003

Telephone: (805)650-1400 Wally Jensky Attn:

Page:

25

Project ID:

1116-01A

Project Name:

River Park

Job Number	Order Date	Client
12164	10/18/2001	AET

Method: 8150, Chlorinated Herbicides by GC

Our Lab I.D.		75561	75564	75571		
Sample ID		Comp.C-14	SSB-2	SSA-2		
Date Sampled		10/16/2001	10/16/2001	10/17/2001		
Date Extracted		10/22/2001	10/22/2001	10/22/2001		
Preparation Method	t					
Date Analyzed	1	10/26/2001	10/26/2001	10/26/2001		
Matrix	1	Soil	Soil	Soil		
Units	1	ug/kg	ug/kg	ug/kg		
Detection Limit Multiplier	1	1	1	1		
Analytes	PQL	Results	Results	Results		
2,4-D	1.1	ND	ND	ND	,	
2,4-DB	5.0	ND	ND	ND	'	1
2,4,5-T (2,4,5-Trichlorophenoxyacetic acid)	1.2	ND	ND	ND		
2,4,5,-TP (Silvex)	1.2	ND	ND	ND	'	
Dalapon	0.5	ND	ND	ND		
Dicamba	0.6	ND	ND	ND		
Dichloroprop	0.8	ND	ND	ND		
Dinoseb (DNBP, 2-sec-Butyl-4, 6-dinitrophenol)	1.1	ND	ND	ND		
MCPA	200	ND	ND	ND		
МСРР	150	ND	ND	ND		
Pentachlorophenol	1.0	ND	ND	ND		

Our Lab I.D.		75561	75564	75571	
Surrogates	Con.Limit	% Rec.	% Rec.	% Rec.	
Surrogate Percent Recovery					
DCAA	50-170	85	95	79	

QUALITY CONTROL REPORT

Analytes	MS % REC	MS DUP % REC	RPD %				
2,4-D	75	60	22.2				
2,4,5-T (2,4,5-Trichlorophenoxyacetic acid)	90	80	11.8				
2,4,5,-TP (Silvex)	112	185	49.2				

APPENDIX 5.0

Alternatives Information

Alternative Project Scenarios

		River Park A Only Alternative	Alternative	722%	25% Reduction in Density Alternative	sity Alternative
		Number	Percent		Number	Percent
Revenue						
Residential	₩	59,949,420	47.13%	ઝ	174,322,549	77.03%
Non-Residential	₩.	67,240,005	52.87%	₩.	51,967,725	22.97%
	₩	127,189,425	100.00%	↔	226,290,273	100.00%
Costs						
Title, Environmental, & Entitlement	↔	4,619,224	3.7%	ક્ક	9,424,303	4.3%
Construction Documents	↔	1,301,905	1.0%	ક્ક	2,603,809	1.2%
Legal, Financial, & Political	↔	1,722,583	1.4%	€9	5,975,332	2.7%
Overhead & Administration	₩	1,605,475	1.3%	€	3,210,950	1.4%
Taxes, Assessments, & Fees	↔	18,896,749	15.2%	↔	34,013,926	15.3%
Acquisition & Disposition Costs	↔	34,343,263	27.6%	↔	51,383,769	23.2%
Hard Costs (including Contingency)	↔	44,500,804	35.7%	€9	83,172,724	37.5%
Schools	₩	17,410,140	14.0%	↔	31,654,800	14.3%
Misc	↔	100,188	0.1%	69	230,713	0.1%
Total Costs	€	124,500,331	100.0%	↔	221,670,326	100.0%
Net Profit	↔	2,689,094		↔	4,619,947	
Net Present Value	₩	(19,976,943)		₩	(21,346,040)	
Internal Rate of Return		-0.48%			3.72%	

Notes

- 2 6 4 5

Costs include expenditures to date and projected costs through project completion.
Residential Revenue assumes a 15% affordable housing component.
School costs represent mitigation of impact through the provision of actual schools instead of fee payment.
Lot sales and revenue absorption based on Keyser Marston report dated 11/9/01.
Net Present Value is calculated using a 20% discount rate applied to all cash flows.